355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Фейнман » Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук » Текст книги (страница 4)
Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук
  • Текст добавлен: 20 сентября 2016, 16:49

Текст книги "Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук"


Автор книги: Ричард Фейнман



сообщить о нарушении

Текущая страница: 4 (всего у книги 10 страниц) [доступный отрывок для чтения: 4 страниц]

Глава 41
БРОУНОВСКОЕ ДВИЖЕНИЕ

§ 1. Равнораспределение энергии

§ 2. Тепловое равновесие излучения

§ 3. Равномерное распределение и квантовый осциллятор

§ 4. Случайные блуждания

§ 1. Равнораспределение энергии

Броуновское движение открыл в 1827 г. ботаник Роберт Броун. Изучая жизнь под микроскопом, он заметил, что мельчайшие частицы цветочной пыльцы пляшут в его поле зрения; в то же время он был достаточно сведущ, чтобы понимать, что перед ним не живые существа, а просто плавающие в воде соринки. Чтобы окончательно доказать, что это не живые существа, Броун разыскал обломок кварца, внутри которого была заполненная водой полость. Вода попала туда много миллионов лет назад, но и в такой воде соринки все продолжали свою пляску. Казалось, что очень мелкие частицы пляшут непрерывно. Позднее было доказано, что это один из эффектов молекулярного движения и понять его качественно можно, представив себе, что мы откуда-то издалека следим за игрой в пушбол. Мы знаем, что под большим мячом движется толпа людей и каждый толкает мяч, куда хочет. Мы не видим отдельных игроков, потому что поле очень далеко от нас, но мяч мы видим и замечаем, что перемещается он очень беспорядочно. Мы уже знаем из разобранных в предыдущих главах теорем, что средняя кинетическая энергия взвешенной в газе или жидкости маленькой частицы равна 3/2kT, даже если эта частица гораздо тяжелее молекул газа. Если она очень тяжела, то и движется она сравнительно медленно, но на самом деле оказывается, что скорость частицы не так уж мала. Конечно, заметить движение частицы не очень легко, потому что средняя кинетическая энергия 3/2kT соответствует скорости около 1 мм/сек, если диаметр частицы равен 1 —2 мк. Такое движение трудно заметить даже под микроскопом, потому что частица постоянно меняет направление своего движения и пойти в какую-нибудь определенную сторону не желает. В конце главы мы посмотрим, далеко ли она может уйти. Этот вопрос впервые был разрешен Эйнштейном в начале нашего столетия.

Между прочим, когда говорят, что средняя кинетическая энергия частицы равна 3/2 kT, то требуют, чтобы этот результат был выведен из кинетической теории, т. е. из законов Ньютона. Мы уже можем получать разные удивительные вещи с помощью кинетической теории, самое интересное – что удается получить так много из столь малого. Конечно, мы не хотим сказать, что законы Ньютона – это «малое», они на самом деле дают все необходимое для решения задачи, просто нам пришлось потрудиться совсем немного. Как же нам удалось так много получить? Просто мы постоянно исходили из очень важного предположения, что если заданная система находится при некоторой температуре в тепловом равновесии, то при той же температуре она будет в равновесии с чем угодно. Скажем, нам хочется посмотреть, как движется частица, если она сталкивается с водой.

Для этого представим, что, кроме воды и частицы, есть еще и газ, состоящий из частиц еще одного сорта —маленьких дробинок, которые, как мы предполагаем, с водой не взаимодействуют и только сильно ударяют по нашей частице. Предположим, что частица ощетинилась острыми шипами и все дробинки наталкиваются на них. Об этом воображаемом газе из дробинок при температуре Т нам известно все – это идеальный газ. Вода – дело сложное, а идеальный газ – он попроще. И вот наша частица находится в равновесии с газом из дробинок. Следовательно, среднее движение частицы должно быть таким, каким ему следует быть вследствие столкновений с атомами, потому что если бы частица двигалась относительно воды с большей скоростью, чем положено, то дробинки, отняв у частицы часть ее энергии, нагрелись бы больше, чем вода. Но ведь мы начали с равных температур и предполагаем, что если равновесие однажды наступило, то оно таким и останется; не может вдруг одна часть системы нагреться, а другая остыть.

