412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Соломон Фенрир » Новая занимательная астрономия » Текст книги (страница 2)
Новая занимательная астрономия
  • Текст добавлен: 4 мая 2017, 01:30

Текст книги "Новая занимательная астрономия"


Автор книги: Соломон Фенрир


Жанры:

   

История

,

сообщить о нарушении

Текущая страница: 2 (всего у книги 17 страниц)

«Черные ящики» в космосе

В кибернетике рассматривается такая задача. Есть некоторый объект, внутреннее устройство которого нам неизвестно. Его называют «черным ящиком». Но у этого объекта имеются «входы» и «выходы». На «входы» поступают внешние воздействия, объект отвечает на них определенными реакциями.

Задача состоит в том, чтобы, не «вскрывая» черного ящика, только по характеру входных и выходных сигналов составить представление о его внутреннем устройстве.

Представьте себе, что вы не знаете ни конструкции, ни принципа действия вашего радиоприемника. Известно лишь, что на его «вход» поступают электрические сигналы с антенны, а на «выходе», в динамике, мы слышим звук: голос, музыку, пение. И по этим «входным» и «выходным» данным необходимо составить представление о конструкции черного ящика – радиоприемника.

В принципе существуют два пути решения задачи. Можно регистрировать поступающие от антенны сигналы и сравнивать их с тем, что происходит на «выходе». Это – путь наблюдений. Но есть и другая возможность, более активная. Самим подавать на «вход» различные сигналы и наблюдать, что произойдет на «выходе».

Очевидно, второй путь более эффективен; в частности, он открывает возможность оперативной проверки возникающих гипотез и предположений относительно «конструкции» черного ящика. Изучив закономерности, связывающие между собой входные и выходные сигналы, можно, в принципе, построить модель, достаточно точно отражающую устройство черного ящика. Астрофизики решают аналогичные задачи. Большинство космических объектов – черные ящики, внутреннее строение которых, т. е. происходящие в них физические процессы, можно изучать лишь по внешним проявлениям.

Однако положение астрономов осложняется, по меньшей мере, двумя обстоятельствами. Во-первых, они лишены возможности экспериментировать, а могут лишь наблюдать. Во-вторых, большинство космических черных ящиков – это ящики, у которых нет «входов».

Во всяком случае, эти «входы» в. настоящее время нам неизвестны. Например, мы не знаем таких внешних воздействий, которые могли бы изменить течение физических процессов на Солнце. Есть, правда, экстравагантная гипотеза, принадлежащая Э. Броуну, гипотеза, согласно которой периодические колебания солнечной деятельности связаны с приливными возмущениями со стороны планет. Однако пока это всего лишь предположение…

Впрочем, среди космических объектов имеются и такие, для которых внешние воздействия играют существенную роль. В частности, любопытные явления были обнаружены в так называемых двойных системах, состоящих из двух звезд, обращающихся вокруг общего центра масс. Если одна из этих звезд достаточно массивная и обладает мощным гравитационным полем, то на нее, согласно выводам современной астрофизики, должно перетекать вещество второй, «нормальной» звезды. Подобный процесс может играть роль «входного» сигнала, заметно влияющего на состояние массивной звезды.

Есть определенные «входы» и у таких небесных тел, как планеты и кометы. Для планет это, к примеру, воздействие солнечной активности, а для комет – теплового и светового излучения Солнца, солнечного ветра, а также притяжения планет-гигантов.

Но при изучении Солнца у современных астрономов практически есть лишь одна реальная возможность: регистрировать явления, которые происходят в его внешних слоях. Это и есть «выходы» солнечного черного ящика.

Не верь глазам своим

Другая трудность, с которой сталкиваются исследователи Вселенной при поиске новых фактов, характерна не только для астрономии, но и для таких наук, как, скажем, физика и математика. Речь идет о соотношении между нашими наглядными представлениями и реальной действительностью.

