Текст книги "Фейнмановские лекции по физике. 6. Электродинамика"
Автор книги: Ричард Фейнман
сообщить о нарушении
Текущая страница: 3 (всего у книги 10 страниц) [доступный отрывок для чтения: 4 страниц]
В частности, если ток в отдельной катушке (или в любом проводе) меняется, возникает «обратная» э. д. с. в цепи. Эта э. д. с. действует на заряды, текущие в катушке а на фиг. 16.5, препятствуя изменению магнитного поля, и поэтому направлена так, чтобы препятствовать изменению тока. Она стремится сохранить ток постоянным; э. д. с. противоположна току, когда ток увеличивается, и направлена по току, когда он уменьшается. При самоиндукции ток обладает «инерцией», потому что эффекты индукции стремятся сохранить поток постоянным точно так же, как механическая инерция стремится сохранить скорость тела неизменной.
Любой большой электромагнит обладает большой самоиндукцией. Пусть, например, к катушке большого электромагнита присоединена батарея (фиг. 16.6) и пусть установилось большое магнитное поле. (Ток достигает постоянной величины, определяемой напряжением батареи и сопротивлением провода катушки.)
Фиг. 16.6. Включение электромагнита в цепь.
Лампочка открывает проход току в момент отключения, препятствуя возникновению слишком большой э.д.с. на контактом выключателя.
Но теперь предположим, что мы пытаемся отсоединить батарею, разомкнув выключатель. Если бы мы на самом деле разорвали цепь, ток быстро уменьшился бы до нуля и в процессе уменьшения создал бы огромную э. д. с. В большинстве случаев такой э. д. с. оказывается вполне достаточно, чтобы образовалась вольтова дуга между разомкнутыми контактами выключателя. Возникающее большое напряжение могло бы нанести вред катушке, да и вам, если бы именно вы размыкали выключатель! По этим причинам электромагниты обычно включают в цепь примерно так, как показано на фиг. 16.6. Когда переключатель разомкнут, ток не меняется быстро, а продолжает течь через лампу, оставаясь постоянным за счет э. д. с. от самоиндукции катушки.
§ 3. Силы, действующие на индуцируемые токи
Вы, вероятно, наблюдали великолепную демонстрацию правила Ленца с помощью приспособления, изображенного на фиг. 16.7. Это электромагнит точно такой же, как катушка а на фиг. 16.5. На одном конце электромагнита помещается алюминиевое кольцо. Если с помощью переключателя подсоединить катушку к генератору переменного тока, то кольцо взлетает в воздух. Силу, конечно, порождают токи, индуцируемые в кольце. Тот факт, что кольцо отлетает прочь, показывает, что токи в нем препятствуют изменению поля, проходящего через кольцо. Когда у магнита северный полюс находится сверху, индуцированный ток в кольце создает внизу северный полюс. Кольцо и катушка отталкиваются точно так же, как два магнита, приложенные одинаковыми полюсами. Если в кольце сделать тонкий разрез по радиусу, сила исчезает – убедительное доказательство того, что она действительно обусловлена токами в кольце.
Фиг. 16.7. Проводящее кольцо сильно отталкивается электромагнитом, когда в нем меняется ток.
Фиг. 16.8. Электромагнит вблизи идеально проводящей плоскости.
Если вместо кольца у края электромагнита поместить алюминиевый или медный диск, то и он отталкивается; индуцированные токи циркулируют в материале диска и снова вызывают отталкивание.
Интересный эффект, в основе похожий на предыдущий, возникает с листом идеального проводника. В «идеальном проводнике» ток совсем не встречает сопротивления. Поэтому возникшие в нем токи могут течь не переставая. Фактически малейшая э. д. с. создала бы сколь угодно большой ток, а это на самом деле означает, что в нем вообще не может быть э. д. с. Любая попытка создать магнитный поток, проходящий сквозь такой лист, вызовет токи, образующие противоположно направленные поля В – все со сколь угодно малыми э. д. с., так что никакого потока не будет.
Если к листу идеального проводника мы поднесем электромагнит, то при включении тока в магните в листе возникают токи (называемые вихревыми токами), и никакой магнитный поток не пройдет. Линии поля будут иметь вид, показанный на фиг. 16.8. То же самое произойдет, если к идеальному проводнику поднести постоянный магнит. Поскольку вихревые токи создают противоположные поля, магниты от проводника отталкиваются. Поэтому оказывается возможным подвесить постоянный магнит в воздухе над листом идеального проводника, изготовленного в форме тарелки (фиг. 16.9). Магнит будет поддерживаться в воздухе за счет отталкивания индуцированных вихревых токов в идеальном проводнике. При обычных температурах идеальных проводников не существует, но некоторые материалы при достаточно низких температурах становятся идеальными проводниками.
Фиг. 16.9. Магнитная палочка отталкивается вихревыми токами и повисает над чашей из сверхпроводника.
Так, при температуре ниже 3,8° К олово становится идеальным проводником; тогда оно называется сверхпроводником.
