Текст книги "Отпечаток перстня"
Автор книги: Сергей Иванов
сообщить о нарушении
Текущая страница: 6 (всего у книги 17 страниц)
Тысячи уз связывают нас с животными. Подобно им, мы упражняем и совершенствуем свои навыки, постепенно переводя их в автоматизм. Мы не думаем о тьме вещей, о которых думали вначале: как надо умываться, застегивать пуговицы, держать ложку, спускаться по лестнице, садиться на велосипед. Наша бессознательная двигательная память запомнила это навсегда, освободив нашу голову для восприятия новых вещей и размышления над ними. В известной притче сороконожку спросили, как это она ухитряется ходить всеми своими сорока ногами, и она разучилась ходить. Сороконожка заметила, что у нее есть ноги! Когда нам задают подобный вопрос, мы можем только замедлить шаг, а потом охотно расскажем, как нам удается делать то-то и то-то и кто нас этому научил. Плохо ли, хорошо ли, но мы всегда умеем найти объяснение своим поступкам и намерениям. Здесь узы, связывающие нас с животными, становятся все тоньше и тоньше.
ЧАСТЬ ВТОРАЯ
ПОСЛАНИЕ ИЗ ПРОВОЛОКИ
В
середине прошлого века психология начала выделяться из философии в самостоятельную дисциплину. Этот процесс, естественно, сопровождался попытками дать определение психическим функциям. Одна из таких попыток, вытекавшая еще из самонаблюдения, привела к определению памяти как свойства, основанного на трех процессах– на запоминании, сохранении и воспроизведении следов прошлого опыта. Легко, заметить в этом определении и тавтологию, и недосказанность. Что понимать под воспроизведением? Что представляют собой следы? Определение нуждалось в расшифровке. Психологи, конечно, отдавали себе во всем этом отчет, но ничего лучшего предложить еще не могли. Тем не менее схема оказалась удачной: она акцентировала внимание на тех сторонах проблемы, которые следовало изучать, и это изучение принесло немало интересных сведений.
Приняв за отправную точку три отмеченных психологами процесса, физиологи начали приглядываться ко всему окружающему их миру. Вот амеба, живая клетка. Разве не ведет она себя возле пищи так же уверенно,-как и мы? Амеба знает, что ей делать, а, значит, кое-что помнит, Кроме того, амеба может при определенных обстоятельствах изменить своим привычкам и приобрести новые. Но ведь то же можно сказать и о растениях. Подсолнух тянется за солнцем. Вьюнок распускается на вечерней заре. Мухоловка хватает свою жертву и пожирает ее. У растений есть свое поведение, свои привычки, r которых их тоже можно отучить и приучить их к новым. Мимозу, например, которая закрывается в сумерки и открывается на рассвете, можно при помощи искусственного освещения перевести с двенадцатичасового ритма на шестичасовой. Разве не видно во всем этом запоминания, сохранения и воспроизведения? Но что там амебы или растения, существа самостоятельные и, как любили выражаться немецкие профессора философии, «законченные в самих себе»! Возьмите мышечную ткань. Сила всякого мускула увеличивается по мере его деятельности. Сначала мышца отвечает на раздражения, передаваемые нервами, слабо, потом все сильнее и сильнее. Мышца растет и крепнет. Повторить какое-нибудь движение ей легче, чем сделать его в первый раз: упражнение облегчает воспроизведение. Мышечные клетки учатся, они приобретают новые свойства, сохраняют их и воспроизводят.
Пример с мышечной тканью привел в своем знаменитом докладе австрийский физиолог Эвальд Геринг. Доклад был прочитан 30 мая 1870 г. на сессии Венской академии наук и назывался весьма многозначительно «Память как всеобщая функция организованной материи». Под памятью Геринг подразумевал сохранение любых изменений, полученных от внешних воздействий, после того как эти воздействия уже прекратились. Теми же словами определяет сегодня память нейрофизиолог Е. Н. Соколов в своей книге «Механизмы памяти». Но Соколов пришел к этому определению только в результате опытов над нервными клетками, и только об одних этих клетках он и говорит. Геринг же имел в виду все живое и, более того, рассматривал память не только как свойство психики или организма, но и как объяснительный принцип для самого широкого круга явлений, от выработки навыков до преемственности нравов.