Весь опыт познания природы и, частности, история астрономии убедительно доказывают, что «наглядность» – весьма ненадежный советчик при решении научных вопросов. Например, философы древности рассуждали так. Представим себе, что у Вселенной есть край и человек достиг этого края. Однако стоит ему только вытянуть руку – и она окажется за границей Вселенной. Но тем самым рамки материального мира раздвинутся еще на некоторое расстояние. Тогда можно будет приблизиться к новой границе и повторить ту же самую операцию еще раз. И так без конца… Значит, Вселенная бесконечна.

«Нет никакого конца ни с одной стороны у Вселенной, ибо иначе края непременно она бы имела», – писал Лукреций Кар в своей поэме «О природе вещей».

Но, к сожалению, подобные рассуждения не могут служить основанием для серьезных научных выводов. Мы многое не можем себе представить, но это само по себе еще ничего не доказывает. Рассуждение же Лукреция, хотя внешне и логично, на самом деле как раз опирается на наши привычные земные представления, молчаливо предполагая, что они справедливы везде и всегда.

Можно вспомнить хотя бы о тех возражениях, которые вызывала в свое время идея кругосветного путешествия, выдвинутая Магелланом. Его противники апеллировали именно к наглядности. «Как можно, – восклицали они, – двигаясь все время по прямой в одном направлении, вернуться в ту же точку?» Возможность такого результата противоречила общепринятым житейским представлениям. Но, как известно, действительность подтвердила предположения Магеллана.

Аналогичные возражения встречала идея антиподов: если Земля шарообразна, то как могут люди жить на другой ее стороне? – Ведь им приходится ходить вниз головой…

При астрономических же наблюдениях наглядность отказывает буквально на каждом шагу. Ежедневно мы видим, например, как в дневное время Солнце, а ночью Луна и звезды перемещаются по небу с востока на запад. Зрительно нам кажется, что Земля неподвижна, а небесные светила вращаются вокруг нее. Так и думали люди в древности, принимая это кажущееся движение за действительное. Сегодня же любому школьнику известно, что видимое суточное перемещение небесных светил – всего лишь отражение собственного вращения Земли.

Весьма замысловаты и видимые перемещения планет среди звезд, происходящие за длительные промежутки времени. Планеты то движутся с запада на восток, то вдруг останавливаются и начинают движение в обратном направлении – к западу. А затем, описав на небе своеобразную петлю, вновь устремляются к востоку.

В действительности же, петлеобразное движение планет – это движение кажущееся, иллюзорное. Оно возникает вследствие того, что мы наблюдаем за планетами с Земли, которая сама обращается вокруг Солнца. Коперник не только понял природу этого явления, но и ввел в естествознание важнейший методологический принцип: мир может быть не таким, каким мы его непосредственно наблюдаем. И поэтому задача науки состоит в том, чтобы выяснять подлинную сущность явлений, скрытую за их внешней видимостью.

Этот принцип не только лег в основу гелиоцентрической системы мира, разработанной Коперником, но и по существу стал фундаментом всего современного естествознания.

Еще один пример, наглядно иллюстрирующий принцип Коперника. Солнце представляется нам на небе сравнительно небольшим диском, почти таким же, как диск Луны. Однако и это всего лишь иллюзия – результат того, что Солнце расположено в 400 раз дальше от Земли, чем наше ночное светило. Если бы мы наблюдали Солнце с орбиты Плутона, самой далекой планеты Солнечной системы, оно показалось бы нам точкой.

А звезды? Мы видим их точками даже при наблюдении в самые мощные телескопы. А среди них есть гиганты, в миллионы и миллиарды раз превосходящие Солнце по своим объемам. Все дело в огромных расстояниях.

Расстояния привносят свои коррективы и в наблюдаемые нами яркости звезд. Одни звезды представляются более яркими, другие – менее яркими. Но само по себе это еще ничего не говорит о количестве света, которое они действительно излучают. Приведем пример. Вот четыре всем известные звезды: Солнце – самая яркая наша звезда, Сириус – ярчайшая звезда ночного неба, звезда Вега из созвездия Лиры (в 4 раза слабее Сириуса) и Полярная звезда – самая слабая из этих четырех светил (в 6 раз слабее Веги).