Фиг. 41.1. Чувствительный зеркальный гальванометр и образец записи шкалы как функция времени.

Пучок света из источника L отражается от маленького зеркальца на шкале.

Это предположение справедливо и его можно доказать, используя законы механики, но доказательство очень сложно и понять его можно, только хорошо зная механику. С помощью квантовой механики доказать это гораздо легче, чем с помощью классической. Впервые эту теорему доказал Больцман, а мы, приняв, что она верна, можем утверждать, что если частица сталкивается с воображаемыми дробинками, то ее энергия равна 3/2kT. Но этой же самой энергией она должна обладать, если мы удалим дробинки и оставим частицу наедине с водой при такой же температуре. Это странная, но правильная цепь рассуждений.

Кроме движения коллоидных частиц, на которых и было впервые открыто броуновское движение, имеется еще целый ряд других явлений, и не только в лабораторных, но и в других условиях, позволяющих обнаружить броуновское движение. Если бы мы смогли соорудить чрезвычайно тонкое измерительное устройство, скажем, крохотное зеркальце, прикрепленное к тонкой кварцевой нити очень чувствительного баллистического гальванометра (фиг. 41.1), то зеркальце не стояло бы на месте, а непрерывно плясало бы, поэтому если бы мы осветили это зеркальце лучом света и проследили за отраженным пятном, то потеряли бы надежду создать совершенный измерительный инструмент, так как зеркальце все время пляшет. Почему? Потому что средняя кинетическая энергия вращения зеркальца равна ll2kT.

Чему равен средний квадратичный угол качаний зеркальца? Предположим, что мы определили период собственных колебаний зеркальца, стукнув слегка по одной его стороне и наблюдая, как долго будет оно качаться взад и вперед, и пусть нам также известен момент инерции /. Формулу для кинетической энергии вращения мы знаем, это равенство (19.8): Т =1/2Iw2. А потенциальная энергия пропорциональна квадрату угла отклонения, т. е. V = l/2aq2. Но если мы знаем период колебаний t0и можем вычислить собственную частоту w0= 2p/t0, то можно и потенциальную энергию записать в виде V=1/2/Iw20q2. Мы знаем, что средняя кинетическая энергия равна l/2 kT', но поскольку перед нами гармонический осциллятор, то средняя потенциальная энергия также равна 1/2kT. Следовательно,

Таким образом мы можем рассчитать колебания зеркальца гальванометра и тем самым найти предел точности нашего инструмента. Если нам нужно уменьшить колебания, то следует охладить зеркальце. Но здесь возникает интересный вопрос – в каком месте его охладить? Все зависит от того, откуда оно получает больше «пинков». Если в колебаниях повинна кварцевая нить, то охлаждать нужно ее верхний конец, если же зеркальце находится в газовой среде и раскачивается в основном за счет соударений с молекулами газа, то лучше охладить газ. Итак, практически, если известно, почему происходит затухание колебаний, то оказывается, что имеется всегда какой-то источник флуктуации; к этому вопросу мы еще вернемся.

Те же флуктуации работают, и довольно удивительным образом, в электрических цепях. Предположим, что мы построили очень чувствительный, точный усилитель для какой-нибудь определенной частоты и к его входу подключили резонансную цепь (фиг. 41.2), настроенную на эту же частоту, наподобие радиоприемника, только получше.

Фиг. 41,2. Резонансная цепь с большим Q.

а – реальная цепь при температуре T; б – искусственная цепь с идеальным (бесшумным) сопротивлением и «генератором шума».

