Текст книги "Беседы о жизни"
Автор книги: Станислав Галактионов
Соавторы: Григорий Никифорович
сообщить о нарушении
Текущая страница: 7 (всего у книги 13 страниц)
Какова же химическая природа гидрофобных веществ? Из интересующих нас классов соединений важнейшими являются два: вещества, содержащие длинные фрагменты типа… ―СН 2―СН 2―СН 2― … то есть так называемую алифатическую часть (напомним, что парафины имеют общую формулу СН 3(СН 2) nСН 3), и циклические ароматические соединения, содержащие кольца типа
(попробуйте растворить в воде нафталин!).
Именно такие элементы структуры содержатся в боковых радикалах некоторых аминокислотных остатков: валина, лейцина, изолейцина, пролина (алифатические цепи), фенилаланина, триптофана (ароматические циклы). Соприкосновение этих боковых групп с водой энергетически «невыгодно», поэтому вполне вероятно предположить, что в белковой глобуле они будут стремиться разместиться внутри глобулы, а наружу будут выставлены хорошо гидратируемые (как бы смачиваемые водой) радикалы. Например, боковой радикал серина представляет собой остаток метилового спирта, боковой радикал аспарагиновой кислоты – остаток уксусной кислоты; оба вещества, как все знают, прекрасно растворяются в воде. Большой гидрофильностью (этот термин, что совершенно очевидно, означает свойство, противоположное гидрофобности) отличаются также остатки аргинина, глутаминовой кислоты, треонина.
Итак, по соображениям стабильности глобулярной структуры гидрофобные остатки должны локализоваться внутри, образуя как бы жирную каплю, защищенную от доступа воды наружным слоем гидрофильных остатков. Такое расположение остатков следует, впрочем, уже из самого факта растворимости белков в воде: будь неполярные остатки снаружи, белки бы в воде не растворялись. Впервые гипотеза о существовании подобного «гидрофобного ядра» глобулы была высказана советскими учеными С. Бреслером и Л. Талмудом еще в 1949 году, когда о пространственном строении белковых молекул не было известно почти ничего. Впоследствии именно такой способ размещения боковых цепей различной природы в глобулах ряда белков был подтвержден рентгеноструктурным анализом, а стремление гидрофобных остатков собраться вместе даже породило не вполне удачный термин «гидрофобные взаимодействия», прочно вошедший в словарь молекулярной биологии.
Одно из следствий описанного строения белковой глобулы можно наблюдать довольно часто – всякий раз, когда вы готовите яичницу. При высокой температуре третичная структура белков разрушается вследствие теплового движения, и гидрофобные радикалы, ранее скрытые от воды гидрофильной «рубашкой», оказываются в контакте с водой. Молекулы белка теряют растворимость, и совершенно прозрачный и вязкий яичный белок (опять эта игра слов!) становится плотной непрозрачной массой. (Вспомним, что прозрачность – неотъемлемое свойство всякого истинного раствора.)
Закончив это кулинарное отступление – почти совершенно, впрочем, неизбежное в любом не слишком лаконичном рассказе о строении белков, – вернемся к вопросу, с которого мы начали: можно ли по аминокислотной последовательности белка предсказать, будет ли его глобула близка по форме сфере или какой-нибудь вытянутой фигуре?
Оказывается, с учетом всего, что мы уже знаем о характере размещения гидрофобных и гидрофильных остатков в глобуле, на этот вопрос можно ответить. Впервые такая возможность была указана американским биофизиком Г. Фишером (по слухам, исходящим из непроверенных молекулярно-биологических источников, отцом экс-чемпиона мира по шахматам). Симпатичная наука стереометрия, которая для многих (в том числе и для авторов) служила причиной некоторых затруднений при обучении в средней школе, утверждает, например, что поверхность шара меньше поверхности сигарообразного тела того же объема. С другой стороны, поскольку на поверхности белковой глобулы расположены гидрофильные остатки, а внутри – гидрофобные, это означает, что уже простое сопоставление числа тех и других может служить мерой уклонения формы глобулы от сферической, а с помощью несложных расчетов, доступных тем немногим, кто не окончательно забыл школьный курс геометрии, можно оценить степень вытянутости глобулы.
