355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Станислав Галактионов » Беседы о жизни » Текст книги (страница 4)
Беседы о жизни
  • Текст добавлен: 10 октября 2016, 03:32

Текст книги "Беседы о жизни"


Автор книги: Станислав Галактионов


Соавторы: Григорий Никифорович

Жанры:

   

Биология

,
   

Химия


сообщить о нарушении

Текущая страница: 4 (всего у книги 13 страниц)

Кстати говоря, теперь следует обратить внимание на то, что выражение «структура белковой молекулы» звучит достаточно неопределенно. В самом деле, имеем ли мы в виду ее аминокислотную последовательность или пространственное строение? Поэтому в специальной литературе для краткости принята следующая терминология. Если мы имеем в виду порядок чередования аминокислотных остатков в белковой молекуле, мы говорим о первичной ее структуре. Под вторичной структурой подразумеваются α-спираль и β-структура – типы периодических структур; поэтому понятие «вторичная структура» может относиться лишь к регулярным фрагментам молекулы белка, но не к молекуле в целом. Наконец, третичная структура молекулы – это ее пространственное строение.

Необходимо при этом еще раз подчеркнуть, что свойство существования в виде единственной, причем непериодической структуры присуще не полипептидам вообще, а только белкам. Вот, оказывается, в чем смысл неслучайности, строгой заданности чередования боковых привесков у регулярного полимерного остова. Вот схема очередного этапа биологического кодирования, о котором один из виднейших его исследователей, американский биохимик К. Анфинсен, выразился следующим образом: «Язык боковых цепей, на котором написана пространственная структура белковой молекулы».

«О господи, еще одна табличка! – вздохнет в этом месте читатель. – Ну, давайте – аланин – „поворот цепи влево“, тирозин – „поворот вправо“, или как там у вас?»

Ошибка, дорогой читатель, ошибка. Не будет таблички, да и быть не может. Просто потому, что способ такого кодирования на сегодняшний день никому не известен. Нет ни одного человека, который сумел бы, глядя на аминокислотную последовательность белка, нарисовать его пространственную структуру.

Впрочем, не может быть таблички и по другим причинам. Сколь ни мало нам известно о способе кодирования пространственной структуры белковой молекулы ее аминокислотной последовательностью, тем не менее одно можно утверждать вполне определенно: примитивным словарем «слов», состоящих из немногих знаков, здесь не обойтись. Если рациональный словарь такого рода и существует, его «слова» должны содержать до десятка знаков, а при двадцатибуквенном алфавите это порождает огромное разнообразие комбинаций, массу возможных оттенков тех еще не вполне понятных элементов, которыми мы намерены описывать сложную и неправильную пространственную структуру белковой молекулы.

Вспоминается известный случай, имевший место во время первой мировой войны. Для исключения возможности подслушивания телефонных разговоров в американской армии использовались в качестве телефонистов индейцы одного очень малочисленного племени, причем все переговоры они вели на своем родном языке. И уж, конечно, не зная этого языка (а за пределами США он был практически неизвестен), расшифровать такие сообщения было намного труднее, чем, скажем, криптограммы, написанные самым сложным цифровым кодом, но на известном языке. А если вернуться к проблеме выяснения способа кодирования третичной структуры белков, то не подлежит сомнению, что в этом случае гораздо более близкой аналогией будет расшифровка сообщения, переданного на незнакомом языке…

Для нас с вами это означает окончание победного марша по глади хорошо изученного и окончательно установленного и вступление в сумрачную чащу гипотетического и ненадежного. Именно к этому, сказать по правде, и стремились лукавые авторы, а вся предыдущая часть книги – это своего рода введение в существо задач, на которых, образно говоря, пробуксовывает ныне могучий сверхвездеход современной молекулярной биологии.


«Теперь вся сила в гемоглобине»

Возможно, мы несколько сгустили краски: нельзя, конечно, сказать, что о способе предопределения пространственной структуры белковой молекулы ее аминокислотной последовательностью не известно вовсе уж ничего.

