Текст книги "Новая занимательная астрономия"
Автор книги: Соломон Фенрир
сообщить о нарушении
Текущая страница: 8 (всего у книги 17 страниц)
«Странное совпадение»
Есть в Солнечной системе одна любопытная закономерность… Мы уже упоминали о том, что Луна всегда повернута к Земле одной стороной. Примерно за 28 суток наш естественный спутник совершает один оборот вокруг Земли и за тот же промежуток времени делает один оборот вокруг собственной оси.
Именно благодаря совпадению периодов обращения и вращения Луны мы и видим всегда лишь одну сторону лунного шара. Но совпадение ли это?
Вообще говоря, природа не очень-то «любит» случайные совпадения такого рода и встречаются они не так уж часто. И понятно почему: ведь вероятность осуществления чисто случайных сложных совпадений, как правило, чрезвычайно мала. И если мы все же встречаем в природе какое-либо удивительное сочетание событий, то, скорее всего, у него есть какая-то скрытая закономерность.
«Поведение» Луны – не исключение: нечто похожее мы встречаем и у других небесных тел, входящих в состав Солнечной системы. Так, Меркурий, самая близкая к Солнцу планета, завершает один оборот вокруг Солнца за 88 земных суток, а один оборот вокруг своей оси за 59 суток. Казалось бы, никаких совпадений. Но дело в том, что, согласно второму закону Кеплера, планеты движутся по своим эллиптическим орбитам с переменной скоростью: чем ближе к Солнцу, тем быстрее. Так вот, если подсчитать угловые скорости в движении Меркурия, то окажется, что угловая скорость его собственного вращения совпадает с угловой скоростью его обращения вокруг Солнца в тот момент, когда планета проходит ближайший к дневному светилу участок своей орбиты.
Еще более сложное совпадение мы обнаруживаем в движении Венеры. Свой оборот вокруг Солнца эта планета, как мы уже знаем, совершает за 225 земных суток. Через каждые 584 суток Венера оказывается на линии, соединяющей Солнце и Землю.
И в этот момент Венера всегда повернута к Земле одной и той же стороной.
В чем же причина всех этих «совпадений»?
Всем известно явление лунных приливов. Лунное притяжение образует в водной оболочке Земли два «горба».
Так как наша планета вращается, то эти горбы перемещаются по ее поверхности – бежит приливная волна. Приливы происходят не только в водной оболочке, но и в твердом веществе Земли. Так, благодаря приливам и отливам почва в Москве дважды в сутки поднимается и опускается примерно на 40–50 см.

Рис. 13. Величина лунного прилива в твердом веществе Земли в районе Москвы.
Поскольку приливные волны перемещаются навстречу суточному вращению Земли, они неизбежно его тормозят, и скорость вращения нашей планеты постепенно уменьшается. Когда-то земные сутки были заметно короче современных.
Но если на Земле происходят лунные приливы, то в веществе Луны должны происходить земные приливы, и притом значительно более мощные – ведь Земля обладает массой, в 81 раз превосходящей массу Луны. Благодаря этому замедление собственного вращения Луны должно было происходить довольно быстро вплоть до тех пор, пока это вращение относительно Земли не прекратилось вовсе. Теперь Луна обречена «смотреть» на Землю всегда одной своей стороной.
Видимо, действие той же самой причины привело и к равенству угловых скоростей вращения и обращения Меркурия в ближайшей к Солнцу точке его орбиты. Сила тяготения быстро ослабевает с расстоянием, пропорционально его квадрату, и потому солнечные приливы на Земле незначительны в сравнении с лунными. Однако для Меркурия, самой близкой к Солнцу планеты, эти приливы, вероятно, достаточно сильны и способны оказывать заметное влияние на его вращение. Совпадение угловых скоростей, о котором говорилось, скорее всего, есть также следствие приливного торможения.
