Текст книги "Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук"
Автор книги: Ричард Фейнман
сообщить о нарушении
Текущая страница: 2 (всего у книги 10 страниц) [доступный отрывок для чтения: 4 страниц]
Ну и что же получится в конце концов? Из предыдущих рассуждений делаем следующий вывод: при равновесии все направления, w равновероятны относительно направления движения центра масс. Это означает, что в конце концов не будет никакой корреляции между направлением относительной скорости и движением центра масс. Если бы даже такая корреляция существовала вначале, то столкновения ее бы разрушили и она в конце концов исчезла бы полностью. Поэтому среднее значение косинуса угла между w и vц.м. равно нулю. Это значит, что
<w·vц.м.>=0. (39.19)
Скалярное произведение w·vц.м. легко выразить через v1 и v2:
Займемся сначала v1·v2; чему равно среднее v1·v2? Иначе говоря, чему равно среднее проекции скорости одной молекулы на направление скорости другой молекулы? Ясно, что вероятности движения молекулы как в одну сторону, так и в противоположную одинаковы. Среднее значение скорости v2 в любом направлении равно нулю. Поэтому и в направлении v1 среднее значение v2 тоже равно нулю. Итак, среднее значение v1·v2 равно нулю! Следовательно, мы пришли к выводу, что среднее т1v21должно быть равно т2v22. Это значит, что средние кинетические энергии обеих молекул должны быть равны:
1/2m1v21=1/2m2v22. (39.21)
Если газ состоит из атомов двух сортов, то можно показать (и мы даже считаем, что нам удалось это сделать), что средние кинетические энергии атомов каждого сорта равны, когда газ находится в состоянии равновесия. Это означает, что тяжелые атомы движутся медленнее, чем легкие; это легко проверить, поставив эксперимент с «атомами» различных масс в воздушном желобе.
Теперь сделаем следующий шаг и покажем, что если в ящике имеются два газа, разделенные перегородкой, то по мере достижения равновесия средние кинетические энергии атомов разных газов будут одинаковы, хотя атомы и заключены в разные ящики. Рассуждение можно построить по-разному. Например, можно представить, что в перегородке проделана маленькая дырочка (фиг. 39.4), так что молекулы одного газа проходят сквозь нее, а молекулы второго слишком велики и не пролезают.
Фиг. 39. 4. Два газа в ящике, разделенном полупроницаемой перегородкой.
Когда установится равновесие, то в том отделении, где находится смесь газов, средние кинетические энергии молекул каждого сорта сравняются. Но ведь в числе проникших сквозь дырочку молекул есть и такие, которые не потеряли при этом энергии, поэтому средняя кинетическая энергия молекул чистого газа должна быть равна средней кинетической энергии молекул смеси. Это не очень удовлетворительное доказательство, потому что ведь могло и не быть такой дырочки, сквозь которую пройдут молекулы одного газа и не смогут пройти молекулы другого.
Давайте вернемся к задаче о поршне. Можно показать, что кинетическая энергия поршня тоже должна быть равна 1/2m2v22. Фактически кинетическая энергия поршня связана только с его горизонтальным движением. Пренебрегая возможным движением поршня вверх и вниз, мы найдем, что горизонтальному движению соответствует кинетическая энергия 1/2m2v22x. Но точно так же, исходя из равновесия на другой стороне, можно показать, что кинетическая энергия поршня должна быть равна 1/2т1v21x. Хотя мы повторяем предыдущее рассуждение, возникают некоторые дополнительные трудности в связи с тем, что в результате столкновений средние кинетические энергии поршня и молекулы газа сравниваются, потому что поршень находится не внутри газа, а смещен в одну сторону.
Если вас не удовлетворит и это доказательство, то можно придумать искусственный пример, когда равновесие обеспечивается устройством, по которому молекулы каждого газа бьют с обеих сторон. Предположим, что сквозь поршень проходит короткий стержень, на концах которого насажено по шару. Стержень может двигаться сквозь поршень без трения. По каждому из шаров со всех сторон бьют молекулы одного сорта. Пусть масса нашего устройства равна m, а массы молекул газа, как и раньше, равны m1и m2. В результате столкновений с молекулами первого сорта кинетическая энергия тела массы mравна среднему значению 1/2 mtv21(мы уже доказали это). Точно так же, столкновения с молекулами второго сорта заставляют тело иметь кинетическую энергию, равную среднему значению 1/2mzv22. Если газы находятся в тепловом равновесии, то кинетические энергии обоих шаров должны быть равны. Таким образом, результат, доказанный для случая смеси газов, можно немедленно обобщить на случай двух разных газов при одинаковой температуре.