Однако Геринг неспроста называл память функцией не органической, а организованной материи. Эту тонкость быстро уловили его современники. Все на свете, если вдуматься, организовано. Перейти от мира существ к миру веществ оказалось так же просто, как от животных клеток к растительным. Если рассматривать память как последействие всякой стимуляции, то восковыми дощечками, пусть даже в узком значении этого символа, может обладать любой неодушевленный предмет. В своей «Психологии», вышедшей через двадцать лет после доклада Геринга, Уильям Джемс не без иронии говорит о сюртуке, который после употребления запечатлевает в своих формах форму своего владельца, о памяти фотографических пластинок и железа, приобретающего благодаря намагничиванию новые свойства. И вместе с тем в рассуждениях Джемса ощущается некоторая двойственность. Анализируя привычки, одно из самых ярких проявлений памяти, Джемс приходит к заключению, что основа их даже не физиологическая, а физическая, иначе говоря атомно-молекулярная, подобная той, которая обусловливает намагниченность. А что такое законы природы, спрашивает он, как не те же неизменные привычки, которым, воздействуя друг на друга, следуют основные виды материи? Ирония Джемса растворяется в его осторожности: как знать, может быть, некоторые свойства небиологических объектов называть памятью не так уж предосудительно?
Их и называют, называют вот уже четверть века и без всяких кавычек. Память служит обыкновенной технической характеристикой вычислительных машин и основывается на том же самом намагничивании. Впрочем, намагничивание пройденный этап в вычислительной технике: говорят, следующее поколение ЭВМ будет обладать фотохромной памятью. На квадратный сантиметр фото-хромного материала, сделанного из стекла с включенными в него частичками галогенидов серебра, можно лучом лазера нанести в тысячу раз больше информации, чем на магнитную ленту.
Не успели мы привыкнуть к памяти машин, как инженеры уже преподносят нам память просто материалов. Лет семь назад американские инженеры экспериментировали с созданным ими сплавом нитинолом, состоящим из равных атомных количеств никеля и титана. Из нитиноловой проволоки сделали спираль, нагрели ее до 150 градусов и охладили. Потом к спирали подвесили груз, и он полностью растянул ее. Но когда ровную проволоку снова нагрели до 95 градусов, она на глазах у изумленных исследователей свернулась в прежнюю спираль. Опыты повторяли десятки раз и каждый раз с одинаковым результатом. Достаточно было нагреть изделие, охладить его, придать ему любую форму, а потом снова нагреть, но до более низкой температуры, как к новому изделию возвращался прежний облик, неведомым образом сохранявшийся в памяти сплава. По причине этого неведения нитинол пока не решаются использовать для изготовления запоминающих устройств. Но о практическом его применении, конечно, думают. Есть, например, описание, как использовать нитинол для передачи секретных сообщений. Надо скрутить из проволоки зашифрованное сообщение, нагреть ее, охладить, распрямить, смотать в клубок и отослать адресату. Тому останется лишь нагреть клубок до соответствующей температуры и прочесть послание. Менее волнующие, но более полезные предложения касаются применения иитинола в авиационной технике. Очень трудно соединять заклепками обшивку самолетного крыла с каркасом: к конструкции ведь можно подобраться только с одной стороны. Для этой цели изобретают хитроумные заклепки, вплоть до таких, которые взрываются и, деформируясь, скрепляют детали. С нитинолом все получается куда проще. Из него делают заклепку, превращают ее в проволочку, вставляют проволочку в отверстие при низкой температуре, нагревают, и проволока вспоминает, что у нее была головка. Появились нитиноловые антенны для спутников; при запуске они свернуты в клубочки, а в космосе, разогревшись от солнечных лучей, принимают нужную форму. В последнее же время выяснилось, что вспоминать умеет не один нитинол. Подобные свойства обнаружены у сплавов титана и никеля с кобальтом, золота с кадмием, индия с теллуром. В 1972 г. было опубликовано сообщение о памяти, которую сотрудники Института металлургии Академии наук СССР нашли у сплава марганца с медью.
В свое время мы решили, что индивидуальная память связана со способностью учиться; даже видовая память не является чем-то раз и навсегда застывшим: неприметно, из поколения в поколение внутри вида может происходить генетическая перестройка, своего рода переучивание. И вот способность к обучению приписывают не только животным, но и растениям, не только целому, но и его части, не только существам, но и веществам. Где же граница между буквальным и переносным смыслом, да и есть ли она? Может быть, если она есть, она все-таки совпадает с границей между животным и растительным миром? Пусть кое-где она и расплывчата, но случаи эти настолько редки, что их можно и не принимать в расчет.