Что же касается Венеры, то причина ее постоянной ориентации по отношению к Земле в периоды наибольшего сближения пока остается неясной. Закономерно ли это явление или здесь мы все-таки встретились с. чисто случайным совпадением, пока неизвестно. Возможно, какую-то роль играет то обстоятельство, что в периоды сближения Венера расположена значительно ближе к Земле, чем к Солнцу. Однако решение этой загадки еще впереди.
Не грозит ли нам катастрофа?
Казалось бы, что во Вселенной может быть устроено проще и надежнее, чем наша Солнечная система? Решающую роль здесь играет одна сила – сила тяготения; движение каждой из планет вокруг Солнца подчиняется ясным и однозначным законам – законам Кеплера; происходит это движение почти в одной и той же, общей для всех планет, за исключением Плутона, плоскости…
В действительности же все не так просто. Дело в том, что на каждую из планет действует не только сила солнечного тяготения, но и сила притяжения остальных планет Солнечной системы. Это притяжение вызывает возмущения в движении каждой из планет. Планета несколько отклоняется от своего нормального пути, предначертанного законами Кеплера, впрочем, всякий раз вновь возвращаясь на него. Если учесть, что взаимное расположение планет все время меняется, то станет очевидно, что общая картина их движения весьма сложна.
И возникает законный вопрос. Не могут ли возмущения планетных движений привести к непоправимой катастрофе? Где гарантия, что всякий раз, сойдя с невидимых космических рельсов, планета обязательно возвратится на «родную» орбиту? А если отклонение окажется слишком большим? И не может ли вся эта «внутренняя раскачка», своеобразная вибрация, привести к полному развалу Солнечной системы?
Ответ на поставленный вопрос могут дать только вычисления. Надо рассчитать движение каждой планеты с учетом всех возможных возмущений, вызываемых влиянием других планет, и тогда все станет ясно.
Но легко сказать: рассчитать. Разумеется, в принципе подобная задача разрешима, во всяком случае с определенной степенью точности. Перемещениями небесных тел управляют силы тяготения, действующие между ними. Величина этих сил зависит от массы небесных тел и их взаимных расстояний. Кроме того, дальнейшее перемещение любого тела определяется еще и той скоростью, которой оно обладает. Можно сказать, что в современном состоянии системы небесных тел, т. е. в их взаимных положениях и скоростях, однозначно (опять-таки с некоторой степенью точности) заключено ее будущее. Поэтому задача состоит в том, чтобы, зная взаимное расположение и скорости планет в данный момент, вычислить их будущие перемещения. Однако в математическом отношении задача эта весьма сложна. Дело в том, что в любой системе движущихся космических тел происходит постоянное перераспределение масс, а благодаря этому изменяются величина и направление сил, действующих на каждое тело. Даже для простейшего случая движения трех взаимодействующих тел до сих пор не существует полного математического решения в общем виде.
Точное решение этой проблемы, известной в небесной механике под названием «задачи трех тел», удается получить лишь в определенных случаях, когда имеется возможность ввести известные упрощения.
Тем более труден абсолютно точный расчет движения девяти взаимодействующих, непрерывно перемещающихся планет Солнечной системы; он не под силу даже современной математике с ее могучей вычислительной техникой.
Но нужен ли для ответа на поставленный вопрос абсолютно строгий и точный расчет? В конце концов, важно ведь не столько знать все будущие взаимные положения планет, сколько получить ответ на один-единственный вопрос: могут или не могут планетные возмущения превысить некий «критический предел», за которым начнется необратимый распад Солнечной системы? Другими словами, нас интересует не количественное, а качественное решение задачи.
Между понятиями «количественное» и «качественное» есть существенная разница. Количественное решение показывает, во сколько раз изменяются одни физические величины в зависимости от изменения других. Качественное же решение дает лишь представление о том, в каких направлениях или в каких пределах изменяются интересующие нас величины при определенном изменении других величин.
Но в ряде случаев этого знания вполне достаточно. К ним относятся и многие задачи на устойчивость. Идет, скажем, некий химический процесс. Надо знать, какие отклонения от заданных параметров допустимы, чтобы исключить возможность взрыва.