Итак, если два газа имеют одинаковую температуру, то средние кинетические энергии молекул этих газов в системе центра масс равны.
Средняя кинетическая энергия молекул – это свойство только «температуры». А будучи свойством «температуры», а не газа, она может служить определением температуры. Средняя кинетическая энергия молекулы, таким образом, есть некоторая функция температуры. Но кто нам подскажет, по какой шкале отсчитывать температуру? Мы можем сами определить шкалу температуры так, что средняя энергия будет пропорциональна температуре. Лучше всего для этого назвать «температурой» саму среднюю энергию. Это была бы самая простая функция, но, к несчастью, эту шкалу уже выбрали иначе и вместо того, чтобы назвать энергию молекулы просто «температурой», используют постоянный множитель, связывающий среднюю энергию молекулы и градус абсолютной температуры, или градус Кельвина. Этот множитель: k=1,38·10-23 дж на каждый градус Кельвина. Таким образом, если абсолютная температура газа равна Т, то средняя кинетическая энергия молекулы равна 3/2kT (множитель 3/2 введен только для удобства, благодаря чему исчезнут множители в других формулах).
Заметим, что кинетическая энергия, связанная с составляющей движения в любом направлении, равна только 1/2kТ. Три независимых направления движения доводят ее до 3/2kT.
§ 5. Закон идеального газа
Теперь можно подставить наше определение температуры в уравнение (39.9) и найти закон зависимости давления газа от температуры: произведение давления на объем равно произведению полного числа атомов на универсальную постоянную k и температуру:
PV=NkT. (39.22)
Следовательно, при одинаковых температуре, давлении и объеме число атомов строго определено – это тоже универсальная постоянная! Таким образом, из законов Ньютона следует, что в равных объемах любых газов при одинаковых температуре и давлении содержится равное число молекул. Вот какой неожиданный вывод!
На практике, когда имеешь дело с молекулами, приходится оперировать большими числами, поэтому химики произвольно выбрали число, очень большое число, и придумали ему специальное название. Они назвали его моль. Моль – это очень искусственное число. Почему химики не приняли за единицу 1024, чтобы вышло круглое число,– это вопрос исторический.
Случилось так, что они для удобства выбрали стандартное число N0=6,02·1023 объектов и назвали это число молем объектов. После этого, вместо того чтобы измерять число молекул в штуках, они измеряют их в молях. Можно написать число молей (выражая их через N0) и умножить его на число атомов в моле, потом умножить на kT, а затем, если захотим, выделить произведение числа атомов в моле на k, тогда получится молярное значение k; для этой величины выделим особую букву R. Молярное значение k равно 8,317 дж: R=N0k=8,317дж/молъ·°К-1. Таким образом мы нашли газовый закон, выраженный в виде произведения числа молей (его обозначают буквой N) на RT, или в виде произведения числа атомов на kT:
PV=NRT. (39.23)
Смысл тот же самый, только единицы измерения разные. В качестве единицы мы используем 1, а химики используют 6·1023!
Сделаем еще одно замечание по поводу газового закона; оно касается вещей более сложных, чем одноатомные молекулы. Пока мы имели дело только с движением одноатомного газа в центре масс. А что если при этом учесть действие сил? Рассмотрим сначала случай, когда поршень удерживается горизонтально расположенной пружинкой, на которую действует сила. Взаимная встряска атомов и поршня в каждый данный момент, конечно, не зависит от положения поршня. Условия равновесия остаются прежними. Независимо от того, где находится поршень, от него требуется только, чтобы скорость его движения была такой, чтобы он получал от молекул столько же энергии, сколько отдавал им. Наличие пружинки не меняет дела. Скорость, с которой движется поршень, в среднем та же. Таким образом, наша теорема о том, что средняя кинетическая энергия в одном направлении равна 1/2kT, справедлива независимо от того, есть силы или их нет.