Прежде всего пространственное строение молекул более двух десятков белков установлено чисто экспериментальными средствами – методами рентгеноструктурного анализа. С помощью этих методов удается установить точное пространственное расположение всех атомов молекулы в кристаллической структуре. Слово «удается» очень точно передает ситуацию, если речь идет о рентгеноструктурном анализе белков. Около трех десятков лет лучшие специалисты-рентгеноструктурщики всего мира бились над этой проблемой. Первые попытки рентгенографического анализа строения белка были предприняты при активном участии знаменитого английского кристаллографа Дж. Бернала; как мы уже знаем, именно рентгеноструктурными методами было подтверждено строение полинговских α-спирали и β-структуры. Однако еще долгое время (хотя как знать? Восемь или девять лет – так ли уж это долго?) полная расшифровка третичной структуры белковой молекулы средствами рентгенографии была невозможной. И лишь в 1959–1960 годах это впервые удалось англичанам М. Перутцу и Дж. Кендрью. Первенцем оказалась молекула миоглобина – белка, запасающего кислород в тканях мышц. И сразу же вслед за ней М. Перутц и Дж. Кендрью установили структуру молекулы гемоглобина, известного красного вещества крови.

Вот и еще один большой триумф молекулярной биологии. Шутка ли: стало известно строение важнейших в физиологическом плане веществ организма, а главное – стало возможным установление пространственного строения белков вообще!

На пятом Международном биохимическом конгрессе, состоявшемся в Москве в 1961 году, одновременно проходили заседания многих тематических симпозиумов; каждому из них был отведен отдельный – и вовсе не маленький – зал. И надо было видеть отчаяние организаторов конгресса, когда почти все делегаты, покинув заседания «своих» симпозиумов, ринулись на доклад М. Перутца!

Почтенные профессора и энергичные ассистенты толпились в проходах, тянулись на цыпочках в дверях, усаживались прямо на полу возле кафедры. А на столе красовалась модель молекулы миоглобина, изображению которой впоследствии было суждено обойти все книги по молекулярной биологии. Однако главный интерес вызывал не миоглобин (расшифровка его структуры к тому времени уже перестала быть последней сенсацией), а модель молекулы гемоглобина. К тому было много причин. Однако, коль уж скоро речь заходит о гемоглобине, невозможно обойтись без краткого отступления.

Если говорить о роли гемоглобина в истории исследования принципов структурной организации белков вообще, само собой напрашивается сравнение с плодовой мушкой-дрозофилой, главным героем генетических исследований на протяжении многих десятилетий, вплоть до сегодняшнего дня. Именно гемоглобин стал тем полигоном, на котором отрабатывались основные теоретические представления и экспериментальные приемы структурных исследований. Именно на гемоглобине Л. Полингом (опять Полинг!) была впервые показана молекулярная природа наследственных болезней. Наконец, число исследованных первичных структур гемоглобинов различных биологических видов ныне перевалило за полторы сотни: в этом отношении гемоглобин является бесспорным лидером среди прочих белков.


И в наши дни научный работник, интересующийся проблемами структуры белка, с большим сочувствием читает пророческие строки И. Ильфа и Е. Петрова: «„Пьер и Константин“ (городской парикмахер. – Примеч. авт.), давно уже порывавшийся сделать сообщение на медицинскую тему, заговорил, опасливо оглянувшись:

– Теперь вся сила в гемоглобине.

Сказав это, „Пьер и Константин“ умолк. Замолчали и горожане, каждый по-своему размышляя о таинственных силах гемоглобина».

Более подробное знакомство с гемоглобином начнем с введения понятия о следующем (и пока, кажется, последнем) уровне структурной организации белков – четвертичной структуре. Молекулы многих белков при ближайшем рассмотрении оказались не цельными молекулами, а молекулярными комплексами, образованными несколькими отдельными молекулами (их еще называют субъединицами) одного или нескольких типов. Между частями такого комплекса не существует валентных связей, и он удерживается за счет более слабых сил.

Оказалось, что гемоглобин представляет собой именно такой комплекс, состоящий из четырех валентно не связанных белковых субъединиц двух разных типов – α и β, причем каждая из них обладает различной аминокислотной последовательностью. Молекула (строго говоря, это слово следовало бы, по крайней мере, взять в кавычки) гемоглобина содержит по две субъединицы каждого типа, образуя как бы неправильный тетраэдр. Каждая из субъединиц, помимо белковой части, содержит также важную небелковую химическую группу – гем. Именно гем (точнее, содержащийся в нем атом железа) обладает свойством обратимого связывания кислорода, что, как известно, и является основной физиологической функцией гемоглобина.