Или другая задача: рассчитать конструкцию железнодорожного моста таким образом, чтобы никакие колебания, возникающие при движении транспорта, не привели к явлениям, способным превысить запас прочности сооружения. В обоих случаях нет необходимости рассчитывать все промежуточные состояния системы, достаточно установить лишь связь между изменениями некоторых начальных и конечных величин.
Задача о планетных возмущениях есть тоже задача об устойчивости – устойчивости Солнечной системы. И она тоже допускает качественное решение.
Впервые подобная задача была решена великим русским математиком А. М. Ляпуновым, которому удалось показать, что ни при каких мыслимых положениях планет их взаимные возмущения не могут превысить критического предела. Таким образом, никакие внутренние силы и взаимодействия не могут «раскачать» Солнечную систему и привести ее на грань распада. Планетная семья Солнца устойчива.
Солнце и нейтрино
Мы уже говорили, что наше дневное светило Солнце – это «черный ящик», у которого астрономы могут наблюдать только «выход». Все сведения, которыми располагает о Солнце современная астрономия, получены благодаря исследованию различных излучений, возникающих в самых верхних слоях нашего дневного светила.
Непосредственно из недр Солнца никакая информация к нам не поступает. Таким образом, теория внутреннего строения Солнца, согласно которой его энергия поддерживается термоядерными реакциями, – это, строго говоря, всего лишь теоретическая модель.
Впрочем, выражение «всего лишь» в данном случае не совсем уместно. Термоядерная теория достаточно хорошо объясняет процессы звездной эволюции и находится в хорошем согласии с наблюдаемыми физическими характеристиками Солнца и звезд. И все же, как любая теоретическая модель внутреннего «устройства» «черного ящика», эта теория нуждается не только в косвенных свидетельствах, но и в прямых подтверждениях, а для этого необходима информация, полученная непосредственно из звездных недр.
В последние годы такая возможность в принципе появилась. Речь идет о так называемой «нейтринной астрономии» или, точнее, «нейтринной астрофизике».
Нейтрино – «неуловимая» частица, принимающая непосредственное участие в термоядерных реакциях. В частности, нейтрино образуются в процессе термоядерных превращений водорода в гелий, которые, согласно современным представлениям, и служат источниками внутризвездной энергии. Энергия этих частиц и величина их потока зависят от температуры и характера ядерных реакций.
В то время как фотон, образовавшийся в недрах Солнца, прежде чем вырваться наружу, испытывает около 10 миллиардов соударений, нейтрино, обладающие огромной проникающей способностью, проходят через всю толщу солнечного вещества практически беспрепятственно и достигают Земли. Если бы нам удалось «поймать» солнечные нейтрино, мы в некотором смысле «увидели» бы, что происходит в центре Солнца. Но наблюдать нейтрино можно только косвенным путем, заставляя их взаимодействовать с другими частицами и регистрируя результаты подобных взаимодействий.
Подходящей ядерной реакцией может служить взаимодействие нейтрино с ядром одного из изотопов хлора, с атомным весом 37. Уловив нейтрино, такое ядро превращается в ядро изотопа аргона-37. При этом образуется один электрон, который можно зарегистрировать хорошо известными физикам способами. Кроме того, аргон-37 радиоактивен, значит, через определенные промежутки времени можно измерять, сколько его накопилось.
Но нужно еще «отстроиться» от других космических излучений, которые также могут вызывать ядерную реакцию превращения хлора в аргон. Чтобы избавиться от таких– помех, надо все измерения проводить глубоко под землей, куда обычные космические частицы проникнуть заведомо не могут.
Идея «хлорного детектора» для регистрации солнечных нейтрино была предложена известным советским физиком академиком Б. Понтекорво и осуществлена американским физиком Р. Девисом и его сотрудниками. «Нейтринным телескопом» служила огромная цистерна, заполненная 600 тоннами перхлорэтилена – вполне прозаической жидкости, применяемой для чистки одежды. Аппаратура была установлена в заброшенном золотом руднике в штате Южная Дакота вблизи города Хоумстейк.