Но если бы мы могли расположить эти четыре звезды на одинаковом расстоянии от Земли, то нам пришлось бы произвести полную «переоценку ценностей». На первое место вышла бы Полярная звезда, Вега и Сириус поменялись бы местами, а Солнце оказалось бы в самом конце…

Рис. 1. Зависимость видимой яркости звезд от расстояния.

И вообще внешний вид небесного светила может быть довольно обманчивым. Вот хотя бы Луна. Поэты издавна величают нашу космическую спутницу серебристой. В ясные ночи в период полнолуния земные предметы отбрасывают в лучах Луны вполне четкие тени…

В действительности же лунная поверхность отражает всего около семи процентов падающего на нее солнечного света.

В обычных земных условиях предмет, который отражает меньше одной десятой части световых лучей, мы называем черным или, во всяком случае, темно-серым.

И действительно, лунная поверхность – темная. Об этом свидетельствуют телевизионные изображения, переданные с Луны советскими и американскими автоматическими станциями. Это подтверждают и наблюдения американских космонавтов.

Впрочем, справедливость требует отметить, что не все лунные породы черные. Есть и желтые, и коричневые. Кроме того, цвет лунной поверхности во многом зависит от угла падения солнечных лучей. Кстати сказать, объективно измеренный цвет Луны – темно-желтый.

Почему же при всем этом Луна на земном небе кажется нам ярким светилом? Только по контрасту с окружающим черным фоном ночного неба…

И еще одна астрономическая иллюзия. Каждый, разумеется, не раз наблюдал на небе красавицу Венеру, утреннюю или вечернюю «звезду». Ярко сияющей точкой видна она на восходе или на закате… Но посмотрим на Венеру в телескоп. Чаще всего мы увидим серпик, напоминающий лунный «месяц»…

Рис. 2. Фотография планеты Венера.

Однако иначе и быть не может. Ведь в пору своей видимости Венера располагается в стороне от линии, соединяющей Землю с нашим дневным светилом. И поэтому мы ни при каких обстоятельствах не можем увидеть всю освещенную Солнцем половину планеты. Это возможно лишь в том случае, когда Венера находится по другую сторону от Солнца. Но тогда она теряется в его ярких лучах и мы ее вообще не можем наблюдать.

Венера кажется нам звездообразной только благодаря тому, что из-за дальности расстояния наш глаз не способен различать действительные очертания венерианского серпика.

Обман зрения может возникать и при телескопических наблюдениях. Один из самых ярких примеров – знаменитая история открытия каналов Марса. В 1877 г. во время очередного сближения Марса и Земли итальянский астроном Скиапарелли, направив на Марс свой телескоп, обнаружил на поверхности этой планеты тонкую сетку линий, пересекающих ее в различных направлениях. Так родилась загадка марсианских каналов, породившая множество фантастических гипотез о высокой цивилизации, будто бы существующей на таинственной красноватой планете.

Однако многие астрономы утверждали, что никаких каналов на Марсе нет, что пресловутые каналы – всего лишь оптическая иллюзия, возникающая при телескопических наблюдениях. В действительности, говорили они, на поверхности планеты имеется большое количество разрозненных деталей. Но благодаря огромному расстоянию они сливаются для нашего глаза в сплошные линии…

Нечто подобное мы наблюдаем, глядя на экран телевизора. Как известно, телевизионная картинка состоит из нескольких сотен строчек, которые прочерчивает одну за другой электронный луч. Если подойти близко к телевизору, в особенности к телевизору с большим экраном, то эти строчки отчетливо видны. Но стоит удалиться от экрана на достаточное расстояние, и наш глаз перестает различать отдельные строки – они сливаются в сплошное, непрерывное изображение.

Пытаясь доказать, что каналы Марса – обман зрения, некоторые ученые ставили любопытные эксперименты. Они собирали в достаточно большой аудитории людей, которые ничего не слышали ни о Марсе, ни о проблеме марсианских каналов, и вывешивали перед ними на стене специальные рисунки, на которых были беспорядочно разбросаны всевозможные пятна и точки. Затем присутствующих просили перерисовать эти изображения.