Предположим, что мы захотели как можно точнее изучить флуктуации, для этого мы сняли напряжение, скажем, с индуктивности и подали его на усилитель. Конечно, во всякой цепи такого рода имеются некоторые потери. Это не идеальная резонансная цепь, но все же очень хорошая цепь, и обладает она малым сопротивлением (на схеме сопротивление показано, надо только помнить, что оно очень мало). А теперь мы хотим узнать, как велики флуктуации падения напряжения на индуктивности? Ответ: Нам известно, что «кинетическая энергия», запасенная катушкой резонансной цепи, равна 1/2LI2(см. гл. 25). Поэтому среднее значение 1/2 LI2равно 1/2kT, это дает нам среднее квадратичное значение тока, а отсюда можно определить и среднее квадратичное значение напряжения. Если мы хотим знать падение напряжения на индуктивности, нам пригодится формула , тогда средний квадрат модуля падения напряжения на индуктивности равен 2L> = L2w202>, a полагая 1/2L2> = 1/2kT, получаем

2L>=Lw20kT. ... (41.2)

Итак, теперь мы можем рассчитать контур и предсказать, каким в нем будет так называемый шум Джонсона, т. е. шум, связанный с тепловыми флуктуациями!

Но откуда же эти флуктуации берутся? А все из-за сопротивления, точнее говоря, в результате пляски электронов в сопротивлении. Ведь они находятся в тепловом равновесии с остальным материалом сопротивления, а это приводит к флуктуациям плотности электронов. Таким образом они порождают крошечные электрические поля, управляющие резонансной цепью.

Инженеры-электрики объясняют все это иначе. Физически источником шумов служит сопротивление. Однако можно заменить реальную цепь с честным сопротивлением, вызывающим шумы, фиктивной цепью, содержащей маленький генератор, который якобы порождает шумы, а сопротивление теперь будет идеальным – оно уже не шумит. Все шумы теперь исходят от фиктивного генератора. Итак, если нам известны характеристики шума, порождаемого сопротивлением, и у нас для этого имеется подходящая формула, то можно рассчитать, как цепь реагирует на этот шум. Следовательно, нам нужна формула для шумовых флуктуации. Сопротивление одинаково хорошо порождает шумы всех частот, поскольку оно само отнюдь не резонатор. Резонансная цепь, конечно, «слышит» лишь часть этого шума вблизи определенной частоты, а в сопротивлении заключено много и других частот. Силу генератора можно описать таким образом: выделяемая на сопротивлении средняя мощность, если оно непосредственно соединено с генератором шума, равна 2>/R, где Е – снимаемое с генератора напряжение. Но теперь мы хотим знать подробнее о распределении мощности по частотам. Каждой определенной частоте соответствует очень малая мощность. Пусть P(w)dw – мощность, которую генератор посылает сопротивлению в интервале частот dw. Тогда можно доказать (мы докажем это для другого случая, но математика и там и тут одинакова), что выделяемая мощность равна

P(w)dw=2/pkTdw(41.3) я, таким образом, не зависит от сопротивления.

§ 2. Тепловое равновесие излучения

Мы приступаем к обсуждению более сложной и интересной теоремы, суть которой состоит в следующем. Предположим, что унас имеется заряженный осциллятор, вроде того, о котором мы говорили, когда речь шла о свете. Пусть это будет электрон, колеблющийся в атоме вверх и вниз. А раз он колеблется, то излучает свет. Предположим теперь, что этот осциллятор попал в сильно разреженный газ, состоящий из других атомов, и время от времени эти атомы с ним сталкиваются. Когда в конце концов наступит равновесие, осциллятор приобретает такую энергию, что кинетическая энергия колебаний будет равна l/2kT, а поскольку это гармонический осциллятор, то полная энергия движения станет равной kT.

Это, конечно, неверно, потому что осциллятор несет электрический заряд, а поскольку он обладает энергией kТ, то, качаясь вверх и вниз, он излучает свет. Поэтому невозможно получить равновесие только самого вещества без того, чтобы заряды не излучали свет, а когда свет излучается, утекает энергия, осциллятор со временем растрачивает энергию kT, а окружающий газ, сталкивающийся с осциллятором, постепенно остывает. Именно таким образом остывает за ночь натопленная с вечера печка, выпуская все тепло на воздух. Прыгающие в ее кирпичах атомы заряжены и непрерывно излучают, а в результате этого излучения танец атомов постепенно замедляется.