Наблюдения проводились на протяжении длительного времени несколькими сериями и дали неожиданный результат. Число зарегистрированных актов взаимодействия оказалось намного меньше предсказанного теорией.
Для объяснения были выдвинуты различные гипотезы, в том числе и довольно экстравагантные. Так например, некоторые ученые предположили, что солнечный термоядерный реактор работает в «импульсном режиме». В силу определенных особенностей течения физических процессов в недрах Солнца термоядерная реакция время от времени прекращается. И тогда Солнце светит за счет запасов энергии, накопленных в предыдущем цикле. Вспомним, что фотоны электромагнитного излучения, приходящие к нам от Солнца, фактически родились около миллиона лет назад – ведь им еще надо было «пробиться» к солнечной поверхности. Нейтрино же дают нам информацию о состоянии Солнца практически в момент наблюдения. Поэтому нет ничего удивительного в том, что «электромагнитная» и «нейтринная» картины могут не совпадать… Не означает ли отсутствие солнечных нейтрино в опытах Девиса, что в нашу эпоху солнечный термоядерный реактор как раз не работает?
Очевидно одно: решение возникшей проблемы требует дальнейших нейтринных наблюдений Солнца. И для этого в настоящее время создается необходимая регистрирующая аппаратура.
С другой стороны, не исключена возможность, что отрицательный результат наблюдений Девиса объясняется свойствами самого нейтрино. К этому вопросу мы вернемся в следующей главе.
Глава третья. В ГЛУБИНАХ ВСЕЛЕННОЙ
Вселенная
В безлунные ночи на небе хорошо видна туманная полоса Млечного Пути. Но это не скопление туманных масс, а множество звезд – наша звездная система Галактика. В Галактике по современным оценкам около 200 миллиардов звезд. Чтобы пересечь ее из конца в конец световой луч при скорости 300 тысяч километров в секунду должен затратить около 100 тысяч лет.
Однако, несмотря на столь грандиозные размеры, наша Галактика лишь один из множества подобных звездных островов Вселенной. У нее есть спутники. Самые крупные из них – Большое и Малое Магеллановы Облака. Вместе с нашей Галактикой они обращаются вокруг общего центра масс. Наша Галактика, Магеллановы Облака и еще несколько звездных систем, в том числе знаменитая туманность Андромеды, образуют так называемую Местную Группу галактик.
Современным телескопам и радиотелескопам, а также другим средствам астрономических исследований доступна колоссальная область пространства. Ее радиус 10–12 миллиардов световых лет. В этой области расположены миллиарды галактик. Их совокупность называется Метагалактикой.
В процессе познавательной деятельности человек выделяет, вычленяет из бесконечно разнообразного материального мира определенные объекты, явления, связи, взаимодействия. Поэтому целесообразно различать понятия астрономической Вселенной и всего материального мира.
«Между тем, – пишет известный советский ученый академик П. Н. Федосеев, – исходя из принципа эволюции, есть все основания считать, что Вселенная, изучаемая современным естествознанием, представляет развивающееся во времени образование, которое возникло из каких-то предшествовавших ему состояний и форм материи и сменится новыми ее состояниями и формами.
Для материалистической философии чужды представления о порождении физического мира сознанием, как об акте творения Вселенной каким-то высшим существом. Если Вселенная, изучаемая нами сегодня, возникла 20 миллиардов лет тому назад, то с философской точки зрения важно признание объективного характера этого процесса как космического этапа саморазвития материи. Дело конкретной науки – физически понять и описать этот процесс. Возможно мыслить и существование многих Вселенных со сложной топологией. Поэтому целесообразно отличать термин Вселенная естествоиспытателя, которым обозначаются наши сведения о Вселенной, накопленные к данному моменту времени, от философского понятия материального мира. Это понятие включает в себя в скрытом виде все будущие достижения в учении о Вселенной естествоиспытателя»[7]7
Федосеев П. Н. В. И. Ленин и философские проблемы современного естествознания: Итоги и перспективы. – М.: Наука, 1981, с. 13.