Кстати говоря, точно такую группу содержит и молекула близкого по своей функции миоглобина; ведь вся разница физиологической роли этих двух белков в том, что первый из них является как бы подвижным контейнером, разносящим кислород с кровотоком из легких по всем органам, а второй – контейнером неподвижным, запасающим в мышцах кислород впрок. Миоглобин, исследованный М. Перутцем и Дж. Кендрью, был получен из мышц кита. И понятно почему, ведь образ жизни кита, связанный с длительными погружениями, требует резко повышенного содержания этого белка в мышцах.

Далее, большая близость характера функций, выполняемых в организме обоими белками, позволяла надеяться, что и их пространственное строение окажется сходным. И в самом деле, М. Перутц и Дж. Кендрью установили, что третичные структуры молекулы миоглобина и каждой из субъединиц гемоглобина почти совпадают… Как и следовало ожидать, сказали бы мы в этом месте, развивая начатую мысль, если бы не одно поистине ошеломляющее обстоятельство. Вспомним, что основной принцип рассматриваемого нами этапа передачи генетической информации гласит: «Первичная структура определяет третичную». И с этой точки зрения, казалось бы (опять же только казалось бы!), близкие по третичной структуре белки должны иметь также и сходные первичные структуры. Но при сравнении аминокислотных последовательностей миоглобина и любой из субъединиц – α– или β-гемоглобина оказывается, что их «тексты» совпадают менее чем на 30 процентов!

Это сравнение производит очень сильное впечатление, однако лишь на самый первый взгляд. Поразмыслив, нетрудно прийти к выводу, что ничего здесь особенного нет. Просто мы оказались перед лицом факта: одна и та же третичная структура может кодироваться различными аминокислотными последовательностями. Но ведь то же самое мы наблюдаем и в отношении генетического кода: одна и та же аминокислота может кодироваться двумя, тремя, а то и шестью различными кодонами. Важно, таким образом, знать способ кодирования, но его-то как раз мы и не знаем. В конце концов, если нам неизвестны принципы предопределения третичной структуры аминокислотной последовательностью, – как знать, может быть, последовательности миоглобина и субъединиц гемоглобина – своего рода «синонимы», подобно двум разным выражениям одного и того же предложения руководителя учреждения: «Подавайте заявление по собственному желанию» и «Не смею более вас удерживать».

И опять перед нами возникает проклятая проблема кода, используемого природой на этапе «первичная структура – третичная структура». Уместно отметить одну особенность этого кода: если предыдущие этапы передачи генетической информации ДНК→РНК, РНК→белок требовали очень сложных и очень специальных «обслуживающих систем» (мы о них старались говорить по возможности меньше именно из-за их сложности), то третичная структура молекулы белка с определенной аминокислотной последовательностью приобретается молекулой самопроизвольно, достаточно предоставить ее самой себе.

Это ее внутренняя способность, и для реализации этапа «первичная структура – третичная структура» никакие обслуживающие механизмы не нужны. Молекула, вынесенная из клетки, сохраняет не только свою третичную структуру, но и способность ее самопроизвольно восстанавливать. Молекула как молекула, валентная структура ее нам известна – значит, и ее поведение должно определяться известными нам физическими законами. Иными словами, наконец-то оказалось возможным вполне подробно рассмотреть элементарный биологический объект в физических терминах, или, еще короче,


Наконец-то физика!

Раз белковой молекуле ничто внешнее не помогает принять определенную, единственную пространственную укладку, значит, это происходит за счет сил, действующих внутри самой молекулы. Более того, если бы эти силы прочно не удерживали молекулу в конформации соответствующей этой структуре, никакие первоначальные упорядочения за счет внешних причин не помогли бы: под действием теплового движения молекула очень быстро утратила бы эту конформацию, приняв постоянно меняющуюся форму случайного клубка, как это происходит с «обычными» полимерами.