Кстати, для этого даже не нужно знать текст аминокислотной последовательности белковой цепи – достаточно общего аминокислотного состава молекулы. (Здесь наступило время покаяться в допущенной неточности! Ведь ранее мы утверждали, что третичная структура глобулы определяется системой внутримолекулярных взаимодействий, совершенно игнорируя влияние растворителя – воды. Не вдаваясь в подробности, скажем лишь, что изощренные конформаторы-расчетчики умеют учитывать и взаимодействие молекулы белка с водой.)
Конечно, представление о глобуле как о правильном геометрическом теле очень приблизительно: поверхность глобулы может быть изрезана различными неровностями, иметь изогнутую форму, короче – напоминать произведение лауреата выставки абстрактной скульптуры. (Непонятно, кстати, почему изображения структур белковых молекул – того же миоглобина или лизоцима – до сих пор не послужили ни одному скульптору-абстракционисту в качестве «натуры».) И уж, разумеется, оценки с помощью гипотезы «гидрофобного ядра» никаких подробностей структуры не сообщают. Но, повторяем, на конформационном безрыбье…
Словом, если завтра в какой-нибудь газете появится объявление «Срочно требуются квалифицированные ясновидцы», можно не сомневаться, что наряду с тысячами возмущенных столь откровенным розыгрышем читателей найдутся немногие, которые на всякий случай все же позвонят по телефону, указанному в объявлении, и поинтересуются, удалось ли отделу кадров найти хоть одного стоящего ясновидца. Кстати, если удалось, нельзя ли ему поработать по совместительству еще в одном учреждении. А в ответ на резонный вопрос начальника отдела кадров, кого же, собственно, представляет невидимый собеседник, почти наверняка раздастся уклончивое: «Вообще-то нас интересует пространственная структура белков…»
Спорт находчивых и мужественных
Как мы только что убедились, очень грубое предсказание общих очертаний белковой глобулы – дело сравнительно нетрудное. Однако многовековая история колдовства, ведовства и черной магии учит, что запросы потребителей на рынке предсказаний непрерывно растут: если рядовому авгуру в Древнем Риме приходилось, самое большее, отвечать, будут ли всемогущие боги благосклонны к участникам завтрашней битвы, то главе современных гадалок мадам Солей (Франция) доводится, по слухам, консультировать новоиспеченных премьер-министров относительно предполагаемого персонального состава будущего кабинета. Недаром мадам Солей вынуждена (по тем же слухам) прибегать к активной помощи компьютеров!
Поведение молекулярных биологов в этом смысле ничуть не отличается от поведения прочих потребителей предсказаний. Ученые хотят знать не просто форму глобулы, но и, например, схему размещения в белковой цепи участков периодических структур: α-спирали и β-структуры. Конечно, прорицателю, работающему по старинке, такая задача не под силу; современные же предсказатели, вооруженные до зубов всевозможными математическими премудростями, добились в ее решении значительных успехов, о которых стоит поговорить подробнее.
Самые распространенные приемы предсказаний локализации регулярных структурных участков в аминокислотной последовательности базируются на тщательном изучении третичных структур белков, исследованных рентгенографически. Уже простой подсчет остатков различных типов, входящих в α-спиральные участки, участки β-структуры и нерегулярные части молекулы, показывает, что существуют, например, остатки, заметно чаще встречающиеся именно в спиральных фрагментах – аланин, валин, фенилаланин, лизин и т. д. Если в какой-то части аминокислотной последовательности белка встречается скопление этих остатков, можно предположить, что в глобуле эта часть спирализована.
Приведенный тип обобщения – наиболее примитивный; на самом деле обработка информации об аминокислотных последовательностях, принадлежащих участкам различных типов вторичных структур, велась с использованием весьма совершенных методов математической статистики, начиная с установления зависимостей, подобных рассмотренным, для различных комбинаций пар, троек и т. д. остатков и кончая весьма сложными процедурами, базирующимися на так называемой теории распознавания образов. Очевидно, однако, что при всей математичности такой подход является чисто эмпирическим и по существу своему очень близок упоминавшимся народным приметам (разумеется, это говорится отнюдь не в укор, тем более что на этом пути были получены очень хорошие результаты).