[Закрыть].
В расширяющейся Метагалактике
Одной из самых ошеломляющих астрономических теорий, появившейся на свет в текущем столетии, бесспорно, можно считать теорию «расширяющейся Вселенной» или, точнее говоря, расширяющейся Метагалактики.
Главная идея этой теории состоит в том, что Метагалактика возникла около 15–20 миллиардов лет назад в результате грандиозного космического взрыва компактного сгустка сверхплотной материи.
Несколько слов о том, как родилась эта теория.
Одним из самых эффективных методов изучения Вселенной является построение различных теоретических моделей, т. е. упрощенных теоретических схем мироздания. Длительное время в космологии изучались так называемые однородные изотропные модели. Что это значит?
Вообразим, что мы разбили Вселенную на множество «элементарных» областей и что каждая из них содержит большое количество галактик. Тогда однородность и изотропия означают, что свойства и поведение Вселенной в каждую эпоху одинаковы во всех достаточно больших областях и по всем направлениям.
Первую модели однородной изотропной Вселенной предложил А. Эйнштейн. Она описывала так называемую стационарную Вселенную, т. е. такую Вселенную, которая с течением времени не только не меняется в общих чертах, но в которой вообще нет каких-либо движений достаточно крупного масштаба.
Однако в 1922 г. талантливый ленинградский ученый А. А. Фридман показал, что уравнения Эйнштейна допускают также множество нестационарных, а именно расширяющихся и сжимающихся, однородных изотропных моделей.
Позднее выяснилось, что и статическая модель Эйнштейна неизбежно переходит в нестационарную. Но это означало, что однородная изотропная Вселенная обязательно должна либо расширяться, либо сжиматься.
Еще до этого американский астроном Слайфер обнаружил красное смещение спектральных линий в спектрах галактик. Подобное явление, известное в физике под названием эффекта Доплера, наблюдается в тех случаях, когда расстояние между источником света и приемником увеличивается.

Рис. 14. Схема расширения Метагалактики. Красное смещение спектральных линий возрастает с расстоянием.
Уже после работ Фридмана американский астроном Хаббл окончательно доказал, что чем дальше расположена от нас галактика, тем больше сдвиг линий в ее спектре Мало того, обнаружилась прямая пропорциональная зависимость между расстояниями и величиной красного смещения. С точки зрения принципа Доплера это означает, что все галактики удаляются друг от друга с тем большей скоростью, чем больше расстояние между ними.
На основании этой картины движения галактик, полученной в результате объяснения красного смещения с помощью эффекта Доплера, и была разработана теория расширяющейся Метагалактики.
Однако признание этой теории отнюдь не было единодушным. В разное время предпринимались всевозможные попытки объяснить явление красного смещения не взаимным удалением галактик, а какими-либо другими причинами. Ни одна из предложенных гипотез успеха не имела.
Тем не менее попытки опровергнуть доплеровский характер красного смещения в спектре галактик продолжаются и по сей день.
Попытаемся разобраться в том, можно ли объяснить красное смещение в спектрах галактик не эффектом Доплера, а какой-либо иной причиной, и существуют ли сколько-нибудь серьезные основания сомневаться в расширении Метагалактики?
В качестве наиболее распространенного возражения против космологической интерпретации красного смещения выдвигалось предположение о «старении» фотонов, их постепенной «деградации» и уменьшении их энергии (т. е. увеличении длины волны) на долгом пути через космическое пространство.
Однако «спор» между эффектом Доплера и эффектом деградации может быть вполне однозначно разрешен с помощью астрономических наблюдений. Дело в том, что эти эффекты не совсем одинаковы.