Рассмотрим, например, двухатомную молекулу, составленную из атомов с массами mАи mB. Нам удалось доказать, что движение в центре масс части А и части В таково, что <1/2mAv2A>=<1/2mBv2B> = 3/2kT. Но как это может быть, если отдельные части связаны друг с другом? Хотя они и связаны между собой, но обмен энергией при взаимных вращениях, изменении расстояния и соударениях с другими молекулами зависит только от того, как быстро они движутся. Только этим определяется обмен энергией при соударениях. Сила в каждый отдельный момент не имеет никакого значения. Следовательно, даже если между отдельными частями молекулы действуют силы, верен тот же принцип.
Докажем, наконец, что газовый закон справедлив и в том случае, когда внутреннее движение не учитывается. До сих пор нам не надо было включать внутреннее движение. Мы просто рассматривали одноатомный газ. Но теперь мы покажем, что скорость центра масс любого объекта, который можно рассматривать как тело массы М, равна
1/2Mv2ц..м.=3/2kT. (39.24)
Иначе говоря, можно рассматривать как отдельные части, так и всю молекулу в целом! Посмотрим, почему это можно делать: масса двухатомной молекулы равна М=mА+mB, а скорость центра масс равна vц.м. =(mAvA+mBvB)/M. Нам нужно теперь определить
Умножив это на 1I2M и усреднив, получим
[Мы воспользовались тем, что (mA+mB)/М=1.] А чему равно
<w·vц.м.>=0.
Но что такое w·vц.м.? Это скалярное произведение, равное
Далее, поскольку <,mAv2A>=
(mB-mA)
Итак, если mА№mB, то
Одновременно мы доказали, что средняя кинетическая энергия внутреннего движения двухатомной молекулы, если не учитывать движения центра масс, равна 3/2kT! Ведь полная кинетическая энергия отдельных частей молекулы равна 1/2mAv2A+1/2mBv2B, а среднее ее значение – это 3/2kT+3/2kT, или 3kT. Кинетическая энергия движения центра масс равна 3/2kT, так что средняя кинетическая энергия вращательного и колебательного движений двух атомов внутри молекулы – это разность этих величин, 3/zkT.
Теорема о средней энергии центра масс – это весьма общая теорема: для каждого объекта, рассматриваемого как единое целое, независимо от того, действуют на этот объект силы или нет, средняя кинетическая энергия каждого независимого движения равна 1l2kT. Эти «независимые направления движения» иногда называют степенями свободы системы. Число степеней свободы молекулы, составленной из rатомов, равно 3r, потому что для определения положения каждого атома нужны три координаты. Полную кинетическую энергию молекулы можно представить либо как сумму кинетических энергий отдельных атомов, либо как сумму кинетической энергии движения Центра масс и кинетической энергии внутренних движений. Последнюю иногда можно представить как сумму кинетической энергии вращений и кинетической энергии колебаний, но это можно сделать только приближенно. Наша теорема, если применить ее к r-атомной молекуле, гласит, что средняя кинетическая энергия молекулы равна 3/2rkT дж, из которых 3/2kT – кинетическая энергия движения молекулы как целого, а остаток 3/2(r-1)kT – это внутренняя кинетическая энергия вращений и колебаний.
* Стоградусная шкала– это шкала Кельвина, в которой за нуль принята температура 273,16°, так что T=273,16+стоградусная температура.
** То, что химики называют молекулярным весом, есть не что иное, как масса моля молекул в граммах. Моль определяется так, что масса моля атомов изотопа углерода 12 (ядра которого состоят из 6 протонов и 6 нейтронов) равна в точности 12 г.
* Этот аргумент, который приводил еще Максвелл, несколько коварен. Хотя окончательный вывод и справедлив, но он не следует непосредственно из соображений симметрии, которыми мы пользовались раньше. Ведь перейдя к движущейся через газ системе отсчета, мы можем обнаружить искаженное распределение скоростей. Мы не смогли найти простого доказательства этого результата.
Глава 40
ПРИНЦИПЫ СТАТИСТИЧЕСКОЙ МЕХАНИКИ
§ 1. Экспоненциальная атмосфера
§ 2. Закон Больцмана
§ 3. Испарение жидкости
§ 4. Распределение молекул по скоростям
§ 5. Удельные теплоемкости газов
§ 6. Поражение классической физики
§ 1. Экспоненциальная атмосфера
Мы уже изучали некоторые свойства большого числа сталкивающихся атомов. Наука, которая занимается этим, называется кинетической теорией, и она описывает свойства вещества, рассматривая, как сталкиваются атомы. Мы утверждаем, что все свойства вещества в целом можно объяснить, рассматривая движение отдельных его частей.