Тенденция того или иного остатка к образованию спирали может быть получена и из другого источника: экспериментального исследования синтетических полипептидов, образованных из аминокислот лишь одного определенного типа – полиаланина, полизина и т. п. Хорошо известно, что часть полиаминокислот приобретает в растворе форму α-спирали, другие же не обнаруживают склонности к ее образованию. К первым относятся, например, полиаланин, полифенилаланин, полилейцин, ко вторым – полисерин, политреонин. Информация, полученная таким путем, может использоваться для разработки самостоятельных методов распознавания спиральных участков белковых структур или в качестве дополняющей в только что рассмотренных методах.
Наконец, ряд «предсказательных» подходов использует то обстоятельство, что атомы внутри белковой глобулы расположены достаточно плотно, так что внутри не остается никакого свободного пространства, и в то же время без напряжений, без «налезания» одного атома на другой.
Зная строение остова α-спирали, можно, опираясь на эти представления (иногда дополняемые требованием определенного чередования гидрофобных и гидрофильных остатков), указать те участки аминокислотной последовательности, которые могут принять форму α-спиралей, причем боковые радикалы на их поверхности будут расположены плотно и без напряжений. Оценки такого рода выполняются обычно с помощью объемных молекулярных моделей, в которых атомы представлены шариками того или иного, своего для каждого атома, диаметра.
Отметим, наконец, что в практике предсказаний спиральных участков (и вообще участков структуры определенного типа) очень часто описанные подходы используются не в «чистом», а в комбинированном виде.
Мы столь подробно останавливаемся на этих методах по двум причинам. Во-первых, многие из них оказались довольно эффективными; во-вторых, предсказание локализации вторичных структур в белках с известной аминокислотной последовательностью ныне стало излюбленным занятием очень многих специалистов в области структуры белка. Число предложенных методов перевалило за тридцать, а в обсуждении тех или иных преимуществ каждого из них стали появляться нотки соперничества. Так что вполне естественной оказалась мысль проведения мирового чемпионата по предсказанию участков регулярной структуры: пусть преимущество того или иного метода решается не в бесплодной полемике авторов на страницах специальных журналов, а в честной спортивной борьбе! Правда, соревнования по таким предсказаниям еще никто никогда не проводил, но ведь и бобслей, к примеру, появился совсем недавно, а нынче этот вид спорта уже прочно входит в программу Олимпийских игр.
Инициатором соревнований оказался западногерманский кристаллограф Г. Шульц из Планковского института медицинских исследований в Гейдельберге. Им была установлена пространственная структура молекулы фермента аденилкиназы; перед тем как ее обнародовать, Г. Шульц разослал всем предсказателям регулярных структур предложение участвовать в организуемом им конкурсе на лучшее распознавание (на основании первичной аминокислотной последовательности) участков α-спирали, β-структуры и резких изгибов белковой цепи молекулы аденилкиназы. Сам он, естественно, фигурировал в роли арбитра.
На старт вышли одиннадцать участников. Говоря о числе участников, мы имеем в виду количество методов предсказаний, а не предсказателей, поскольку многие методы предлагались двумя авторами или наоборот: одни и те же авторы представили по нескольку методов.
Участники (на этот раз имеются в виду авторы методов) должны были определить положения α-спиралей, участков β-структуры и изгибов цепи и результаты выслать Г. Шульцу.
И вот наступил день подведения итогов (впоследствии они были опубликованы в известном английском научном журнале «Нейчур»). О, как нам хотелось бы в совершенстве владеть роскошным праздничным жаргоном спортивных комментаторов, пишущих об очередной блестящей победе советских фигуристов! Но нет, конечно же, это было бы неуместным, тем более что никакого публичного провозглашения имен победителей не последовало, а выявление их оказывается возможным лишь на основе неофициального подсчета очков.
Вот, например, результаты по классу α-спирали. Аденилкиназа – белок с относительно высоким содержанием спиральных участков: из 193 аминокислотных остатков, образующих молекулу, 105 входят в спиральные участки. Советские ученые О. Птицын и А. Финкельштейн сумели правильно указать 79 из них (не обнаружив, следовательно, 26); кроме того, 12 неспиральных остатков ими были ошибочно определены как спиральные. Другой советский участник, В. Лим, достиг еще большего числа правильных предсказаний – 82, однако ценой также и большего количества ошибок – 29. Лучшие среди зарубежных участников, американцы П. Чоу и Дж. Фасман, имеют результат 70 и 14 соответственно.