Благодаря тому, что боковые радикалы аминокислотных остатков весьма разнообразны по своей структуре, химической природе, электрическим свойствам, оказываются различными гибкость отдельных участков белковой молекулы, их взаимное сродство, способность к образованию периодических структур и т. п.

И существуют такие способы чередования аминокислотных остатков в белковой молекуле, что, предоставленная самой себе, она самопроизвольно свернется во вполне определенную структуру. Значит, проблема предсказания третичной структуры, записанной на языке аминокислотной последовательности, сводится к подробному описанию внутримолекулярных взаимодействий в белке, которое позволило бы точно воссоздать основные силы, изгибающие или выпрямляющие отдельные участки цепи, сближающие или отталкивающие различные ее части, а это, несомненно, физическая задача.

Не теряя времени, мы тут же, прямо-таки через полторы-две страницы примемся за ее постановку в традиционном «физическом» виде. Но перед этим – несколько слов на более общие темы.


Нет смысла скрывать далее от читателя, что необычная пространственная структура белковых молекул и есть причина их необычных свойств (будем опять-таки для простоты говорить только о свойствах ускорения химических реакций). И общая схема организации жизненного процесса, вскрытая молекулярной биологией, выглядит таким образом: на основе записанной в ДНК аминокислотной последовательности всех белков данного организма при участии или под действием части этих белков осуществляется синтез новых белковых молекул.

В общих чертах нам известен даже способ реализации ДНК-овой записи в виде аминокислотной последовательности белка. Если мы теперь, уже вступив на твердую почву физических представлений, сумеем описать поведение каждой такой молекулы в различных ситуациях, мы сможем получить полное представление о молекулярных механизмах процессов передачи информации от ДНК к белку, которые нами не рассматривались (из чего, очевидно, не следует, что о них ничего не известно). В результате мы получаем замкнутое и исчерпывающее описание феномена жизни на языке физики – предел амбиций всякой отрасли естествознания. Усилиями современной науки удалось, таким образом, свести (хотя бы в принципе) проблему живого к задачам внутри– и межмолекулярной подвижности, к задаче поиска молекулой или системой молекул единственного, наиболее устойчивого состояния… Это ли не прогресс биологии второй половины двадцатого века!

Прочтем теперь внимательно следующие два абзаца:

«…Если бы доктор Бауман ввел свою систему в надлежащее русло и приложил бы свои идеи лишь к образованию животных, не распространяя их на природу души… он бы не вверг себя в наиболее соблазнительный вид материализма, приписывая органическим молекулам желание, отвращение, чувства и мысль. Следовало бы удовлетвориться предположением чувствительности, в тысячу раз меньшей, чем та, которой всемогущий наделил животных, наиболее близких к мертвой материи. В результате этой глухой чувствительности и разницы в структуре для всякой органической молекулы имелось бы только одно, самое удобное положение, которое она непрерывно искала бы, автоматически беспокоясь, как это случается с животными, когда они ворочаются во сне… Ему вообще следовало бы определить животное как систему органических молекул, которые вступают в разнообразные соединения, пока каждая из них не найдет наиболее подходящего положения для своей фигуры и своего спокойного состояния…»

Этот фрагмент позаимствован нами из книги французского философа-энциклопедиста Д. Дидро (1713–1784 гг.) «Мысли к объяснению природы».

Вспомним же по этому поводу (да простится нам обилие цитат!) слова великого биохимика А. Сент-Дьёрдьи (заочно знакомого каждому, когда-либо принимавшему витамин С, открытый А. Сент-Дьёрдьи в 1931 году), относящиеся к ученым прошлых веков: «Не обладая подчас даже самыми примитивными исследовательскими приборами, они широко пользовались двумя устройствами, которыми наделила человека природа и употребление которых впоследствии вышло из моды: глазами и мозгом».

Глава 3. Белок изнутри

В этой главе мы хотим поговорить о том, каким образом белковая молекула сама, без всякой посторонней помощи находит предопределенную ей аминокислотной последовательностью пространственную структуру. Прибегая к терминам «находит», «ищет» и т. п., мы непроизвольно (как бы в подражание раскритикованному Д. Дидро злополучному доктору Бауману) одушевляем молекулу, наделяем ее элементами сознания. Конечно, те наивные представления о молекулах, которыми располагал доктор Бауман, в какой-то мере служат оправданием идеи одушевленности биологических молекул. Но, странное дело, проходят десятилетия, столетия, а из лексикона биологов вовсе не исчезают обороты типа: «белки определенным образом приспосабливаются…», «целенаправленная организация структуры белковой молекулы…», наконец, «молекула белка запрограммирована на…».

