Текст книги "Большое, малое и человеческий разум"
Автор книги: Стивен Уильям Хокинг
Соавторы: Роджер Пенроуз,Нэнси Картрайт,Абнер Шимони
Жанр:
Физика
сообщить о нарушении
Текущая страница: 3 (всего у книги 12 страниц)
t2 – x2 – y2 = 0.
Рис. 1.21. Пространство Лобачевского, «вложенное» (в виде гиперболоидов) в пространство-время Минковского.
Стереографическая проекция переводит его в так называемый диск Пуанкаре, ограниченный окружностью на плоскости t = 0.

В такой геометрии (ее называют геометрией Минковского) уравнению t2 – x2 – y2 = 0 соответствуют две чашеобразные поверхности, расположенные на «единичном расстоянии» от начала координат («расстоянию» в геометрии Минковского соответствует реальное время, т. е. время, измеряемое в физическом эксперименте при помощи движущихся часов). В пространстве Минковского эти поверхности служат «сферами», и можно показать, что внутренняя геометрия таких сфер является гиперболической (пространство Лобачевского). В евклидовой геометрии вы можете вращать обычную сферу и найти группу симметрии, соответствующую таким вращениям. В случае поверхностей, изображенных на рис. 1.21, группа симметрий представляет собой группу вращений Лоренца, которая описывает преобразование пространства и времени при вращении, т. е. при вращении единого пространства-времени вокруг некоторой фиксированной точки. В таком представлении группа симметрий пространства Лобачевского точно совпадает с группой Лоренца.
На рис. 1.21 для пространства Минковского показана также стереографическая проекция, подобная рассмотренной выше (рис. 1.10, в). Вместо южного полюса на рис. 1.21 используется точка (-1, 0, 0), а точки верхней «чаши» проецируются на плоскость t = 0, которая выступает аналогом экваториальной плоскости на рис. 1.10, в. Все точки после проецирования лежат внутри окружности в плоскости t = 0, которую называют иногда диском Пуанкаре. В результате операции в целом (которая, кстати, в точности совпадает с художественным приемом, использовавшимся М.Эшером в его гравюрах «Предельная окружность») гиперболическая поверхность (пространство Лобачевского) преобразуется в диск Пуанкаре. Более того, такое преобразование соответствует главной особенности проекции рис. 1.10, в – оно сохраняет все углы и окружности, придавая операции геометрическое изящество. Я просто восхищаюсь всеми этими совпадениями, с которыми математики постоянно встречаются в своих исследованиях!
Надеюсь, что мой восторг не показался вам чрезмерным. Существует интересная и несколько загадочная психологическая закономерность: если результаты исследования какой-то заинтересовавшей вас проблемы (например, геометрической) выражаются красивой математической формулой, то это поддерживает интерес исследователя и стимулирует дальнейшую работу (совершенно аналогично результаты, не обладающие математическим изяществом, обычно разочаровывают и обескураживают исследователя). Гиперболической геометрии присуща особая математическая красота, и было бы очень приятно (мне лично, по крайней мере), если бы Вселенная была построена столь математически красиво. Разумеется, у меня есть очень много других причин для веры в такое устройство Вселенной. Многим не нравится идея о гиперболической, открытой Вселенной, и они предпочитают модели замкнутых вселенных (типа показанных на рис. 1.16, б), которые, вполне возможно, кажутся им более приятными и уютными (разумеется, стоит отметить, что такие замкнутые вселенные все еще остаются весьма крупными). Другие ученые предпочитают модели плоского мира (рис. 1.16, а), поскольку среди теорий зарождения Вселенной существует и так называемая теория раздувающейся Вселенной, предполагающая плоскую геометрию мира. Должен сказать, что я не очень доверяю этим теориям.
Описанные выше три стандартных типа моделей Вселенной, известные под общим названием моделей Фридмана, отличаются исключительно высоким уровнем симметрии. Все они описывают расширение, однако Вселенная при этом остается совершенно однородной в любой момент времени. Это условие входит в структуру моделей Фридмана и получило специальное название космологического принципа. В моделях Фридмана свойства Вселенной одинаковы по всем направлениям, и похоже, что наша Вселенная устроена действительно по этому принципу. Если уравнения Эйнштейна справедливы (а выше я говорил о том, что его теория с высокой степенью точности соответствует наблюдаемым явлениям), то к моделям Фридмана следует относиться весьма серьезно. Отметим, что во всех этих моделях присутствует не очень «изящный» с точки зрения физики Большой Взрыв (состояние сверхгорячей Вселенной с бесконечной плотностью и другими сингулярными параметрами, которые очень трудно описывать теоретически). Однако если мы все же смиримся с возможностью существования этого сверхнагретого и сверхплотного физического состояния, то сможем предсказать развитие мира вплоть до настоящего времени. Одно из важнейших предсказаний такого типа относится к тепловому состоянию Вселенной. Теоретический расчет показывает, что в ней должно присутствовать однородное фоновое излучение, спектр которого должен соответствовать известному в физике излучению черного тела. Именно такой тип космической радиации (получивший название микроволнового фонового излучения) был открыт Пензиасом и Вильсоном в 1965 г., что стало одной из главнейших научных сенсаций нашего времени. На рис. 1.22 представлена спектральная кривая этого излучения (полученная при помощи спутника СОВЕ), которая с очень высокой степенью точности совпадает с хорошо известным из учебников спектром абсолютно черного тела.
Рис. 1.22. Результаты измерений спектра космического микроволнового фонового излучения
(точки на рисунке), полученные при помощи спутника СОВЕ, прекрасно совпадают с расчетной кривой (сплошная линия), полученной из «тепловой» теории Большого Взрыва.