Размышляя над этим вопросом, Рибо писал, что привычки растений (не говоря уж о свойствах фотографических пластинок) имеют слишком отдаленную аналогию с памятью. В этих свойствах и привычках проявляется лишь одно из ее условий – сохранение приобретенного состояния. Самое же главное условие, по которому и можно судить обо всем остальном, воспроизведение, целиком зависит от постороннего вмешательства, носит несамостоятельный характер. В нем не обнаруживается ни воля, ни намерение, ни инстинкт, ни что-либо способное идти изнутри и тем более развиваться. Это обыкновенная физико-химическая реакция. Современный английский электрофизиолог Грей Уолтер пришел к тому же выводу, используя другой критерий – нервную деятельность. На растительные клетки, говорил он, влияют свет, температура, влажность, гравитация, прикосновения. Но их реакции на эти воздействия не похожи на рефлексы. У растений нервный импульс не передается от клетки к клетке, и это их главное отличие от животных. Когда усик растения прикасается к опоре, он искривляется и постепенно охватывает ее. Получается это только потому, что каждая клетка, приходящая в соприкосновение с опорой, задерживается в своем росте, свободные же клетки продолжают расти. Усик изменит свою форму раз и навсегда, и это принесет ему пользы или вреда не больше, чем железу намагничивание. Можем ли мы, спрашивает Грей Уолтер, настаивать на том, что усик запомнил форму опоры и поэтому научился ее огибать?
Настаивать на этом, конечно, нелепо. С усиком произойдет то же, что и с позвоночником, чей обладатель не пожелает отучиться от привычки сутулиться. Но это будет -привычка не позвоночника, а его обладателя. С привычками же растений раскрываться или цвести в определенное время дело обстоит сложнее. Несмотря на то, что эти явления стоят в прямой зависимости от смены дня и ночи, смены времен года и прочих привычек космического масштаба, они, будучи связаны с физиологией растений самыми тесными узами, сродни уже инстинктивной памяти, генетической программе поведения. Приучить мимозу к новому «сонному ритму» это все равно, что приучить пчелу откладывать нектар в перевернутую дощечку. Но так же, как нельзя отучить пчелу откладывать нектар, нельзя и отменить у мимозы ее циклы. В обоих случаях перед нами жесткая, хотя и чуть-чуть приоткрытая программа. Значит, в известном смысле о памяти растений говорить все-таки можно.
Самое интересное, однако, что этот «известный смысл», очевидно, придется расширить. Свою книгу «Живой мозг», откуда мы взяли рассуждения об усике, Грей Уолтер писал в 1953 г. А лет через десять ученые натолкнулись на явления, которые имеют прямое отношение к критерию, выдвинутому Уолтером, и заставляют признать у растений не только видовую, но и индивидуальную память. Американский исследователь Бэкстер занимался усовершенствованием электронных регистраторов кожно-гальванической реакции (КГР). Реакция эта служит показателем перемен в эмоциональной сфере. Малейшее волнение влияет на работу потовых желез, кожа становится более влажной, и на кривой, которую вычеркивает подключенный к регистратору самописец, появляется соответствующий пик. Как-то Бэкстер поливал в своей лаборатории филодендроны и решил посмотреть, сколько времени вода поднимается от корней до верхних листьев. Удовлетворить любопытство было очень просто. Бзкстер прикрепил к листку миниатюрный регистратор КГР и стал ждать. Через некоторое время кривая, вычерченная самописцем, изменилась: реакция была зарегистрирована, опыт удался. И тут у Бэкстера явилась шальная мысль: а что, если растения способны так же чувствовать, как и мы? Не удастся ли ему вызвать и зарегистрировать у своего цветка настоящую эмоциональную реакцию? Бэкстер решил прижечь листок спичкой. Едва он чиркнул ею, как кривая на записи резко подскочила вверх. Филодендрон закричал, и не от боли, а от страха! Значит, он успел догадаться, что ему будет больно. Значит, он знал, что ему сулит огонь!
Б
экстер приступил к систематическим опытам. В то же время аналогичные опыты уже велись в Москве, на кафедре физиологии растений Тимирязевской академии. Руководил ими профессор И. И. Гунар. Электронные приборы регистрировали электрические импульсы, подобные нервным импульсам животных. Все говорило за то, что у растений есть своя система раздражителей, контролирующая их жизнедеятельность, что сигналы из внешней среды передаются в определенный центр, где после их обработки подготавливается ответная реакция. Этот центр, возможно, находится на шейке корней, которые, подобно нашим сердечным мышцам, сжимаются и разжимаются. Если не принимать в расчет прикованность растения к своему месту, разницы между растением и животным нет.