Исполненное тайн бытие всемогущих и загадочных белков, ощущение беспомощности при попытках постичь их удивительные свойства – все это выработало элементы некоего странного культа среди биохимиков и биологов вообще. Вы думаете, идеи доктора Баумана бесповоротно погибли на рубеже XVIII и XIX столетий? Ничуть не бывало. Один из виднейших ботаников начала нашего века, К. Негели, писал пространные и очень серьезные сочинения на тему о психологии белковых молекул. Или вам угодно более свежий пример? Герой нашумевших исследований «первичного сознания» у растений американец К. Бакстер пишет уже в наши дни: «…способность восприятия, вероятно, не ограничивается клеточным уровнем. Возможно, ею обладают и молекулы, и атом, и даже его частицы. Наверное, нужно было бы заново изучить с этой точки зрения все то, что до сих пор принято считать неживым».

Мы хотим еще раз подчеркнуть то, о чем уже писалось в конце прошлой главы: процесс самостоятельного сворачивания белковой молекулы во вполне определенную структуру обусловлен чисто физическими силами, то есть взаимодействиями, возникающими между отдельными ее частями. Нам хотелось бы также преподнести читателю этот тезис как можно более доказательно, поскольку изложение основных физических принципов, на которых он базируется, вполне доступно в рамках и на уровне нашего повествования. Поэтому мы решили целиком посвятить настоящую главу физическим и даже, если угодно, физико-теоретическим аспектам проблемы. Это вовсе не означает усложнения материала; с другой стороны, те из читателей, которых интересуют общие принципы последовательного биологического кодирования на молекулярном уровне, а не физические механизмы, лежащие в основе одного из этапов такого кодирования, могут без особого ущерба для понимания последующего материала эту главу при чтении опустить.

Прием подобного рода (то есть уведомление читателя о необязательности предстоящей главы) широко практикуется авторами многих учебников и монографий по математике. По опыту общения с подобной литературой нам хорошо известно блаженное чувство облегчения, посещающее читателя в момент знакомства с подобной декларацией. Двумя главами позже выясняется, однако, что его надули, и чтобы хоть как-нибудь ориентироваться в тексте, нужно вернуться к легкомысленно пропущенным главам.


Еще раз о квантовой механике

Мы усердно пытались обойти проблемы, связанные со строгой теорией строения молекул, теорией, основанной на той самой квантовой механике, которую даже ее создатели с похвальной самокритичностью называли «безумной». Но, видно, недаром наши мудрые предки придумали поговорку насчет сумы да тюрьмы: нам снова придется столкнуться лицом к лицу с этой удивительной, опрокидывающей все житейские представления наукой. На этот раз – в связи с вопросом, выглядящим вполне невинно: насколько точным с точки зрения квантовой механики является общепринятое выражение «молекулы состоят из атомов»?

Из того, что мы успели сказать о строении химической связи, ясно следует, что молекулы складываются из атомов совершенно особым способом, не так, как, скажем, стена из кирпичей.

Любой атом, по уверениям физиков, состоит из ядра и положенного ему количества электронов, причем у атома, взятого отдельно, все эти электроны подчиняются вполне определенной системе пространственного расположения вокруг ядра.

В молекуле, составленной из атомов каких-то химических элементов, мы найдем ядра точно тех же типов; и у большинства из них сохранится в принципе способ пространственного размещения значительной части электронов. Но зато оставшиеся электроны полностью утратят свою принадлежность к какому-либо определенному атому, образуя более или менее общую систему, пространственно связанную с парой, тройкой или иной группой ядер. Именно таким образом и возникают химические связи; впрочем, если говорить совсем строго, это «обобществление» относится (хотя и в меньшей мере) ко всем без исключения электронам, имеющимся в молекуле.