Для всех специалистов по космологии существование этого фонового излучения стало убедительным доказательством того, что наша Вселенная когда-то находилась в очень горячем и плотном состоянии. Излучение сообщает нам нечто об исходном состоянии Вселенной и, хотя не дает полной информации, совершенно определенно свидетельствует о том, что событие типа Большого Взрыва действительно когда-то произошло.
Другими словами, наша Вселенная должна быть очень похожа на одну из моделей рис. 1.16.
Измерения, проведенные при помощи спутника СОВЕ, позволили сделать еще одно важное открытие, заключающееся в том, что (хотя обнаруженное космическое фоновое излучение является высокооднородным и прекрасно описывается математически) Вселенная в целом не является совершенно однородной. В распределении излучения по звездному небу остаются очень небольшие, но вполне реальные неоднородности. Фактически мы вынуждены признать, что какие-то крошечные неоднородности присутствовали уже на самой ранней стадии развития Вселенной, а сейчас мы видим лишь их остатки, которые еще не «расплылись» и не превратились в однородное «загрязнение». Скорее всего, наша Вселенная похожа на модели рис. 1.23 (для демонстрации своей непредубежденности и беспристрастности я привожу примеры и открытой, и замкнутой Вселенной).
Рис. 1.23.
a – модель эволюции замкнутого мира с образованием черных дыр в виде объектов разного типа, достигших конечного состояния в своем развитии. Легко сообразить, что в этом случае к моменту гибели мира (Большому Сжатию, или Коллапсу) будет твориться ужасное «столпотворение»; б – развертка событий рис. а в виде набора отдельных «фотокадров»; в – эволюция Вселенной открытого тина с образованием черных дыр на разных этапах развития.