Но если заключить все атомы и осцилляторы в ящик, так чтобы свет не смог уйти в бесконечность, тепловое равновесие может наступить. Мы можем поместить газ в ящик, в стенках которого есть и другие излучатели, испускающие свет внутрь ящика, а еще лучше соорудить ящик с зеркальными стенками. Этот пример поможет лучше понять, что произойдет. Итак, мы предполагаем, что все излучение от осциллятора остается внутри ящика. Осциллятор и в этом случае начинает излучать, но довольно скоро он все же соберет свое значение kT кинетической энергии. Происходит это потому, что сам осциллятор будет освещаться, так сказать, собственным светом, отраженным от стенок ящика. Вскоре в ящике будет много света и, хотя осциллятор продолжает излучать, часть света будет возвращаться и возмещать осциллятору потерянную им энергию.

А теперь подсчитаем, насколько должен быть освещен ящик при температуре Т, чтобы рассеяние света на осцилляторе обеспечивало его как раз такой энергией, какая нужна для поддержания излучения. Пусть атомов в ящике совсем немного и находятся они далеко друг от друга, так что наш осциллятор идеальный, не имеющий иного трения, кроме радиационного. Теперь заметим, что при тепловом равновесии осциллятор делает сразу два дела. Во-первых, он излучает, и мы можем подсчитать энергию излучения. Во-вторых, он в возмещение получает точно такое же количество энергии в результате рассеяния на нем света. Поскольку энергия ниоткуда больше притечь не может, то эффективное излучение – это как раз та часть «общего света», которая рассеялась на осцилляторе.

Таким образом, прежде всего мы вычисляем энергию, излучаемую в 1 сек осциллятором с заданной энергией. (Мы позаимствуем для этого в гл. 32, посвященной радиационному трению, несколько равенств и не будем здесь приводить их выводы.) Отношение энергии, излученной за радиан, к энергии осциллятора называется 1/Q [см. уравнение (32.8)] : 1/Q= (dW/dt)/( w0W. Используя величину у (постоянную затухания), можно записать это в виде 1/Q=g/w0, где w0– собственная частота осциллятора, если g очень мала, a Q очень велико. Излученная за 1 сек энергия равна

Излученная за 1 сек энергия просто равна произведению g на энергию осциллятора. Средняя энергия нашего осциллятора равна kT, поэтому произведение g на kT – это среднее значение излученной за 1 сек энергии:

=gkT. (41.5)

Теперь нам нужно только узнать, что такое g. Эту величину легко найти из уравнения (32.12):

где r0= e2/mc2классический радиус электрона, и мы положили Я = 2pс/w0.

Окончательный результат для средней скорости излучения света вблизи частоты w0 таков:

Теперь надо выяснить, сильно ли должен быть освещен осциллятор. Освещение должно быть таким, чтобы поглощенная осциллятором энергия (и впоследствии рассеянная) была в точности равна предыдущей величине. Иначе говоря, излученный свет – это свет, рассеянный при освещении осциллятором в полости. Итак, нам остается рассчитать, сколько света рассеивается осциллятором, если на него падает какая-то – неизвестная – доза излучения. Пусть I(w)dw– энергия света частоты w в интервале частот dw(ведь у нас нет света точно заданной частоты; излучение распределено по спектру). Таким образом, I(w) – это спектральное распределение, которое нам надо найти. Это тот цвет огня, который мы увидим внутри печи при температуре Т, если откроем дверцу и заглянем внутрь.

Сколько же все-таки света поглотится? Мы уже определяли количество излучения, поглощаемого из заданного падающего пучка света, и выразили его через эффективное сечение. Это соответствует тому, как если бы мы предполагали, что весь свет, падающий на площадку определенной площади, поглощается. Таким образом, полная переизлученная (рассеянная) интенсивность равна произведению интенсивности падающего света I(w)dw на эффективное сечение а.