Следовательно, если квантовая механика права (именно на ней, в конце концов, базируются изложенные здесь представления), то, говоря: «в молекулу белка входят атомы углерода», мы, по существу, называем углеродом некий огрызок, отдаленно напоминающий атом с таким названием лишь ядром да конфигурацией облаков двух «внутренних» электронов, поскольку определить принадлежность еще четырех полагающихся ему электронов совершенно невозможно. И если уж быть последовательными, нужно и в самом деле отказаться от выражения «молекулы состоят из атомов», с которого мы начали: намного правильнее рассматривать молекулу как единую структуру, образованную совокупностью ядер и электронов. Иными словами, если выделить кирпич в стене можно, то выделить даже мысленно в молекуле атом (в точном значении этого слова) никак нельзя.

Более того, взгляд на молекулу как на систему ядер и электронов есть единственно правильный подход к точному описанию ее физических свойств. Законы квантовой механики, действующие внутри молекулы, дают возможность составить уравнения, определяющие – притом вполне точно – поведение любой электронно-ядерной совокупности. Вот, оказывается, как велико могущество квантовой механики: ведь решение этих уравнений позволит нам узнать о молекуле белка буквально все, в том числе, конечно, и найти все возможные пространственные структуры молекулы.

Решение этих уравнений… Смеем вас уверить, что дрессировщик, отважно кладущий голову в пасть разъяренному тигру, рискует все же меньше того смельчака, который предложит воспользоваться этим рецептом определения структуры белка людям, мало-мальски знакомым с практикой квантовохимических расчетов. Для них подобное предложение прозвучит таким же утонченным издевательством, как для британского адмиралтейства предложенный кем-то в свое время способ борьбы с подводными лодками противника: вода в море нагревается до кипения, что влечет за собой гибель экипажей. На вежливый вопрос о том, как же, собственно, планируется реальное осуществление этого, несомненно, выдающегося проекта, автор, по преданию, равнодушно ответил: а это уже задача инженеров…

Решение этих уравнений… Можно привести слова того же А. Сент-Дьёрдьи о том, что физики «в ужасе отшатнулись от меня, узнав, что биологические молекулы состоят более чем из двух атомов». Именно два атома названы неспроста: в то время (около тридцати лет назад) это был предел возможностей строгого квантовомеханического расчета.

Решение этих уравнений… Возьмем белок, состоящий всего-навсего из тысячи атомов (этакий мини-белок, среди белков настоящий карлик). Это тысяча ядер, пять-шесть тысяч электронов. Решить систему квантовомеханических уравнений, описывающих поведение такой совокупности, совершенно немыслимо, даже если бросить на эту задачу все вычислительные машины мира и заставить их работать круглосуточно на протяжении десятилетий (о том, что без ЭВМ в этом случае не обойтись, говорить не приходится). И, между прочим, ничего бы не изменилось, если бы машин было в миллион раз больше, а их быстродействие – в миллион раз выше…

В средние века одним из излюбленных занятий философов-схоластов было всестороннее обсуждение животрепещущей проблемы: может ли господь бог создать камень, который он не в силах поднять? Одна из спорящих сторон утверждала, что может: всемогущему господу не составит труда сотворить что угодно. Зато другая резонно приводила контраргумент: что же он за всемогущий, если не сможет поднять любой камень, в том числе и этот? Спор этот, как известно, остался неразрешенным, и мы не стали бы вспоминать о нем в наши дни, если бы не оказались свидетелями того, как всемогущая квантовая механика в отличие от господа создала свой единственно правильный, абсолютно точный, всеобъемлющий камень и… не смогла его поднять.


Все это относится, впрочем, лишь к задаче в точной постановке. Практика же квантовомеханических расчетов базируется на различных приближениях: валентная структура и геометрия валентных связей задаются на основании экспериментальных данных, к рассмотрению привлекается лишь часть электронов и т. п. Но даже в такой постановке рекордно большие объекты, доступные расчету, содержат лишь двадцать-тридцать атомов, да и результаты его, как показывает экспериментальная проверка, оказываются довольно ненадежными. Одним словом, нос вытянешь – хвост увязнет: считая точно, удается рассчитать лишь самые маленькие молекулы, считая приближенно, можно рассчитать молекулу побольше (хоть по масштабам интересующей нас задачи все еще очень маленькую), но результаты такого расчета не слишком внушают доверие.