Развитие неоднородностей в замкнутой Вселенной будет приводить к образованию реальных наблюдаемых структур (звезд, галактик и т. д.), после чего в результате коллапса звезд, стягивания масс галактик к центрам и т. п. начнут формироваться черные дыры со своими сингулярными центрами (картина будет напоминать Большой Взрыв, протекающий в обратном порядке). Однако в целом ситуация не столь проста. Дело в том, что исходное состояние Большого Взрыва было приятно симметричным и однородным, а изображенное на рисунке конечное состояние представляет собой ужасную «смесь», в которой образующиеся черные дыры сбиваются в кучи, производя немыслимый беспорядок в момент Большого Сжатия (рис. 1.23, а). На рис. 1.23, б эволюция такой замкнутой модели представлена в виде последовательности «фотокадров», фиксирующих ряд событий. В модели открытой Вселенной образование черных дыр выглядит гораздо естественнее и «спокойнее» – во Вселенной была исходная сингулярность, которая продолжает сохраняться и порождает новые сингулярности в центрах черных дыр (рис. 1.23, в).
Я еще раз обращаю ваше внимание на то, что в стандартных моделях Фридмана существует огромная разница между исходным состоянием и тем состоянием, которое предсказывается теорией для отдаленного будущего. Эта особенность моделей имеет важное значение, поскольку она связана с одним из фундаментальных законов природы – вторым началом термодинамики.
Этот знаменитый закон физики легко объяснить на примерах из обыденной жизни. Каждый из нас может представить или вспомнить простую житейскую ситуацию, когда бокал падает со стола и разбивается, заливая вином ваш любимый коврик (рис. 1.24, последовательность событий слева направо). Проблема заключается в том, что механика Ньютона не содержит никаких запретов на протекание тех же процессов в обратном направлении, хотя никто никогда не видел, чтобы разбитый бокал и пролитое вино соединились снова, заполненный бокал заскочил на стол и т. д. Два разных направления времени указаны на рисунке стрелками, и я вновь повторяю, что по законам механики оба эти направления совершенно равноправны. Разницу между ними устанавливает лишь второе начало термодинамики, в соответствии с которым энтропия системы со временем должна возрастать. Величина, которую я назвал энтропией, значительно возрастает, когда бокал падает и разбивается, вследствие чего процесс и идет в направлении, указанном верхней стрелкой. Грубо говоря, энтропия есть мера беспорядка в системе. Для более глубокого понимания этой идеи нам необходимо ввести представление о так называемом фазовом пространстве.
Рис. 1.24. Законы механики обратимы относительно времени, однако в реальной жизни события всегда протекают в последовательности слева направо (показанной на рисунке), а не наоборот.

Фазовое пространство представляет собой пространство с совершенно немыслимым числом измерений, поскольку каждая его точка описывает координаты и импульсы всех частиц рассматриваемой системы. На рис. 1.25 я выбрал отдельную точку в этом огромном пространстве, и эта точка определяет расположение и характер движения всех частиц системы. При изменении координат и импульсов любой из частиц положение системы в фазовом пространстве изменится. Эволюцию всей системы в таком пространстве я изобразил на рисунке извилистой линией.
Рис. 1.25. Второе начало термодинамики в действии.
С течением времени точка в фазовом пространстве проникает в новые, постоянно увеличивающиеся области (или «отсеки») пространства, в результате чего энтропия системы постоянно увеличивается.

Ломаная линия на рисунке описывает обычную эволюцию системы частиц и не связана ни с каким представлением об энтропии. Для введения энтропии мы должны нарисовать небольшие «пузыри» вокруг областей, в которые последовательно попадает система, и объединить различные состояния, которые нельзя рассмотреть по отдельности. Выражение «нельзя рассмотреть по отдельности» несколько туманно и требует пояснений. Конечно, на самом деле все зависит от того, кто и насколько подробно рассматривает поведение системы. Это один из тех сложных и запутанных вопросов, которые раздражают физиков-теоретиков, когда речь заходит об энтропии. Для нашего рассмотрения будет вполне достаточно указать, что под «невозможностью рассмотреть по отдельности» мы подразумеваем некоторое так называемое «крупнозернистое» объединение группы состояний. Для нахождения энтропии необходимо проделать следующие операции: провести «крупнозернистое» объединение группы состояний (т. е. собрать состояния в некоторой области фазового пространства и «слепить» их в единое целое), определить объем этой области, взять логарифм от объема, а затем умножить его на так называемую постоянную Больцмана. Второе начало термодинамики устанавливает, что энтропия системы постоянно возрастает. Это утверждение может показаться простым и даже глуповатым – фактически постулируется лишь то, что если системе, находящейся в очень маленьком «ящичке» или отсеке, позволить двигаться произвольно, то она будет перебираться во все более крупные «ящики» (что очень похоже на правду хотя бы потому, что большие ящики имеют огромные размеры и у попавшей в них системы практически нет шансов случайно «забрести» в маленький ящик). Вот, пожалуй, и все, что можно сказать по этому поводу, – система, случайным образом блуждающая по фазовому пространству, будет попадать во все более крупные ящики или объемы. Именно это постулируется вторым законом. Впрочем, давайте еще немного подумаем о том, так ли все просто?
На самом деле смысл второго начала значительно шире, и сказанное выше разъясняет его лишь наполовину. Второе начало утверждает, что если нам известно состояние системы сейчас, то мы можем предсказать для нее наиболее вероятные состояния в будущем. Однако этот же закон приводит к совершенно неправильным ответам, как только мы пытаемся придать ему «обратную силу». Действительно, вернемся вновь к примеру с бокалом на краю стола. Разумеется, существует много вариантов, в результате которых бокал может оказаться в данном месте и в данный момент времени. Предположим, что нас интересует, какой из этих вариантов является наиболее вероятным. Применив наши рассуждения в обратном порядке, мы можем придти к выводу, что осколки бокала и пятно на ковре сами собой собрались в целый и наполненный бокал, который затем «подпрыгнул» и очутился на столе. Объяснение очевидно неправильно – гораздо вероятнее, что бокал поставил на край стола кто-то из присутствующих. Но при попытке понять, почему этот кто-то поставил бокал именно здесь, перед нами возникнет целый ряд новых вопросов. Установление причинно-следственных связей в любом случае будет вызывать все новые вопросы, выявлять новые связи и т. д. Только такой путь мог бы привести нас к прошлым состояниям с уменьшающейся энтропией. Правильный ход событий описывается «актуальной» (иначе говоря, «реальной») кривой рис. 1.26 (а не всевозможными попытками восстановления прошлого), т. е. именно той кривой, которой соответствует постоянное уменьшение энтропии по мере перехода к прошлому.
Рис. 1.26.
При попытке объяснения последовательности явлений на рис. 1.24 в обратном порядке мы «навязываем» системе возрастание энтропии при обращении времени, что и приводит к противоречию.