ЭМОЦИИ ФИЛОДЕНДРОНА
Свидетельствует ли о памяти такая сигнализация? Ведь эволюция могла выработать у растений просто чувствительность ко всякой угрозе и способность откликаться на любое внезапное изменение температуры и других условий среды. Вспомним автоматические реакции асци-дии и морского ежа. Неизвестно, правда, какую пользу может извлечь растение из таких реакций. Но какая-нибудь польза, вроде своевременного сжимания или разжимания «мышц», вполне может и быть. Не исключено, что у растений есть свой язык, подобный сигнальному языку животных, и одно растение, например, в состоянии сообщить другому об опасности, определенным образом меняя электрические потенциалы на своих листьях. Подобные рассуждения побудили исследователей затеять новые опыты, которые привели к удивительным результатам.
Два цветка стояли рядом в пустой комнате, к одному из них были прикреплены регистраторы КГР, соединенные с самописцем, находившимся в помещении, где сидели экспериментаторы. Через комнату, имевшую две двери, проходили люди. Один из них, поравнявшись с цветком, свободным от приборов, как было условлен©, сломал его и прошел мимо. Спустя некоторое время те же люди снова отправились через комнату с цветками. Когда туда вошел тот, кто сломал цветок, оставшийся в живых, как выражаются психологи, «выдал» на кривой, вычерчивавшейся до тех пор без отклонения, такой пик, что двух мнений больше быть не могло: цветок узнал убийцу своего брата.
Все это звучит фантастично – по крайней мере для тех, кто равнодушен к растениям. Те же, кто не равнодушен, вспоминают слова великого селекционера Лютера Бербанка, который всерьез утверждал, что его питомцы узнают и понимают его. Давно известно, что новое это хорошо забытое или, скорее, плохо истолкованное старое. Сегодня московские психологи, «беседующие» с растениями при помощи тех же регистраторов КГР, которыми пользовался и Бэкстер, вспоминают о давних опытах советского биолога А. Гурвича. К одному корешку лука Гурвич приближал другой корешок и всякий раз замечал, что в компании зеленый лук растет быстрее, чем в одиночку. Гурвич пришел к выводу, что луковицы сообщаются между собой ультрафиолетовыми сигналами. И вот теперь, спустя сорок с лишним лет аналогичные опыты решили повторить сотрудники Новосибирского медицинского института и Института автоматики и электрометрии Сибирского отделения Академии наук СССР. То, что они обнаружили, было официально признано одним из выдающихся открытий 1972 г. В двух камерах были выращены одинаковые клетки живой ткани. Камеры изолировали друг от друга кварцевыми пластинками, пропускающими только ультрафиолетовые лучи. Через эти окна клетки могли «видеть» друг друга. Затем в одну из камер был впущен смертоносный вирус. После непродолжительной борьбы клетки погибли. Но, погибая, они успевали сообщать соседям об этом: сигнал о бедствии – максимальный пик свечения – нарастал в те мгновения, когда вирус начинал проникать внутрь клетки, нарушая в ней обмен веществ. Исследователи провели сотни опытов. Они меняли клетки, меняли вирусы. Но итог не менялся: ультрафиолетовым кодом клетки сообщали о своем состоянии соседям, и те – это и было самое поразительное!– заболевали и погибали, погибали не от вирусов, а от невыносимого для них зрелища. Экспериментаторам удалось установить, что клетки не просто сигнализировали о своей гибели, но всякий раз успевали «описать» врага. Когда введенная в камеру сулема блокировала дыхательные ферменты клеток, те сообщили соседям, что погибают от удушья.
И это всего лишь клетки! Что же говорить о растениях, о целых организмах! Могут ли они, подобно высшим животным, понимать наш язык – если не слова, то хотя бы интонации? Кто может поручиться за то, что в мире растений не обнаружится такая же иерархия программ, которую мы видели и у животных: на одном конце слепой «физико-химический» автоматизм, а на другом своеобразное поведение, структуре которого присущи и элементарное восприятие и первичные эмоции, и условные рефлексы, и пусть не такая уж богатая, но самая настоящая память. Во всяком случае, отказывать в ней растениям сегодня уже не решается ни один серьезный ученый.