Мы вывели формулу для эффективного сечения [см. уравнение (31.19)1, не включающую затухания. Нетрудно повторить этот вывод снова и учесть трение, которым мы тогда пренебрегли. Если это сделать, то, вычисляя эффективное сечение по прежнему образцу, мы получим

Пойдем дальше; ssкак функция частоты имеет более или менее заметную величину только для w около собственной частоты w0. (Вспомним, что для излучающего осциллятора Q – порядка 108.) Когда со равна w0, осциллятор рассеивает очень сильно, а при других значениях w он почти не рассеивает совсем. Поэтому можно заменить w на w0, а w2-w20 на 2w0(w-w0); тогда

Теперь почти вся кривая загнана в область около w=w0. (Фактически мы не должны делать никаких приближений, но легче иметь дело с интегралом, в котором подынтегральное выражение несколько проще.) Если умножить интенсивность в данном интервале частот на эффективное сечение рассеяния, то получится энергия, рассеянная в интервале dw. Полная рассеянная энергия – это интеграл по всем w. Таким образом,

Теперь мы положим dWs/dt=3gkT. Но почему здесь стоит 3? Потому что в гл. 32 мы предполагали, что свет поляризован так, что может раскачивать осциллятор. Если бы мы использовали осциллятор, способный раскачиваться только в одном направлении, а свет был бы, скажем, поляризован неверно, то он не рассеивался бы совсем. Поэтому мы должны либо усреднить эффективное сечение рассеяния на осцилляторе, способном раскачиваться только в одном направлении, по всем направлениям падающих пучков и поляризации света в пучке, либо, что легче сделать, представить себе, что наш осциллятор послушно следует за полем, каким бы оно ни было там, где он находится. Такой осциллятор, который одинаково легко раскачивается в любом из трех направлений, имеет среднюю энергию 3kT, потому что у него 3 степени свободы. А раз 3 степени свободы, то надо писать 3gkT.

Займемся теперь интегралом. Предположим, что неизвестное спектральное распределение света I(w) – это плавная кривая, которая в той узкой области частот, где ss имеет острый максимум, меняется не слишком сильно (фиг. 41.3).

Фиг. 41.3. Сомножители подынтегрального выражения (41.10).

Пик – это резонансная кривая 1/[(w-w 0 ) 2 +(g 2 /4)]. Множитель I(w) можно с хорошим приближением заменить на I(w 0 ).

Тогда сколько-нибудь существенный вклад в интеграл дают только частоты, близкие к w0 и отстоящие от нее на очень малую величину g. Поэтому, хотя I(w) неизвестная и, может быть, сложная функция, важно только ее поведение около w=w0 и можно заменить плавную кривую еще более ровной – «постоянной» – всюду одной высоты. Иначе говоря, мы просто вынесем I(w) из-под знака интеграла и назовем это I(w0). Вынесем за интеграл и остальные постоянные и тогда получим

Интеграл берется от 0 до Ґ, но 0 отстоит так далеко от w0, что кривая за это время идет почти вдоль оси абсцисс, поэтому заменим 0 на -Ґ, разница небольшая, а интеграл взять легче.

Интеграл вида ∫dx/(x22) приводит к арктангенсу. Если

взглянуть в справочник, то мы увидим, что он равен я/а. Итак, для нашего случая это 2p/g. После небольших манипуляций мы получаем

Затем мы подставим сюда формулу (41.6) для у (мы уже не будем стараться писать w0; раз это верно для любой w0, то можно назвать ее просто w), и формула для I(w) примет вид

I(w)=w2kT/p2c2. (41.13)

Она и определяет распределение света в горячей печке. Это так называемое излучение абсолютно черного тела. Черного потому, что, если заглянуть в топку печки при абсолютном нуле, она будет черной.