Возрастание энтропии со временем объясняется тем, что система, перемещаясь в фазовом пространстве, занимает все большие объемы-ящики, однако уменьшение энтропии при переходе к прошлому носит совершенно иной характер. Действительно, давайте задумаемся над тем, какие процессы могли бы соответствовать возврату к прошлому с постоянным уменьшением энтропии? Можно ли при этом вернуться к моменту Большого Взрыва? По-видимому, проблема, порождающая столь явные и сильные противоречия, связана с какой-то весьма специфической особенностью самого Большого Взрыва. Попытки объяснения ситуации пока остаются малоуспешными. Например, выше я как-то отметил, что лично не очень доверяю модной теории раздувающейся (инфляционной) Вселенной. В этой достаточно популярной теории наблюдаемая в огромных масштабах однородность Вселенной объясняется событиями, происходившими на самой ранней стадии ее развития. Предполагается, что в момент, когда возраст Вселенной составлял лишь около 10-36 секунды, произошло какое-то немыслимое по масштабу расширение. Вопрос о том, как выглядела Вселенная на ранней стадии, теряет при этом подходе смысл, поскольку после такого чудовищного мгновенного увеличения объема (приблизительно в 1060 раз!) геометрия Вселенной стала выглядеть практически плоской. Это предположение позволяет обойти многие «острые углы», чем, возможно, и объясняются популярность и привлекательность описываемой теории.
Однако, как это часто бывает в теории, предлагаемое объяснение всего лишь заменяет одну очень сложную проблему другой. Дело в том, что для описанного механизма требуется прежде всего, чтобы Вселенная находилась с самого начала в ужасном «беспорядке», который (даже если его чудовищно увеличивать в объеме!) все равно останется «беспорядком», в результате чего по мере расширения ситуация будет становиться все хуже и хуже (рис. 1.27).
Рис. 1.27. Попытка изображения проблемы «внутренне присущей» неупорядоченности Вселенной на ранней стадии развития.