Как показывают расчеты, при старении фотонов изменение Δν частоты ν (т. е. сдвиг спектральных линий) должно быть одинаково по всему спектру. Другими словами, величина сдвига не зависит от частоты.
В случае же эффекта Доплера изменение частоты пропорционально частоте. Тут постоянна не сама величина сдвига Δν, а ее отношение к соответствующей частоте Δν/ν. Другими словами, величина сдвига в этом случае неодинакова для различных линий спектра.
Что же говорят наблюдения? Они свидетельствуют о том, что как раз красное смещение, наблюдаемое в спектрах галактик, таково, что для различных линий одного и того же спектра одинаково не изменение частоты, а именно отношение этого изменения к самой частоте. И это недвусмысленно свидетельствует в пользу «доплеровского» объяснения красного смещения в спектрах галактик.
Другой вопрос, происходит ли «деградация» космических фотонов вообще. Если сдвиг спектральных линий не зависит от частоты, то, очевидно, он должен быть заметнее всего в области относительно низких частот, т. е. в радиодиапазоне. Здесь словно на «растянутой» шкале радиоприемника даже небольшое изменение частоты должно сразу «бросаться в глаза». Однако никаких признаков подобного явления астрофизическими наблюдениями не обнаружено.
Правда, справедливость требует отметить, что в принципе есть еще одно физическое явление, обладающее такими же особенностями, как и эффект Доплера. Когда излучение распространяется в поле тяготения, то его частота изменяется так же, как и при взаимном удалении источника и приемника.
Но расчеты показывают, что в случае метагалактического красного смещения этот эффект, известный под названием «гравитационного смещения» или «эффекта Эйнштейна», по своей величине может представлять собой лишь весьма небольшую добавку к эффекту Доплера.
Таким образом, современная физика не знает других явлений, кроме эффекта Доплера, с помощью которых можно было бы объяснить красное смещение, наблюдаемое в спектрах галактик.
Но есть ли вообще основания искать какие-то иные объяснения, не связанные с эффектом Доплера? Это было бы, очевидно, оправдано в том случае, если бы «доплеровская» картина приводила к каким-либо серьезным противоречиям. Существуют ли такие противоречия в действительности?
В свое время выдвигались возражения, связанные с возрастом космических объектов. Дело в том, что, согласно теории расширяющейся Метагалактики, продолжительность эпохи расширения исчисляется в 10–20 миллиардов лет. Не приводит ли это к противоречию с существующими оценками возраста звезд, звездных скоплений и галактик?
Одно время действительно казалось, что длительность эпохи расширения и возраст космических объектов не согласуются друг с другом. Однако сейчас можно считать общепризнанным, что продолжительность существования всех известных нам космических образований имеет порядок 10 миллиардов лет.
Тем не менее оценки возраста отдельных космических объектов в 20 и более миллиардов лет встречаются и сейчас. Возникает вопрос: если эти оценки в самом деле подтвердятся, будет ли это катастрофичным для теории расширения?
Как подчеркивает А. Л. Зельманов, вывод о продолжительности эпохи расширения Метагалактики, равной 10–20 миллиардам лет, сделан в рамках теории однородной изотропной Вселенной. В более общей теории этот срок может быть и несколько увеличен.
Однако и в теории однородной изотропной Вселенной возможны некоторые варианты, при которых эпоха расширения Метагалактики могла быть и более длительной. В большинстве вариантов теории в начале расширения преобладает взаимное гравитационное притяжение масс, которое тормозит, замедляет расширение. Но по мере расширения гравитационное притяжение слабеет, а космическое отталкивание, существование которого при определенных условиях допускают уравнения общей теории относительности, усиливается. Возможен случай, при котором притяжение в конце концов уравновешивается отталкиванием, а затем и уступает ему, – тогда замедляющееся расширение должно смениться ускоряющимся.