Результаты подобных опытов оказались весьма убедительными. Испытуемые, сидевшие в первых рядах и хорошо видевшие оригинал, достаточно точно воспроизводили его без каких бы то ни было добавлений. Но те, кто сидел подальше, изображали линии, которых не было на оригинале, – изображали потому, что не могли на большом расстоянии четко различать отдельные детали, которые казались им сплошными линиями.

Время показало, что результаты подобных экспериментов верно отражали истинное положение вещей. Космические аппараты, передавшие телевизионные изображения марсианской поверхности с близкого расстояния, никаких каналов на этой планете не обнаружили. А в тех самых местах, где на обычных астрономических изображениях Марса «каналы» были видны на поверхности планеты, оказались цепочки небольших кратеров и других мелких деталей.

Нередко неопределенности при астрономических исследованиях возникают в связи с тем, что далеко не всегда удается уверенно определять расстояния до тех или иных космических объектов. Объекты, расположенные в одном и том же месте небесной сферы, на самом деле могут находиться на существенно разных расстояниях от Земли, а следовательно, и друг от друга.

Несколько лет назад американские астрономы сообщили о том, что в центральной части нашей звездной системы Галактики ими обнаружены обособленные плотные сгущения газа. Характер движения этих сгущений можно было истолковать как свидетельство того, что в центре Галактики находится компактное массивное тело. Однако последующие наблюдения, проведенные на крупнейшем советском радиотелескопе РАТАН-600, показали, что сгущения, о которых идет речь, скорее всего не принадлежат нашей Галактике, а лишь случайно проецируются на ее центральную часть.

И еще одно обстоятельство, способное порождать неопределенности: различные физические процессы в космосе могут генерировать электромагнитные излучения, обладающие приблизительно одинаковыми свойствами.

Вероятно, можно было бы привести еще немало примеров и соображений, показывающих, что исследователи Вселенной не имеют права ни доверять непосредственным впечатлениям, ни делать скоропалительные выводы. Особенно в тех случаях, когда изучаются сложные и неясные космические процессы.

Дело в том, что между физическим процессом, протекающим где-либо во Вселенной, и выводами ученых, наблюдающих этот процесс с Земли, лежит цепочка из очень многих звеньев. И при переходе от каждого из них к последующему возможны неточности и неправильные умозаключения. А проверить что-либо непосредственно так, как это делается, скажем, в физике или биологии, – возможности нет.

Кроме того, показание любого измерительного прибора, применяемого при астрономических исследованиях, – отклонение стрелки или почернение фотопластинки – само по себе еще не является научным фактом. Чтобы показание прибора стало таким фактом, оно должно быть соответствующим образом истолковано, интерпретировано. А такая интерпретация может быть осуществлена лишь в рамках определенной научной теории.

«Эксперимент никогда не имеет характера простого факта, который можно констатировать, – подчеркивал известный физик Луи де Бройль. – В изложении этого результата всегда содержится некоторая доля истолкования, следовательно, к факту всегда примешаны теоретические представления»[5]5
  Луи де Бройль. По тропам науки. – М.: 1962, с. 162.


[Закрыть]
.

И если в какой-либо области науки имеются в данный момент конкурирующие теоретические концепции, то одни и те же наблюдательные или экспериментальные данные могут получить с точки зрения этих концепций совершенно различные истолкования. Для того, чтобы заключения о природе того или иного космического явления были в достаточной степени надежны, необходимо рассматривать это явление под разными углами зрения, изучать его независимыми методами и полученные результаты сопоставлять между собой.

Впрочем, все это, разумеется, относится не только к астрономии, но и к любым другим наукам. Разница лишь в том, что для астронома этот вопрос, пожалуй, имеет особое значение. Ведь на протяжении столетий главным инструментом исследования небес был глаз – глаз наблюдателя. Он был источником всех сведений, и многое зависело от того, доверять ему безраздельно или относиться к полученной с его помощью информации в достаточной степени критически.