Мне кажется, что приводимые доводы не объясняют наблюдаемую в настоящее время высокую степень упорядоченности Вселенной. Мы нуждаемся в теории, которая могла бы подсказать, на что был похож Большой Взрыв. Очевидно, что будущая теория должна как-то объединить понятия физики макромира и микромира, классической физики и квантовой механики. Более того, будущая теория должна объяснить причины как Большого Взрыва, так и наблюдаемой однородности мира. Возможно, конечно, что теория покончит и со столь понравившейся мне гиперболической вселенной Лобачевского.
Вернемся еще раз к проблеме замкнутости и открытости рассматриваемых вселенных (рис. 1.28) и рассмотрим подробнее процессы формирования черных дыр. Они возникают в результате коллапса материальных объектов, приводящего к образованию сингулярностей, показанных линиями на пространственно-временных диаграммах. Мне хочется предложить вам одну идею, которую я называю гипотезой кривизны Вейля и которая, кстати, не является следствием ни одной из известных теорий. Повторю, что сейчас мы даже не представляем, какой должна быть будущая общая теория, поскольку мы не можем объединить существующие теоретические описания очень больших и очень малых физических объектов. Я уверен, однако, что эта теория должна каким-то образом включить именно то положение, которое я называю гипотезой кривизны Вейля. Напомню, что кривизной Вейля мы называем ту часть тензора Римана, которая связана с искажениями пространства и приливными эффектами. Предлагаемая мною гипотеза состоит в том, что по каким-то пока неясным причинам требуемая комбинация теорий должна приводить к нулевому (или хотя бы к очень малому) значению тензора Вейля в окрестности Большого Взрыва.
Рис. 1.28.
а – общая картина замкнутой вселенной, развитие которой начинается с однородного, низкоэнтропийного Большого Взрыва (с тензором Вейля = 0) и заканчивается высокоэнтропийным Большим Сжатием, соответствующим слиянию многочисленных черных дыр (при этом тензор Вейля стремится к бесконечности); б – пространственно-временная диаграмма, описывающая коллапс отдельной черной дыры; в – эволюция открытой вселенной, также начинающаяся с однородного, низкоэнтропийного Большого Взрыва (с тензором Вейля = 0).

В этом случае общая картина эволюции вселенной будет напоминать рис. 1.28, а и в. Гипотеза кривизны Вейля предполагает асимметрию по отношению ко времени, поэтому она относится лишь к сингулярностям в прошлом, а не в будущем. Если бы тензор Вейля был достаточно «гибким» (т. е. его можно было применять в замкнутой модели и к прошлому, и к будущему), то нам бы удалось покончить с нынешней «ужасающей» картиной мира, в которой вселенная была и остается крайне беспорядочной (рис. 1.29). Ведь Вселенная, в которой мы живем, выглядит совсем по-иному!
Рис. 1.29.
Сняв указанное ограничение (условие, что тензор Вейля = 0), мы вновь получаем картину с высокоэнтропийным Большим Взрывом (тензор Вейля стремится к бесконечности). Такую вселенную пронизывали бы белые дыры, и в ней не выполнялся бы второй закон термодинамики (а это никак не согласуется с тем, что мы видим).

Какова вероятность (строго говоря, случайность или шанс), что начальная сингулярность вселенной была еще слабее, чем нам представляется сейчас? Эту величину можно оценить по формуле Якоба Бекенштейна и Стивена Хокинга для энтропии черных дыр. В нашем случае она приводит к дроби, где в числителе единица, а в знаменателе – немыслимо чудовищное число 1010 в степени 123. Если указанная формула применима к столь грандиозному объекту, как вселенная, то вы действительно получаете это фантастическое число (поскольку вероятность зависит от размеров). В той вселенной, которую я предлагаю, эту величину можно смело приравнять нулю.
Сказанное подводит нас к вопросу о точности, с которой должны быть определены условия «организации» Большого Взрыва. Ситуация выглядит поразительной, и я попытался выразить ее карикатурой (рис. 1.30), на которой Творец выискивает сверхкрошечную точку в фазовом пространстве, соответствующую начальным условиям, при которых будущая вселенная приобретет привычный нам вид. Творцу необходимо определить положение точки в фазовом пространстве с указанной фантастической точностью (1010^123). Число, о котором идет речь, столь велико, что мне не удалось бы выписать его в ряд, даже используя в качестве нулей все элементарные частицы вселенной.
Рис. 1.30.
Для создания вселенной, похожей на нашу, Творцу пришлось бы найти немыслимо крошечную точку в фазовом пространстве и воткнуть в нее столь же крошечную иголку (ни точку, ни острие иголки на рисунке не удалось изобразить из-за малости размеров!). Выбранная точка должна была содержать лишь 1010^123 часть общего объема фазового пространства!

Я начал изложение с проблемы удивительной точности и согласованности физики и математики. Затем я попытался очень кратко рассказать о втором начале термодинамики, которое многие считают «приблизительным» и не оправдавшим возлагавшихся на него надежд (наверное, потому, что оно связано с понятиями случайности и вероятности), но которое на самом деле отражает удивительно точные закономерности. Говоря о вселенной, мы обязаны оценить точность условий создания ее исходного состояния. Эта точность позднее должна быть отражена и в той будущей, еще не созданной теории, которая позволит объединить квантовую теорию и общую теорию относительности. В следующей главе я продолжу рассказ о процессах, объектах и задачах будущей теории.