Пока мы ограничимся случаем теплового равновесия, т. е. всего лишь подклассом всех явлений природы. Законы механики, применяемые в условиях теплового равновесия, получили название статистической механики, и в этой главе вы немного познакомитесь с некоторыми основными теоремами этой науки.
Одна теорема статистической механики вам уже известна. Согласно этой теореме, для любого движения при абсолютной температуре Т средняя кинетическая энергия каждого независимого движения (каждой степени свободы) равна 1/2kT. После этого нам становится кое-что известно о среднем квадрате скорости атомов. Теперь нам необходимо узнать чуть побольше о координатах атомов, чтобы выяснить, много ли их находится при тепловом равновесии в той или иной точке пространства, а также немного подробнее изучить распределение атомов по скоростям. Хотя мы знаем, чему равен средний квадрат скорости, мы все же не можем ответить на вопрос, сколько атомов обладают скоростью, в три раза большей, чем корень из среднего квадрата скорости, или скоростью, равной одной четверти корня из среднего квадрата скорости. А вдруг все атомы имеют одинаковую скорость?
Итак, вот два вопроса, на которые мы попытаемся дать ответ: 1) Как атомы располагаются в пространстве, когда на них действуют силы? 2) Каково распределение атомов по скоростям?
Заметим, что это два совершенно независимых вопроса и что распределение по скоростям всегда одинаково. Этого можно было ожидать после того, как мы выяснили, что средняя кинетическая энергия степени свободы всегда равна 1/2kT, независимо от того, какие силы действуют на молекулы. Распределение по скоростям молекул не зависит от сил, потому что силы не влияют на частоту столкновений.
Давайте начнем с примера распределения молекул в атмосфере, подобной той, в которой мы живем, но без ветра или других каких-либо возмущений.
Предположим, что мы имеем дело с довольно высоким столбом газа, находящегося в тепловом равновесии (не так, как в настоящей атмосфере; в ней, как известно, по мере подъема вверх становится холоднее). Укажем здесь, что нарушение равновесия в случае разницы температур на разных высотах можно продемонстрировать, поместив в столб газа металлический стержень так, что его концы соприкасаются с маленькими шариками (фиг. 40.1).
Фиг. 40. 1. Равновесие в атмосфере с постоянной температурой.
Давление на высоте h должно превосходить давление на высоте h+dh на вес заключенного между этими уровнями газа. Стержень и шарики выравнивают температуру.
Нижние шарики, получая от молекул газа энергию l/2kT, передают ее через стержень верхним шарикам и встряхивают их; верхние шарики в свою очередь будут встряхивать соприкасающиеся с ними наверху молекулы. В конце концов, конечно, температура на разных высотах гравитационного поля станет одинаковой.
Нам предстоит найти закон, по которому происходит разрежение атмосферы по мере подъема вверх, когда температура на всех высотах одинакова. Если N – полное число молекул в объеме V газа с давлением Р, то PV=NkT, или Р=nkT, где n – число молекул в единичном объеме. Иначе говоря, если известно число молекул в единичном объеме, то известно и давление, и наоборот: давление и плотность пропорциональны друг другу, ведь температура в нашем случае постоянна. Но давление не может быть постоянным: с уменьшением высоты оно должно возрастать, потому что нижнему слою приходится, так сказать, выдерживать вес всех расположенных сверху атомов. Теперь можно определить, как давление меняется с высотой. Если на высоте h выделить площадку единичной площади, то на эту площадку снизу будет действовать сила, равная давлению Р. Если бы не было силы тяжести, то на площадку на высоте h+dh действовала бы сверху вниз точно такая же сила. Но в нашем случае это не так: действующая снизу сила должна превосходить силу, действующую сверху, на величину, равную весу газа, заключенного между слоями h и h+dh. На каждую молекулу действует сила тяжести mg, где g – ускорение силы тяжести. В интересующем нас слое находится ndh молекул. Это приводит к такому дифференциальному уравнению: Ph+dh-Ph=dP=-mgndh. Поскольку Р=nkT, а Т—постоянная, то можно избавиться или от Р, или от n. Исключим из уравнений Р; тогда получим
Это дифференциальное уравнение говорит нам, как убывает плотность по мере увеличения высоты.