Формула (41.13) задает распределение энергии излучения внутри ящика при температуре Т согласно классической теории. Отметим сначала замечательную особенность этого выражения. Заряд осциллятора, масса осциллятора, все частные его свойства выпали из формулы; ведь если мы достигли равновесия с одним осциллятором, мы должны позаботиться о равновесии и с любым другим осциллятором другой массы, иначе будут неприятности. Таким образом, это важный способ проверки нашей теоремы о том, что равновесие зависит только от температуры, а не от того, что приводит к равновесию. Теперь можно начертить кривую I(w) (фиг. 41.4).

Фиг. 41.4. Распределение интенсивности излучения черного тела при двух температурах.

Сплошные кривые – согласно классической теории; пунктирные – настоящее распределение, 1– paдuo ; 2 – инфракрасное; 3 – видимое; 4 – ультрафиолетовое; 5 – рентгеновские лучи.

Она покажет нам, какова освещенность при разных частотах.

В выражение для интенсивности в ящике на единицу частоты входит, как видно, квадрат частоты; это значит, что если взять ящик при любой температуре, то в нем обнаружится бездна рентгеновских лучей!

Мы знаем, конечно, что это неверно. Когда мы открываем печку и заглядываем в нее, мы не портим глаз рентгеновскими лучами. Дальше – хуже, полная, энергия, ящика, полная интенсивность, просуммированная по всем частотам, должна быть площадью под этой уходящей в бесконечность кривой. Итак, здесь что-то совсем неверно в самой основе.

Это значит, что классическая теория совершенно непригодна для правильного описания распределения излучения черного тела, так же как и для описания теплоемкостей газов. Физики ходили вокруг этого вывода, рассматривали его с различных точек зрения и не нашли выхода. Это предсказание классической физики. Уравнение (41.13) называется законом Рэлея, предсказано оно классической физикой и до очевидности абсурдно.

§ 3. Равномерное распределение и квантовый осциллятор

Только что отмеченная трудность – это еще одна сторона проблемы непрерывности в классической физике, она началась с непорядка в теплоемкостях газов, а потом эта проблема сконцентрировалась на распределении света в черном теле. Конечно, пока теоретики обсуждали эти вещи, производились еще и измерения настоящих кривых. И было установлено, что правильная кривая выглядит так, как пунктирные кривые на фиг. 41.4. Никаких рентгеновских лучей там нет. Если понижать температуру, то кривые приближаются, к оси абсцисс примерно так, как того требует классическая теория, но и при низкой температуре опытные кривые тоже в конце обрываются.

Таким образом, начало кривой распределения правильно описывает опыт, а ее высокочастотный конец сбивается с верного пути. Почему же так? Когда Джеймс Джинс размышлял о теплоемкостях газов, он заметил, что движение, совершаемое с большой частотой, «замерзает» при понижении температуры. Значит осциллятор не может обладать средней энергией kT, если температура слишком мала или если частота колебаний слишком велика. А теперь вспомним, как мы выводили (41.13). Все зависело от энергии осциллятора при тепловом равновесии. Когда мы подставляли kT в (41.5), это было то же kT, что и в (41.13), т. е. средняя энергия гармонического осциллятора частоты w при температуре Т. Классическая физика говорит, что она равна kT, а эксперимент отвечает: Нет! При очень низких температурах или при очень высоких частотах это не так. Таким образом, кривая падает по той же причине, что и теплоемкости газов. Кривую черного тела изучать легче, чем теплоемкости газов, где много сложностей, и мы сконцентрируем внимание на определении правильной кривой излучения черного тела, потому что эта кривая будет той кривой, которая расскажет нам, как средняя энергия гармонического осциллятора при любой его частоте зависит от температуры.