И астрономы ошибаются

Верно оценивать факты и делать на их основе правильные выводы астрономам мешает не только общечеловеческое доверие к наглядности, но иной раз и самые обычные ошибки. Ни одна наука, даже такая точная, как математика, к сожалению, не обходится без ошибок. Досадные недосмотры и незамеченные опечатки со временем обнаруживаются почти в каждом научном труде. Говорят, один ученый задался целью подытожить ошибки, допущенные авторами нескольких десятков математических книг. Он написал по этому поводу солидный труд, но, как выяснилось, и сам допустил в нем несколько сотен ошибок.

Впрочем, ошибки бывают разные. Иногда – это результат небрежности, чаще – следствие ограниченности знаний, недостаточной изученности того или иного вопроса. Бывают и ошибки неожиданные, которые трудно предвидеть заранее и которые не так-то просто обнаружить.

Впрочем, и ошибки, если их выявить вовремя и как следует разобраться в причинах, тоже поучительны…

Несколько лет назад астрономический мир облетело любопытное сообщение: французские ученые на обсерватории Верхний Прованс обнаружили в спектре карликовой звезды HD 117042 линии излучения нейтрального калия… До этого в спектрах подобных звезд калия никто не наблюдал. Да и на последующих спектрограммах той же звезды ничего подобного не повторялось.

Однако спустя два года загадочная «калиевая вспышка» была отмечена еще у одной карликовой звезды – HD 88230.

Заинтригованные астрономы приступили к систематическим поискам. Увы, безуспешно. Возможно, дело на том бы и закончилось, если бы в 1965 г. не обнаружилась еще одна калиевая вспышка у третьей звезды.

В воздухе запахло сенсацией. Ведь на этот раз речь шла о звезде, у которой поверхностная температура составляла около 12 тысяч градусов. Как мог при такой громадной температуре сохраниться калий в нейтральном состоянии?

Загадочным казалось и то, что у всех трех звезд калиевая вспышка наблюдалась только по одному разу. На спектрограммах, полученных спустя всего лишь несколько часов, никаких следов таинственного калия не было и в помине. Но как мог состав атмосферы звезды так измениться за столь короткий срок? Тем более, что линия калия при «вспышке» была весьма широкой и интенсивной.

И вдруг три калифорнийских астронома сообщили о том, что ими найдено совершенно неожиданное решение проблемы. Загадочные линии калия на спектрограммах, утверждали они, – это не какие-то «призраки» и не «фотоиллюзии» как на снимках пресловутых «летающих тарелок», а вполне добропорядочные линии абсолютно реального калия. Только находился этот калий не на далеких звездах, а совсем рядом – в помещении самой обсерватории, через которое проходил луч света от звезды. И входил он не в состав звездных атмосфер, а в состав самой обыкновенной спички. Да, стоило во время наблюдений зажечь рядом с телескопом спичку, как на спектрограмме появлялся калий. Американские ученые проверили это многократными исследованиями. Так в истории астрономии появилась «спичечная гипотеза»…

Впрочем, может быть, калифорнийские исследователи тоже ошибаются? Ведь из трех наблюдателей, зарегистрировавших таинственные «калиевые вспышки», курильщиков было только двое…

Еще один пример. Изучая спектральными методами химический состав спутника Сатурна Титана – единственного в Солнечной системе спутника, обладающего газовой оболочкой, астрономы пришли к заключению, что она состоит главным образом из метана. На этом основании высказывались даже смелые предположения о возможности существования на Титане органической жизни.

Однако приборы, установленные на борту межпланетной автоматической станции «Вояджер-1», побывавшей в районе Сатурна в ноябре 1980 г., показали иное. Оказалось, что атмосфера Титана на 93 % состоит из азота, а содержание метана не превосходит 1 %.

Как же могли астрономы столь сильно ошибиться? Злую шутку с учеными сыграло строение атмосферы Титана. Хотя поперечник Титана равен всего приблизительно 5 тыс. км, т. е. в 2 1/2 раза меньше поперечника Земли, толща его атмосферы примерно в 10 раз превышает толщу атмосферной оболочки нашей планеты. А метан, как выяснилось, сконцентрирован в основном в самых верхних ее слоях. Эта «метановая маска» и скрывала истинное положение вещей, создавая превратное представление о составе всей атмосферной оболочки.


    Ваша оценка произведения:

Популярные книги за неделю