Мы располагаем теперь дифференциальным уравнением для плотности частиц n, которая меняется с высотой, но меняется так, что производная плотности пропорциональна себе самой. Функция, производная которой пропорциональна себе самой,– это экспоненциальная функция и, значит, решение дифференциального уравнения имеет вид
n=n0e-mgh/kT. (40.1)
Здесь постоянная интегрирования n0– плотность на высоте h=0 (которую можно задать произвольно); с высотой плотность экспоненциально убывает.
Заметим, что если имеется несколько сортов молекул с разными массами, то число их убывает по разным экспонентам. Число более тяжелых молекул убывает с высотой быстрее, чем число легких молекул. Поэтому можно ожидать, что раз кислород тяжелее азота, то по мере подъема вверх относительное содержание азота в атмосфере (смеси азота и кислорода) будет возрастать. В нашей атмосфере, во всяком случае на доступных высотах, этого фактически не происходит, ибо вследствие воздушных возмущений газы вновь перемешиваются.
Ведь это же не изотермическая атмосфера. Тем не менее на больших высотах преобладают очень легкие газы, например водород, так как молекулы легких газов способны забраться на такую высоту, где все остальные экспоненты уже вымрут (фиг. 40.2).
Фиг. 40.2. Нормированная плотность как функция высоты в гравитационном поле Земли для кислорода и водорода при постоянной температуре.
§ 2. Закон Болъцмаиа
Отметим здесь тот факт, что числитель показателя экспоненты в равенстве (40.1) – это потенциальная энергия, атома. Поэтому можно в нашем случае сформулировать закон следующим образом: плотность в каждой точке пропорциональна
e-п.э./kT
где п.э. – потенциальная энергия отдельного атома.
Возможно, что это случайность и этот закон справедлив только в частном случае однородного гравитационного поля. Однако можно показать, что это весьма общее утверждение. Предположим, что на молекулы газа действуют какие-то иные, не гравитационные, силы. Например, молекулы обладают электрическим зарядом, а тогда они реагируют на электрическое поле или на другой заряд, притягивающий их. А может быть, в результате взаимного притяжения атомов друг к другу или к стенкам, или к какому-нибудь твердому телу, или еще к чему-то существуют какие-то силы притяжения, которые зависят от взаимного расположения молекул и действуют на все молекулы. Предположим теперь для простоты, что все молекулы одинаковы и что сила действует на каждую отдельиую молекулу, так что полная сила, действующая на произвольно выделяемую часть газа, равна просто произведению числа молекул на силу, действующую на одну молекулу. Дело совсем упростится, если выбрать систему координат так, что сила F будет действовать вдоль оси х.
Так же, как и раньше, рассечем газ двумя параллельными плоскостями, промежуток между которыми равен dx. Тогда сила, действующая на каждый атом, умноженная на число атомов в 1 см3(обобщение прежнего nmg) и умноженная на dx, должна сбалансировать изменение давления: Fndx=dP=kTdn. Или, придав этому закону другую форму, которая пригодится позднее, запишем:
F=(kTd/dx)lnn (40.2)
Теперь заметим, что —Fdx – это работа, которую надо совершить для переноса молекулы из х в х+dx, и если сила F произошла из потенциала, т. е. работу можно описывать с помощью потенциальной энергии, то нужную нам величину можно считать изменением потенциальной энергии (п. э.). Отрицательное изменение потенциальной энергии – это произведенная работа Fdx, так что d(lnn)=-d(п. э.)/kT, или после интегрирования
n=(постоянная) е-п.э/kT. (40.3)
Таким образом, то, что нам удалось заметить в частном случае, справедливо вообще. (А что если F не происходит из потенциала? Тогда (40.2) просто-напросто не имеет решения. В этом случае, после того как какой-нибудь атом опишет замкнутый путь, вдоль которого полная работа не равна нулю, энергия либо прибавится, либо убавится и равновесие никогда не установится. Температурное равновесие невозможно, если внешние силы, действующие на газ, не консервативны.) Уравнение (40.3) известно под названием закона Болъцмана. Это еще один из принципов статистической механики: вероятность найти молекулу в заданной точке заданной пространственной конфигурации изменяется экспоненциально, причем показатель экспоненты состоит из потенциальной энергии в заданной пространственной конфигурации, взятой с обратным знаком и деленной на kT.