За изучение этой кривой взялся Планк. Сначала он нашел чисто эмпирический ответ, сравнивая опытную кривую с известными функциями, которые лучше всего эту кривую подгоняли. Таким образом, он получил эмпирическую формулу для средней энергии гармонического осциллятора как функцию температуры. Иначе говоря, он заменил kT правильной формулой, а потом нашел простой вывод этой формулы, правда, при очень странном предположении. Это предположение состоит в том, что гармонический осциллятор может поглотить за один прием только энергию hw. После этого нельзя и подумать, что осциллятор может обладать любой энергией. Конечно, это было началом конца классической физики.

Сейчас мы выведем первую правильную формулу квантовой механики. Предположим, что дозволенные уровни энергии гармонического осциллятора лежат на равном расстоянии hw0 друг от друга, поэтому осциллятор может обладать только одной из этих энергий (фиг. 41.5).

Фиг. 41.5, Уровни энергии гармонического осциллятора.

Отстоят друг от друга но равных расстояниям E n =nhw.

Аргументы Планка выглядят немного сложнее наших, ведь это было самым началом квантовой механики, и ему приходилось кое-что доказывать. Ну, а мы просто примем как факт (который Планк и установил), что вероятность того, что занят уровень энергии Е, равна Р(Е)=aехр(-E/kT). Исходя из этого, мы получим правильный результат.

Предположим, что у нас есть много осцилляторов и каждый колеблется с частотой w0. Некоторые из них находятся в низшем квантовом состоянии, другие забрались на уровень выше и т. д. Нам нужно знать среднюю энергию этих осцилляторов. Чтобы найти ее, давайте вычислим полную энергию всех осцилляторов и поделим результат на их число. Тогда мы получим среднюю энергию на осциллятор при тепловом равновесии, а это то же самое, что и энергия при равновесии с излучением черного тела, и ее надо подставить в уравнение. (41.13) вместо kT.

Пусть N0число осцилляторов в основном состоянии (состоянии с наименьшей энергией), N1число осцилляторов в состоянии Е1, n2– число осцилляторов в состоянии E2и т. д. Согласно гипотезе (которую мы не доказали), классические выражения для вероятности ехр(-п. э./kT) или ехр(-к. э./kT) заменяются в квантовой механике на ехр(-DE/kT), где DE – разность энергий, Можно утверждать, что число осцилляторов в первом состоянии N1равно произведению числа молекул в основном состоянии N0на ехр(-hw/kT). Аналогично, n2(число молекул во втором состоянии) равно N2=N0exp(-2hw/kT). Чтобы упростить алгебру, введем х=ехр(-hw/kT). Тогда все выглядит очень просто:

N1=N0x, N2=N0x2 ..., Nn=N0xn.

Сначала найдем полную энергию всех осцилляторов. Если осциллятор находится в основном состоянии, его энергия нуль. Если он находится в первом состоянии, то его энергия равна hw0, а таких осцилляторов N1. Значит, в этом состоянии запасена энергия N1hw, или hwN0x. Энергия осциллятора во втором состоянии 2hw0, а осцилляторов N2, поэтому мы получаем такую энергию: N22hw=2hw0N0x2 и т. д. Сложив все это, найдем полную энергию Eполн=N0hw (0+х+2х2+Зx3+...). А сколько всего осцилляторов? В основном состоянии, конечно, N0, в первом состоянии Nlи т. д.; снова все сложим и получим Nвcе=N0(1+x+x2+x3+...). Поэтому средняя энергия равна

Читателям представляется возможность позабавиться этими суммами и получить от этого удовольствие. Когда вы покончите с суммированием и подставите в окончательный результат значение х, то получите, если не ошиблись

Эта формула была не только самой первой формулой, но и самой первой мыслью квантовой механики, и она явилась великолепным ответом на все недоумения предшествующих десятилетий. Максвелл уже понимал, что что-то неверно, но вопрос был в том, что же правильно? Здесь содержится количественный ответ – что же надо взять вместо kT. Выражение для энергии, конечно, стремится к kT при w®0 или при Т®Ґ. Попробуйте это доказать – здесь надо поступить так, как этому учит математика.