Что же касается памяти намагниченного железа, фотохромных элементов, нитинола и прочих неодушевленных предметов, то у нас пока нет оснований отличать ее от памяти усика и придавать ей буквальное значение. Несамостоятельность воспроизведения запечатленных в этих предметах свойств показывает, что термин «память», приложенный к неодушевленной материи, все та же наша обычная дань антропоморфизму, который со времен Фалеса был и остается одним из объяснительных принципов познаваемой нами природы. Внезапное воспоминание о прежней форме, которое проявляется у нитинола, мало чем отличается от воспоминания белого листа бумаги, на котором после глажки проступают симпатические чернила.
Несмотря на то, что объем памяти вычислительных машин достиг внушительных размеров и в ближайшем будущем обещает вырасти в сотни, а может быть, и в тысячи раз, эта память тоже не имеет ничего общего с памятью живых существ. Некоторую аналогию с машинами мы, правда, находили у обладателей закрытых инстинктов, действовавших по жестким программам. Нам могут возразить, что существуют самообучающиеся программы. Но метод самообучения и его границы предусмотрены составителем программы и всегда подчинены определенной задаче, придуманной тем же составителем. Ни научиться чему бы то ни было, ни что-нибудь запомнить сверх того, что заложено в программе машина не имеет права. Если это и случается, то не потому, что у машины появляются особые намерения, а потому, что в ней нарушается режим работы. Когда машины научатся сами себе составлять программы, выбирать себе задачи по вкусу и решать их в зависимости от настроения, мы пересмотрим свою точку зрения. Покуда же этого не произойдет, их память останется не чем иным, как складом закодированных сведений, который наполняет человек для удовлетворения своих «вычислительных потребностей» – своих, а не машины. В отличие от гусеницы и даже от асцидии, у машины никаких потребностей нет.
Чтобы не осталось недоговоренности, завершим наш обзор памятью живых тканей, не выделенных из организма. Движения, которые мышца научилась выполнять, запомнила не она, а нервные центры, управляющие движениями. И хотя благодаря упражнению всякая мышца растет и крепнет и ей действительно все легче становится совершать определенное действие, она, подобно любому механизму, ничего не делает по своей воле. Двигательная память заключена в центральной нервной системе. В дальнейшем нам придется обстоятельно рассматривать все нарушения памяти. Сейчас, пользуясь случаем, мы упомянем о двух из них: они хорошо показывают, на ком лежит ответственность за запоминание движений. Неврологам давно известно явление апраксии (в переводе с греческого – бездеятельность). Человек не может ни написать свое имя, ни застегнуть пуговицу, ни взять ложку со стола. Рука его движется мимо цели, он словно забыл, как все это делается. В прежние времена апраксию и называли потерей памяти на двигательные навыки. Но забывание тут чисто внешнее: больной все прекрасно помнит, и мышцы у него не успели ослабеть. Ослабли не мышцы, а их связь с управляющими центрами. Кровоизлияние поразило либо ту зону коры, где сосредоточен механизм обратной связи, получающий сигналы о положениях двигательных органов и посылающий к органам команды, корректирующие дальнейшее движение, либо соседнюю зону, которая контролирует автоматическую работу двигательных стереотипов вообще. На апраксию похожа двигательная, или моторная, афазия (буквально – онемение). Кровоизлияние или опухоль поражают центры, управляющие движениями мышц гортани, языка, губ и щек – мышц, участвующих в речи. Кажется, что больной забыл все вплоть до междометий. Но он ничего не забыл, и мышцы его ничего не забыли. Если последствия кровоизлияний будут ликвидированы, мышцам учиться всему заново не придется.
Нервным клеткам мы тоже пока вынуждены отказать в самостоятельной памяти, хотя к отпечаткам они имеют самое прямое отношение. Американскому физиологу Дж. Моррелу и советскому физиологу О. С. Виноградовой удалось научить отдельную нервную клетку, нейрон, реагировать на световые вспышки так, что реакция ничем не отличалась от условного рефлекса. Нейрон, правда, быстро забывал урок, но дело было даже не в этом. Сам по себе он так же несамостоятелен, как мышца, усик вьюна или полупроводниковый диод. Это всего лишь одна из многих миллиардов деталей мозга. Нейрофизиологи говорят о его памяти главным образом потому, что при определенных условиях он служит им моделью некоторых механизмов памяти, присущей целому мозгу, или, вернее, его обладателю. Впрочем, поразмыслив над опытами в Новосибирске, мы, пожалуй, воздержимся от категорических утверждений насчет памяти нейрона.