Таким образом, мы знаем кое-что о распределении молекул. Предположим, что в нашем распоряжении имеется плавающий в жидкости положительный ион; он притягивает окружающие его отрицательные ионы. Много ли их окажется на разных расстояниях от положительного иона? Если нам известно, как зависит от расстояния потенциальная энергия, то отношение чисел ионов на разных расстояниях определяется полученным нами законом. Этому закону можно найти еще много других применений.
§ 3. Испарение жидкости
В менее элементарной статистической механике пытаются решить следующую важную задачу. Предположим, что имеется совокупность притягивающихся друг к другу молекул и сила между любыми двумя молекулами, скажем i-й и j-й, зависит только от расстояния между ними rijи может быть представлена в виде производной от потенциальной энергии V(rij). На фиг. 40.3 показан возможный вид такой функции.
Фиг. 40. 3. Кривая потенциальной энергии для двух молекул. Потенциальная энергия зависит только от расстояний.
Если r>r0, то при сближении молекул энергия уменьшается, поэтому молекулы притягиваются; если же молекулы сближаются еще теснее, энергия очень резко возрастает, значит, на малых расстояниях молекулы сильно отталкиваются. Таково в общих чертах поведение молекул.
Предположим теперь, что мы заполнили этими молекулами какой-то ящик и хотим знать, как они там уместятся в среднем. На это даст ответ выражение ехр(-п. э./kT). В этом случае полная потенциальная энергия, если предположить, что молекулы взаимодействуют только попарно, равна сумме всех парных энергий (в более сложных случаях могут встретиться и тройные силы, но электрические силы, например, парные). Поэтому вероятность того, что молекулы образуют конфигурацию, характеризуемую заданными комбинациями расстояний rij, пропорциональна
Если температура очень высока, так что kT>>|V(r0)|, то экспонента почти всюду мала, и вероятность найти молекулу в том или ином месте почти не зависит от расстояния до других молекул, Рассмотрим случай двух молекул; в этом случае ехр (—п.э./kT) будет вероятностью найти молекулы на расстоянии rдруг от друга. Ясно, что вероятность максимальна тогда, когда потенциал наиболее отрицателен, а когда потенциал стремится к бесконечности, вероятность почти равна нулю (это происходит на очень малых расстояниях). Это означает, что у атомов газа нет шансов столкнуться друг с другом, уж очень сильно они отталкиваются. Но очень велики шансы найти эти молекулы (если отнести вероятность к единичному объему) вблизи точки r0. Здесь вероятность больше, чем в других точках, но насколько больше – это зависит от температуры. Если температура очень велика по сравнению с разностью энергий в точках r=r0и r=Ґ, то экспонента всегда почти равна единице. Это случай, когда средняя кинетическая энергия (она порядка kT) значительно превосходит потенциальную энергию. Силы тогда мало что значат. Но с падением температуры вероятность найти молекулы на расстоянии, близком к r0, резко возрастает по сравнению с вероятностью найти молекулы в любом другом месте; и в самом деле, если kT много меньше |V(r0)|, то около r0экспонента имеет довольно большой положительный показатель. Другими словами, при заданном объеме молекулы предпочитают быть на расстоянии минимальной энергии, а не очень далеко друг от друга. По мере падения температуры атомы сближаются, сбиваются в кучу, объединяются в жидкости, в твердые тела и молекулы, а если их подогреть, то они испаряются.
Если бывает необходимо точно описать, как происходит испарение, или вообще уточнить, как молекулы ведут себя в данных обстоятельствах, то поступать следует так. Прежде всего нужно как можно точнее узнать закон взаимодействия молекул V(r). Как это сделать – безразлично: можно вычислить потенциал с помощью квантовой механики или установить закон взаимодействия экспериментально. Но если даже закон взаимодействия молекул известен, нужно все же учесть, что дело идет о миллионах молекул и нам еще придется хватить горя при изучении функции ехр(—SVij/kT). Все же удивительно, что функция так проста и все как будто ясно, поскольку известен точный потенциал взаимодействия, а дело это оказывается невероятно сложным: трудность заключается в ужасающе большом числе переменных.