Выражение для средней энергии содержит знаменитый обрезающий множитель, который предвидел Джине, и если использовать его вместо kT в (41.13), то мы получим распределение света в черном ящике:

Итак, мы видим, что при больших w кривая резко идет вниз; хотя в числителе стоит w3, знаменатель содержит е в чрезвычайно высокой степени; на кривой нет никакого намека на подъем, и там, где мы того не ждем, не появляется ни ультрафиолетовых, ни рентгеновских лучей!

Может возникнуть недовольство в связи с тем, что при выводе (41.16) мы пользовались квантовой теорией для уровней энергии гармонического осциллятора, а при определении эффективного сечения ssмы оставались верны классической теории. Но квантовая теория взаимодействия света с гармоническим осциллятором приводит точно к тем же результатам, что и классическая. Это обстоятельство оправдывает то время, которое мы затратили на изучение показателя преломления и рассеяние света, основанное на представлении об атоме как о маленьком осцилляторе, – квантовые формулы получаются точно такими же.

Теперь вернемся к шумам Джонсона в сопротивлении. Мы уже отмечали, что теория мощности шума, по существу, – та же самая, классическая теория излучения черного тела. На самом деле, как мы уже говорили, сопротивление в цепи – это не настоящее сопротивление, а похоже скорее на антенну (антенна ведь тоже похожа на сопротивление, она излучает энергию). Это радиационное сопротивление, и легко подсчитать излучаемую им мощность. Эта мощность равна той мощности, которую антенна получает от окружающего ее света, и мы должны прийти к тому же самому распределению с точностью до одного, двух множителей. Мы можем предположить, что сопротивление – это генератор с неизвестным спектром мощности Р(w). Найти распределение поможет то обстоятельство, что этот генератор, включенный в резонансную цепь произвольной частоты (как на фиг. 41.2, б), порождает на индуктивности падение напряжения, определяемое равенством

(41.2). Это приведет нас к тому же интегралу, что и (41.10), а продолжая работать тем же методом, мы получим уравнение

(41.3). Для низких температур kT в (41.3), конечно, надо заменить выражением (41.15). Две теории (излучения черного тела и шумов Джонсона) физически тесно связаны, так как мы можем связать резонансную цепь с антенной, тогда сопротивление R будет радиационным сопротивлением в чистом виде. Поскольку (41.2) не зависит от физических свойств сопротивления, генератор G для настоящего сопротивления и для радиационного сопротивления будет одинаковым. А что же будет источником генерируемой мощности Р(w), если сопротивление R – теперь просто-напросто идеальная антенна, находящаяся в равновесии с ее окружением при температуре Т? Это излучение в пространстве при температуре Т, которое обрушивается на антенну в качестве «принятого сигнала» и служит эффективным генератором. Следовательно, двигаясь от (41.13) к (41.3), можно найти прямое соответствие между P'(w) и I(w).

Объяснение явлений, о которых мы сейчас говорим (так называемый шум Джонсона, распределение Планка и теория броуновского движения, о которой мы собираемся говорить),– это достижения первого десятилетия нашего века. Узнав об этом и заглянув в историю, вернемся к броуновскому движению.

§ 4. Случайные блуждания

Попробуем понять, насколько меняется положение танцующей частицы за время, во много раз большее, чем промежуток между двумя ударами. Посмотрим на маленькую частицу, которая вовлеклась в броуновское движение и пляшет под непрерывно и беспорядочно сыплющимися на нее ударами молекул воды. Вопрос: Далеко ли отойдет частица от первоначального положения, когда истечет заданное время? Эту задачу решили Эйнштейн и Смолуховский. Представим себе, что мы разделили выделенное нам время на малые промежутки, скажем, по одной сотой доле секунды, так что после первой сотой доли секунды частица оказалась в одном месте, в течение второй сотой секунды она продвинулась еще, в конце следующей сотой секунды – еще и т. д. При той скорости бомбардировки, которой подвергается частица, одна сотая секунды – огромное время.


    Ваша оценка произведения:

Популярные книги за неделю