Итак, полное и бесспорно точное описание поведения белковой молекулы, которое должна была бы дать квантовая механика, получить не удается и вряд ли когда-нибудь удастся – слишком велики вычислительные трудности. Однако означает ли это, что проблема расчета третичной структуры молекулы белка неразрешима вообще и исследователям, работающим над ней, следует переквалифицироваться, например, в управдомы?

Конечно же, нет. И не только потому, что целеустремленность, собранность и всесторонний охват проблем, свойственный настоящему управдому, являются редкостью в среде научных сотрудников. Нет, просто дело в том, что горький опыт теоретиков давным-давно показал: прямой и очевидный способ расчета почему-то чаще всего приводит к уравнениям, которые всякий математик без секунды колебаний определит как полностью безнадежные.

Причины этого проклятья, испокон веку лежащего на теоретиках, до сих пор не выяснены: возможно, природа, которую теоретики пытаются затолкать в тесные рамки своих уравнений, попросту более злонамеренна, чем это представлялось многим авторитетам (известна, например, фраза А. Эйнштейна: «Господь бог изощрен, но не злонамерен»). И именно по своей злонамеренности она лишь позволяет описать себя с помощью уравнений, но не дает никакого шанса на их решение.

Тем не менее наиболее отчаянные из теоретиков не сдаются, а применяют испытанный метод борьбы с изложенными трудностями: если ситуация в данном конкретном случае складывается так, что результаты теоретического расчета жизненно необходимы (нужно задувать домну, создавать самолет с изменяющейся геометрией крыла, пускать атомный реактор, рассчитывать третичную структуру белка – мало ли что еще), следует прибегнуть к приближенным методам.

Существуют, однако, два типа приближенных методов: приближенные методы вычисления (в том числе и приближенные методы решения уравнений) и методы приближенного описания системы. Первые представляют собой, по существу, лишь те или иные – порой весьма элегантные и остроумные – способы вычисления значения нужной величины со сколь угодной заданной наперед точностью. При этом для приближенных методов вычисления никакого значения не имеет физическая модель, положенная в основу описания рассматриваемой системы: применяя их, скажем, к уравнениям для расчета орбиты спутников, можно вычислять параметры орбиты с точностью до десятых долей сантиметра (так называемых миллиметров), хотя исходные предположения, использованные для вывода этих уравнений, могут гарантировать точность лишь в десятки метров.

Именно в исходных предположениях и кроется суть второго типа приближенных методов: ясно ведь, что расчетные характеристики орбиты спутника будут совершенно иными, если предположить, например, что Земля имеет форму куба. Такое «приближение» модели к действительности начисто исключило бы, по-видимому, развитие космической техники. Приближение «Земля – шар» сделает уравнения, определяющие орбиту, более пригодными; следующее: «Земля – шар, сплюснутый на полюсах» еще приблизит модель к реальной ситуации (хоть и усложнит решение соответствующих уравнений). А вот попытка, например, учесть влияние на гравитационное поле Земли рудных месторождений, плотность которых в среднем выше плотности остального вещества земной коры, пожалуй, будет уже излишней: достигаемое таким образом уточнение расчетных параметров орбиты будет не столь уж значительным с практической точки зрения, но трудности, связанные с решением уравнений, соответствующих новой модели, чрезвычайно возрастут.

Короче говоря, те, кого интересует возможность получения конечного результата расчета (а не его точность), должны обратиться ко второму типу приближенных методов, где результаты непосредственно зависят от степени оправданности сделанного предположения, от того, в какой мере избранному приближению удовлетворяют истинные условия задачи. Более того, как раз в трезвой оценке такой степени соответствия и состоит в основном искусство теоретика. Вряд ли, например, был хорошим теоретиком сыщик из романа Р. Шекли «Обмен разумов», который принципиально отказывался от розыска преступника, ибо по теории вероятностей выходило, что они и так когда-нибудь встретятся. (Справедливости ради отметим, что для случая абсолютно бессмертных сыщиков и преступников это приближение вполне верно; практика показала, однако, что ни один из преступников не был изловлен с помощью такого, казалось бы, теоретически безупречного подхода.)


    Ваша оценка произведения:

Популярные книги за неделю