Но вопрос захватывающе интересен. Это один из примеров того, что называют «задачей многих тел», и он содержит много поистине увлекательных вещей. Одна-единственная формула, которую мы получим, решив задачу, должна содержать все детали, например переход газа в твердое состояние или возможные кристаллические строения твердого тела. Многие пытались ее сосчитать, но математические трудности уж очень велики, и дело не в трудности вывода общего закона, а просто в том, чтобы справиться с огромным числом переменных.
Вот и все, что касается распределения частиц в пространстве. На этом, собственно, и кончается классическая статистическая механика, ибо если нам известны силы, то в принципе мы можем найти пространственное распределение, а распределение скоростей находится сразу на все случаи жизни, оно не будет меняться от случая к случаю. Основная задача состоит в получении более конкретной информации из нашего формального решения: это и является основным занятием классической статистической механики.
§ 4. Распределение молекул по скоростям
Обсудим теперь распределение молекул по скоростям, потому что интересно, а иногда и полезно знать, какая часть молекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те знания, которые мы приобрели, когда изучали распределение газа в атмосфере. Мы считаем газ идеальным; мы предполагали это, пренебрегая взаимным притяжением атомов при расчете потенциальной энергии. В наш первый пример мы включили лишь потенциальную энергию силы тяжести. Если бы между атомами существовали взаимные силы, то нам, конечно, пришлось бы написать что-нибудь более сложное. Но мы по-прежнему будем предполагать, что между атомами никаких сил нет, и на момент даже забудем о столкновениях; потом мы попытаемся найти этому оправдание. Мы видим, что на высоте h находится гораздо меньше молекул, чем на высоте 0 (фиг. 40.4); согласно формуле (40.1), число их экспоненциально убывает с высотой.
Фиг. 40.4. Высоты h достигают только те молекулы, скорость которых на высоте h=0 достаточно велика.
Но почему же на большей высоте меньше молекул? Разве не все молекулы, живущие на высоте 0, появляются на высоте h? Нет! Потому что на высоте 0 есть молекулы, движущиеся слишком медленно, и они не способны взобраться на потенциальную гору до высоты h. Вот и ключ к решению задачи о распределении молекул по скоростям; ведь, зная равенство (40.1), мы знаем число молекул, скорость которых слишком мала для достижения высоты h. Их ровно столько, чтобы создать нужное падение плотности при увеличении h.
Давайте сформулируем все поточнее: подсчитаем, сколько молекул проходит снизу вверх через плоскость h=0 (называя заданный уровень нулевой высотой, мы вовсе не считаем, что здесь пол, просто это удобнее нам для начала отсчета, и на отрицательной высоте может находиться газ). Эти молекулы газа движутся во всех направлениях, и некоторые из них проходят через нашу плоскость; таким образом, в любой момент сквозь плоскость снизу вверх проходит известное число молекул в секунду с заданной скоростью. Затем отметим следующее: если через uобозначить скорость, необходимую для того, чтобы подняться на высоту h (кинетическая энергия mu2/2=mgh), то число молекул в секунду, поднимающихся с нижней плоскости строго вверх и имеющих составляющую скорости, большую чем u, в точности равно числу молекул, пересекающих верхнюю плоскость с любой вертикальной составляющей скорости. Те молекулы, вертикальная скорость которых не превышает и, не
достигают верхней плоскости. Таким образом,
Но число молекул, пересекающих h с любой скоростью, большей нуля, меньше числа молекул, пересекающих нижний уровень с любой скоростью, большей нуля, хотя бы потому, что внизу больше атомов. Вот и все, что нам нужно. Мы уже знаем, что распределение молекул по скоростям на всех высотах одинаково, ведь мы уже выяснили, что температура во всей атмосфере одинакова. Но поскольку распределение скоростей всюду одинаково и число атомов, пересекающих нижний уровень, больше, то ясно, что отношение n>0(h) (числа атомов, пересекающих высоту h с положительной скоростью) и n>0(0) (числа атомов, пересекающих с положительной скоростью высоту 0) равно отношению плотностей на этих высотах, т. е. ехр(—mgh/kT). Но n>0(h)=h>u(0), поэтому