Если победителей определять на основании общего числа ошибок («недопредсказанных» и «перепредсказанных» остатков), то места в классе α-спирали распределятся следующим образом: О. Птицын и А. Финкельштейн – 38, П. Чоу и Дж. Фасман – 49, В. Лим – 52. Заметим, что некоторые методы дали 78, 87 и даже 98 ошибок! Для сравнения интересно указать, что утверждению о полной спирализации молекулы аденилкиназы соответствовало бы 88 ошибкам, а метод, заключающийся в определении «спиральности» или «неспиральности» каждого остатка с помощью бросания монетки (орел – решка), в среднем привел бы к 96,5 ошибки.
В классе предсказания β-структур среди лидеров встречаем те же фамилии: О. Птицын и А. Финкельштейн – 16 ошибок, В. Лим – тоже 16, П. Чоу и Дж. Фасман – 33 ошибки. Изгибы пептидной цепи наиболее удачно угадали американцы А. Бэрджесс и Г. Шерага (27 ошибок), незначительно опередившие тех же П. Чоу и Дж. Фасмана (28 ошибок). Советские ученые в предсказаниях этого класса не участвовали.
Разумеется, наше легкомысленное описание этого по-настоящему интересного и полезного соревнования следует воспринимать как шутку, хотя, конечно, мы не будем протестовать против объявления данного вида спорта олимпийским или против включения его под номером 50 в таблицу «Спортлото». Кстати, и состав советской олимпийской сборной как будто уже определился. В то же время молекулярным биологам не до шуток: проблема третьего этапа биологического кодирования – «первичная структура – третичная структура» – ждет своего решения. Хотя, как мы видели, корректное физическое рассмотрение задачи о формировании третичной структуры белка провести пока не удается, эта проблема все же начинает становиться все более понятной и решение ее становится все ближе. Так что будем надеяться на скорый и решительный успех конформаторов – людей редкой профессии и, увы, нелегкой судьбы.
Глава 5. Похвала ферментам
Высокое и несколько уже позабытое в наш рациональный век искусство многозначительных умолчаний, таинственных намеков и прочего кокетства не должно, казалось бы, иметь никакого отношения к рабочему стилю литературного произведения, трактующего в конце концов, что ни говорите, о суровых научных истинах. И все же наши многократные упоминания о том, что способность белковых молекул принимать вполне определенную структуру сообщает им такие необычные и очень важные свойства, что и рассказывать-то пока об этих свойствах нельзя, при некоторой доле читательского недоброжелательства может быть принята за разновидность литературного кокетства. Не знаем, удастся ли нам с помощью подобного (несомненно, предосудительного) приема завлечь в свои сети хоть одного читателя и зажечь в его сердце пламя бескорыстного интереса к молекулам ферментов. Однако более скромной цели мы, как нам кажется, все же достигли: читатель предупрежден, что цепочка биологического кодирования не обрывается на звене «третичная структура», а продолжается этапом «структура белка – функция белка».
Подробный рассказ о функциях белков в живом организме мы будем вести на примере, пожалуй, самой ответственной из них – ферментативного катализа.
На существование этого свойства белков мы в полном соответствии с избранным нами литературным стилем уже намекали ранее и даже, сколько помнится, попутно посудачили, что с помощью ферментов только и удается упорядочить химические превращения веществ, образующих живой организм. Теперь же, зная кое-что о принципах образования пространственной структуры молекул белков, мы можем поговорить на эту же тему гораздо подробнее.
Раздел, которого могло бы и не быть
Персонаж одной из миниатюр А. Райкина дал следующее определение: «Художник – это человек, который берет нужную краску и наносит ее в нужное место». Оставив претензии на оригинальность, напишем и мы вслед за А. Райкиным: «Фермент – это белок, берущий нужную молекулу и осуществляющий химическую модификацию нужной ее части».