Предположим, что Метагалактика вела себя именно так и мы живем в эпоху ускоренного расширения. Но это означает, что в недавнем прошлом оно протекало медленнее и, следовательно, длилось дольше, чем при непрекращающемся торможении.
С другой стороны, «оценка возраста вполне может быть и уменьшена.
Согласно теории горячей расширяющейся Вселенной, через некоторое время после начала расширения должна была наступить такая фаза, когда все вещество представляло собой плазму, состоящую из электронов, протонов и ядер легких элементов. Кроме вещества, существовало и электромагнитное излучение: радиоволны, световые и рентгеновские лучи. В тот период вещество и излучение находились в равновесии. Частицы (главным образом электроны) излучали примерно столько же фотонов, сколько и поглощали.
Однако в дальнейшем температура упала настолько, что электроны стали соединяться с ионами, образуя атомы водорода, гелия и других химических элементов. Вследствие этого среда стала прозрачной для излучения. Другими словами, фотоны практически перестали испускаться и поглощаться.
В дальнейшем температура этого излучения постепенно уменьшалась, и, согласно расчетам, вытекающим из модели горячей расширяющейся Вселенной, мировое пространство в современную эпоху должно быть заполнено излучением с температурой около 3–4 кельвинов.
В 1965 г. это гипотетическое излучение было зарегистрировано и получило название реликтового. Обнаружение реликтового излучения прямо свидетельствует о том, что расширение Вселенной длится уже много миллиардов лет из состояния, неизмеримо более плотного, чем современное.
Однако в самые последние годы возникли кое-какие поводы для сомнений. Некоторые исследователи считали, что на самом деле зарегистрирован лишь некий общий тепловой фон Метагалактики, имеющий совершенно иную физическую природу.
Выдвигалась также гипотеза, согласно которой излучение, принимаемое за реликтовое, на самом деле принадлежало в отдаленном прошлом каким-то отдельным космическим объектам, а затем постепенно рассеялось в мировом пространстве.
Однако на проходившем летом 1970 г. в Англии очередном конгрессе Международного астрономического союза ученые пришли к единому мнению, что никаких серьезных оснований сомневаться в реликтовом характере зарегистрированного космического радиоизлучения в настоящее время не существует.
Что же касается гипотезы обособленных источников реликтового излучения, то в тех местах, где они когда-то располагались, должны были бы наблюдаться небольшие флуктуации (колебания) радиоизлучения.
Однако, как показали исследования, проведенные советским радиоастрономом Ю. Н. Парийским, можно с очень большой точностью утверждать, что подобных флуктуаций нигде нет.
Но если бы даже оказалось, что реликтового излучения не существует вообще, то и это вовсе не означало бы, что от теории расширения следует отказаться. В рамках этой теории возможен и такой вариант, при котором реликтовое излучение не возникает.
Очень важный аргумент в пользу теории расширения Вселенной дает изучение квазаров. В сравнительно близких к нам областях Вселенной пространственная плотность этих объектов довольно мала. На расстояниях же порядка 7–9 миллиардов световых лет она значительно возрастает, чтобы потом вновь упасть до нуля. Но это означает, что в далеком прошлом пространственная плотность квазаров была больше, а в более раннюю эпоху они еще не возникали.
Таким образом, квазары дают нам независимое подтверждение того, что Вселенная отнюдь не станционарна. Тем не менее выражаются сомнения по поводу того, имеются ли вообще в нашем распоряжении необходимые эталоны для измерения величины красного смещения. Ведь если длины волн электромагнитного излучения увеличиваются так же, как метагалактические расстояния, а размеры атомов – так же, как и длины волн, то тогда действительно ничего нельзя обнаружить.
Прежде всего необходимо отметить, что современная физика исходит из того, что при расширении Метагалактики происходит изменение лишь космологических масштабов. Что же касается масштабов микроскопических и макроскопических, то они в процессе расширения сохраняются. И это не просто одна из возможных точек зрения, а вопрос, тесно связанный с фундаментальными основами всей современной физики вообще.