Попытки широкой трактовки памяти, угаснув в конце 20-х годов нашего столетия, вспыхнули вновь в связи с рождением кибернетики и, главное, с дилетантским увлечением ее идеями. Увлечение прошло, но «последействие» осталось, и расстановка всех памятей по своим местам не кажется нам делом запоздалым и неуместным. Вместе с тем на примере растений и клеток нам хотелось показать, что никакая расстановка и классификация не может считаться окончательной. Это всего лишь плод «здравого смысла» определенного этапа. С каких позиций будут судить о памяти в конце столетия, сказать уже трудно. Единственное, что можно утверждать, это то, что основные руководящие начала, и в первую очередь критерий Рибо, останутся в силе.
Провозглашенное кибернетикой тождество некоторых принципов управления в организмах и механизмах легло в основание многих развивающихся биологических и технических дисциплин. Кибернетические аналогии открыли глаза исследователям на оставшиеся в тени стороны давно изучавшихся ими объектов и ввели в поле их зрения новые объекты. Точно так же оказалась в своем роде плодотворной и концепция, ведущая начало от Геринга. Влияние его идей на психологию и физиологию ощущалось более полувека. Те, кого увлекло определение памяти только как последействия любой стимуляции, перебрав все виды организованной материи, зашли в тупик. Зато другие, принявшись за разработку идеи об универсальном объяснительном принципе и беря природу в ее непрерывном развитии, высказали немало проницательных замечаний о памятливости живой и неживой материи, о некоторых важных сторонах эволюции и о зарождении видовой и индивидуальной памяти. Среди ученых этого направления мы должны прежде всего упомянуть немецкого биолога Рихарда Земона и швейцарского психиатра Эйгена Блейлера.
Факты повторяемости и последействия свойственны не только живой, но и неживой природе, писал Земон. Мы обнаруживаем их там, где налицо полная или почти полная повторяемость тех условий, которые их впервые породили. Однако настоящего совпадения тут нет. Приглядевшись к памяти живой природы, мы заметим одну весьма характерную ее особенность. Повторение происходит и тогда, когда первоначальные условия повторяются не целиком. Для выявления «мнемического комплекса» в подавляющем большинстве случаев достаточно гораздо меньшего раздражения, чем первоначальное, то есть уже знакомых нам «слабых стимулов». Принцип памяти, продолжал ту же мысль Блейлер, заключается в том, что последовательность в реализации какой-нибудь функции, однажды осуществившись, будет при повторном раздражении воспроизводиться автоматически. Древнее простейшее существо, достигнув некоторой величины, разделилось потому, что условия дыхания при создавшемся соотношении величины и поверхности стали для него неблагоприятными. В дальнейшем подобные деления воспроизводились уже с большей легкостью и не обязательно по той же причине: не из-за недостатка кислорода, а всего лишь по достижении той же самой «критической» величины. Вот типичный пример проявления принципа памяти. Для Блейлера память неизменный принцип всякого развития и целесообразности любой материи, руководящее начало всех начал. Поисками такого метапринципа занимались мыслители всех эпох. Что может быть соблазнительнее вывести всю эволюцию из единого принципа, единой формулы! Но ничего не может быть и опаснее: на этом пути на смену одной разгаданной загадке тотчас же, как отрубленная голова у дракона, вырастает новая, а метапринцип начинает смахивать на прокрустово ложе.
Воздав должное Блейлеру за то, что в этот метапринцип он возвел именно память и, подобно Катону с его Карфагеном, не уставал повторять, что «все психические явления доступны исследованию, если выводить их из памяти», мы расстанемся с создателями универсальных принципов. Герингу, Земону, Блейлеру и их единомышленникам удалось объяснить при помощи памяти очень многие явления в эволюции природы. Они оказали благотворное воздействие на представителей самых разнообразных наук, например, физики и химии, заставив их взглянуть на вещи пошире и научив смелым и непредвзятым аналогиям. Но одного им не удалось объяснить – сущности самой памяти. Таков удел большинства аналогий: при уподоблении двух явлений друг другу одно неизбежно начинает играть служебную роль и волей-неволей остается в тени. Что узнаем мы о памяти, если согласимся признать ее у сплава? Ничего ровным счетом. Мы скорее поймем секрет этого сплава. Но сплавы нас больше не интересуют.