Определение райкинского персонажа рассчитано на взрыв хохота в зрительном зале; наше определение, увы, может вызвать у знатоков обратную реакцию – удивление и возмущение, ибо оно, конечно же, не лишено множества недостатков. Взять хотя бы использованное в нем слово «нужный». («Нужный кому?» – сурово спросит иной бдительный материалист и, к сожалению, будет совершенно прав.) И еще: в нашем злополучном определении фермента ничего не говорится (по крайней мере, явно) о чудовищной быстроте, с которой ферменты выполняют свою работу. И еще о том, что в состав молекулы фермента могут входить, помимо белковой части, также и небелковые компоненты. И еще…
При желании этот список можно продолжить за счет упреков не столь существенных, но тем более неприятных. Что уж поделать, такова судьба всех лаконичных и категорических определений. Рассказывают, что некий литератор, занятый составлением толкового словаря, поинтересовался мнением знаменитого зоолога Ж. Кювье по поводу следующего определения слова «краб»: «Маленькая красная рыбка, которая плавает задом наперед». Ж. Кювье нашел это определение превосходным, однако отметил ряд мелких недочетов: краб не рыбка, не красный, не обязательно маленький и задом наперед не плавает.
Так что отречемся, пожалуй, от погони за чеканным и всеобъемлющим определением понятия «фермент». В конце концов, первые научные описания различных проявлений обескураживающих свойств ферментов неплохо обходились и без него. Ведь представление о ферментах как о белковых молекулах, обладающих особой валентной и пространственной структурой, внедрилось в биохимию лишь в последние десятилетия; до этого вопрос о химической природе ферментов оставался дискуссионным. Это не мешало, однако, интенсивному исследованию их каталитических свойств.
Большинство ранних исследований действия ферментов связано с процессами брожения – превращения сахара в спирт клетками дрожжей. Отсюда и происходят основные термины: «ферментум» по-латыни – закваска, брожение. Слово «фермент» прижилось в русском языке вполне основательно; для большинства же европейских языков характерен термин «энзим» («эн зимон» означает опять же «в закваске», но уже по-гречески). Изредка называют ферменты энзимами и в русской литературе, а уж слово «энзимология» для обозначения науки о ферментах приобрело совершенно монопольные права.
Итак, долгое время биохимики не имели вообще никакого понятия о том, что же за вещества представляют собой ферменты. Скорости, с которыми ферменты осуществляют контролируемые ими реакции, настолько велики, что для нормального течения обмена веществ в организме достаточны очень малые количества ферментов. Естественно, что их химическое выделение оказалось делом чрезвычайно сложным.
Первоначально полагали даже, что сбраживание сахара могут производить только целые, неповрежденные клетки дрожжей, а выделить из них некий «катализатор брожения» невозможно. Ярым приверженцем этой точки зрения оказался – увы! – один из величайших естествоиспытателей XIX века, Л. Пастер. К началу XX века стало ясно, что на этот раз Л. Пастер ошибается; удалось выделить сок дрожжевых клеток, который сбраживал сахар точно так же, как и целые клетки, удалось обнаружить в различных бесклеточных препаратах и другие проявления активности тогда еще загадочных ферментов. Однако в течение первой четверти нашего века вопрос о природе ферментов так и не нашел окончательного решения. И это несмотря на то, что средства химического анализа уже не были столь архаичными, а библиография исследований в области энзимологии насчитывала тысячи статей и сотни монографий.
Вот что можно было прочесть даже в лучших из них. В книге И. Смородинцева «Ферменты растительного и животного царства» (1922 год, 2-е издание) глава «Химическая природа ферментов» начинается словами: «Наши сведения о химической природе ферментов очень смутны и сбивчивы». И действительно, второй параграф этой главы озаглавлен «Доводы в пользу белковой природы ферментов», а третий – «Возражения против белковой природы ферментов». Другая книга: В. Бейлис. «Природа действия энзимов», перевод с английского. 1927 год. Здесь мы находим заголовок параграфа, который звучит еще более категорично: «Энзимы не представляют собой протеинов» (то есть белков). Мало того, в обеих книгах обсуждаются даже (правда, со значительной долей скепсиса) гипотезы, согласно которым ферменты как материальные химические соединения и не существуют вовсе, а ферментативная активность есть свойство, способное передаваться от одного тела другому, подобно, например, теплоте. Авторы этих гипотез утверждали, что ферменты способны действовать на расстоянии, через воздух или различного рода перегородки.
Странно, что все это вполне серьезно обсуждалось всего-то каких-нибудь пятьдесят лет назад. Может быть, такая серьезность диктовалась традиционным академическим стилем обеих монографий, требующим беспристрастного рассмотрения как «материальной», так и «силовой» теории действия ферментов. Симпатии авторов, несомненно, на стороне первой из них, и тем не менее И. Смородинцев завершает обсуждение вопроса примирительной фразой: «Надо сознаться, что все это шаткие доводы в пользу материальности ферментов, и потому некоторые исследователи придерживаются теории физического влияния ферментов».
Однако пусть не думает читатель, что мы пошли на беспрецедентное до сих пор отступление от своих литературных принципов (никакой «истории вопроса»!) ради высокомерного похлопывания по плечу «заблуждающихся» ученых прошлых десятилетий. Нет, этот раздел (которого, как справедливо отмечено в заголовке, могло бы и не быть) понадобился нам, чтобы показать, насколько трудно дается постижение даже сравнительно простых молекулярно-биологических истин, например, установление белковой природы ферментов. Ну и, конечно, для демонстрации динамизма развития неустанно прославляемой нами биологический науки: переход от полусхоластических рассуждений о тайнах активности ферментов к установлению первичной аминокислотной последовательности молекул сотен ферментов потребовал всего около сорока лет.
Сто тысяч операций в секунду
Всепроникающее влияние научно-технической революции распространяется в наши дни на самые неожиданные области человеческой деятельности. Возьмем, к примеру, цирк – веселое и жизнерадостное искусство, ничего, казалось бы, не имеющее общего с сухими и унылыми законами науки: в цирке все построено на смелости, ловкости, виртуозном умении владеть своим телом и (чего греха таить) на пресловутой ловкости рук.
Однако никакая ловкость рук не поможет фокуснику продемонстрировать такой, например, аттракцион: снятый с плеч пиджак небрежно швыряется под самый потолок, к люстре и… повисает в воздухе, в метре от люстры, презрев земное притяжение. Чем-то там гремит ударник циркового оркестра, прожекторы эффектно высвечивают замерший в высоте пиджак, а бешено аплодирующие зрители (по крайней мере, часть из них), пытаясь разгадать загадку, приходят к выводу, что они стали невольными участниками сеанса массового гипноза. А между тем никто не гипнотизировал и не пытался их «обмануть». Фокус (с точки зрения физики) исключительно прост: в пиджак запрятана металлическая пластинка, а в люстру – мощный электромагнит переменного тока. Как видите, никакой ловкости рук.
Подобных «научных» фокусов существует немало, но все они, как это ни обидно авторам-биологам, носят либо «физический», либо «химический» (вроде известного самовозгорания свечей) характер. Поэтому мы берем на себя смелость рекомендовать широким массам фокусников – как любителей, так и профессионалов – идею «биохимического» фокуса: в стакан, до половины заполненный прозрачной жидкостью, после соответствующих пассов и заклинаний, незаметно добавляют каплю некоего раствора. Жидкость немедленно «вскипает», да так бурно, что все содержимое стакана выплескивается наружу; это должно выглядеть очень эффектно, так что за аплодисменты зрителей можно не беспокоиться.
Секрет нашего фокуса, как ясно каждому, скрыт в свойствах загадочного «раствора» и «прозрачной жидкости». В «жидкости» ничего биохимического нет: это обычная перекись водорода (Н 2О 2), которую можно приобрести в любой аптеке, поскольку она широко используется в быту (средство для прижигания порезов и царапин, для чистки одежды, для… впрочем, во избежание гнева читательниц-блондинок, здесь лучше поставить точку). Перекись водорода, как известно, способна самопроизвольно распадаться на воду и кислород: 2Н 2О 2 → 2Н 2О + О 2. Именно поэтому купленная в аптеке перекись через несколько месяцев становится непригодной к употреблению.
Таинственный же «раствор», наоборот, как раз и придает фокусу «биохимический» характер: это раствор фермента под названием каталаза, функция которого в организме заключается в ускорении распада перекиси водорода. (На языке биохимии то же самое говорится иными словами: молекула перекиси водорода является субстратом фермента каталазы.) Дело в том, что она образуется в организме при различного рода биохимических превращениях, а поскольку перекись водорода является сильным окислителем, то и дело норовящим вмешаться в течение других реакций, возникает необходимость оперативно ее обезвреживать, разлагая на вполне безопасные продукты. Эта-то задача и «возложена» организмом на каталазу.
Именно колоссальная «производительность труда» каталазы и служит причиной успеха нашего фокуса: «взрыва» перекиси водорода в стакане. Судите сами: измеренное хитроумными способами быстродействие некоторых типов каталазы (например, каталазы, содержащейся в печени лошади) поистине впечатляет – одна молекула фермента в течение секунды способна расщепить 100 тысяч молекул перекиси водорода! Теперь понятно, что может натворить одна капля каталазы в ста граммах перекиси: процесс распада на воду и бурно выделяющийся кислород будет длиться не несколько месяцев, как в обычных условиях, а несколько секунд. Здесь уместно заметить, что лучший небиологический катализатор реакции разложения перекиси водорода – платина – уступает каталазе по эффективности действия примерно в тысячу раз.
Кстати, по скорости действия каталаза вовсе не чемпион среди ферментов; так, фермент холинэстераза из электрического органа ската превосходит ее в несколько раз. Так что эпитеты «огромная», «удивительная» и даже «чудовищная», которые авторы позволяли себе использовать в предыдущих главах, говоря о скорости ферментативных реакций, никоим образом не являются преувеличением – мы только что убедились в этом с фактами в руках.
Ну что же, 100 тысяч так 100 тысяч, подумает читатель, уже привыкший к всевозможным астрономическим (или все же молекулярно-биологическим?) числам на страницах этой книги. И тем не менее давайте попытаемся хоть с чем-нибудь сравнить «производительность» в 100 тысяч «обработанных» молекул субстрата в секунду. С конвейера Волжского автозавода сходит 0,026 автомобиля в секунду, поточная линия по вырубке «лепестков» для пайки радиодеталей за секунду выпускает около десятка изделий, производительность швейной машины – 20 стежков в секунду… Нет, пожалуй, механические устройства нам не подойдут – характеристики типа «100 тысяч операций в секунду», «300 тысяч операций в секунду» мыслимы лишь в связи с быстродействующими современными ЭВМ (да и то быстродействие самой распространенной ныне ЭВМ «Минск-32» всего около 20 тысяч операций в секунду).
Впрочем, все эти сравнения выглядят несколько суховато; оставив их в стороне, попросим читателя еще раз задуматься над фактом: одна молекула каталазы разлагает в течение секунды 100 тысяч молекул перекиси водорода.
Молекулы-автоматы
Вообще говоря, цифра «100 тысяч операций в секунду» уже должна, по расчетам авторов, поразить воображение читателя и заставить его задуматься над загадкой быстродействия ферментов. С другой стороны, искушенный в чтении научно-популярных сочинений человек понимает, что загадка эта будет далее объясняться с помощью особых свойств молекул фермента и субстрата и их взаимодействия (именно описание свойств биологических молекул и составляет главную тему нашей книги). Но вот тут-то (по крайней мере, вначале) читателя ждет жестокое разочарование: первое же самое отдаленное знакомство с молекулярным механизмом отдельного акта ферментативного катализа показывает, что цифру «100 тысяч операций в секунду» следует, по крайней мере, удвоить!
Дело в том, что «технологический цикл» ферментативного катализа состоит из двух операций: поиск и связывание молекулой фермента молекулы субстрата и собственно акт катализа – химическая модификация молекулы субстрата. Условие выполнения первой части этого цикла выглядит так: каждая молекула субстрата, участвующая в реакции, должна на некоторое время связаться с молекулой фермента, образуя так называемый фермент-субстратный комплекс. Подобное связывание может осуществляться за счет рассмотренных ранее невалентных сил, водородных связей, электростатических сил, гидрофобных взаимодействий, однако в ряде случаев между молекулами фермента и субстрата на короткое время образуются валентные связи. Иными словами, молекула фермента как бы захватывает молекулу субстрата, производит с ней некоторую операцию и затем отделяет от себя уже модифицированную молекулу (или молекулы), называемую продуктом.