Если проводник, показанный на фиг. 16.8, не вполне идеальный, то возникнет некоторое сопротивление течению вихревых токов. Токи будут постепенно замирать, и магнит медленно опустится. В неидеальном проводнике, чтобы течь дальше, вихревым токам необходима некоторая э. д. с., а для возникновения э. д. с. поток должен непрерывно меняться. Поток магнитного поля постепенно проникает в проводник.
В обычном проводнике имеются не только силы отталкивания за счет вихревых токов, но могут быть и боковые силы. Например, если мы передвигаем магнит над проводящей поверхностью, вихревые токи создают тормозящую силу, потому что индуцированные токи препятствуют изменению потока. Такие силы пропорциональны скорости и похожи на силы вязкости.
Эти эффекты хорошо наблюдаются на приборе, изображенном на фиг. 16.10. Квадратная медная пластинка укреплена на конце стержня, образуя маятник. Пластинка качается взад и вперед между полюсами электромагнита. Когда магнит включается, движение маятника неожиданно прекращается. Как только металлическая пластинка попадает в зазор магнита, в ней индуцируется ток, который стремится помешать изменению потока через пластинку. Если бы пластинка была идеальным проводником, токи были бы столь велики, что они снова вытолкнули бы пластинку и она отскочила бы назад. В медной же пластинке имеется некоторое сопротивление, поэтому токи' сначала заставляют пластинку почти намертво застыть, когда она начинает входить в поле. Затем, по мере того как токи замирают, пластинка продолжает медленно двигаться в магнитном; поле и останавливается совсем.
Схема вихревых токов в медном маятнике поясняется фиг. 16.11. Сила и расположение токов весьма чувствительны к форме пластинки. Если, скажем, вместо медной пластинки взять другую, в которой имеется ряд узких щелей (фиг. 16.12), то эффекты вихревых токов сильно уменьшатся. Маятник проходит сквозь магнитное поле лишь с небольшой тормозящей силой
Фиг. 16.10. Торможение маятника указывает на силы, возникающие благодаря вихревым токам.
Причина в том, что токи в каждой части пластинки возбуждаются меньшими по величине потоками и, следовательно, эффекты сопротивления каждой петли оказываются большими. Чем меньше токи, тем меньше и торможение. Вязкий характер силы проявится еще более наглядно, если медную пластинку поместить между полюсами магнита и затем отпустить ее. Пластинка не падает, она просто медленно опускается. Вихревые токи оказывают сильное сопротивление движению, точь-в-точь как вязкое сопротивление меда.
Если мы не будем протаскивать проводник мимо магнита, а попробуем вращать его в магнитном поле, то в нем в результате тех же эффектов возникнет тормозящий момент. И наоборот, если вращать магнит, меняя местами его полюса, вблизи проводящей плоскости или кольца, то кольцо повернется за магнитом, токи в кольце создадут момент, стремящийся повернуть кольцо вместе с магнитом.
Фиг. 16.11. Вихревые токи в медном маятнике.
Фиг. 16.12. Эффекты от вихревых токов сильно снижаются, если в пластинке прорезать щели.
Поле, весьма похожее на поле вращающегося магнита можно создать с помощью устройства из катушек (фиг. 16.13). Мы берем железный тор (т. е. железное кольцо в виде бублика) и наматываем на него шесть катушек. Направив ток так, как показано на фиг. 16.13, а, через обмотки 1 и 4, мы получим магнитное поле в направлении, указанном стрелками. Если мы теперь переключим ток на обмотки 2 и 5, то магнитное поле будет направлено уже по-другому (фиг. 16.13, б). Продолжая так действовать, мы получаем последовательность полей, изображенных на остальных частях нашего рисунка. Если процесс проводить плавно, то получится «вращающееся» магнитное поле. Подсоединив катушки к сети трехфазного тока (а она дает именно такую последовательность токов), мы легко получим требуемую последовательность токов. «Трехфазный ток» создается генератором, использующим принцип фиг. 16.1, за тем исключением, что на оси симметрично укрепляются три рамки, т. е. каждая под углом 120° к соседней. Когда рамки вращаются как единое целое, э. д. с. максимальна в одной рамке, затем в другой и т. д. в правильной последовательности. Трехфазный ток имеет много практических преимуществ. Одно из них заключается в возможности получить вращающееся магнитное поле. Момент, действующий на проводник со стороны такого вращающегося поля, легко обнаруживается на металлическом кольце, поставленном на изолирующей подставке прямо над тором (фиг. 16.14). Вращающееся поле вызывает вращение кольца вокруг вертикальной оси. Здесь видны те же основные элементы, которые имеются в больших промышленных трехфазных индукционных моторах.
Фиг. 16.13. Создание вращающегося магнитного поля.
Другой тип индукционного мотора показан на фиг. 16.15. Это устройство непригодно для практических высокоэффективных моторов, но иллюстрирует основной принцип. Электромагнит М, состоящий из пачки прокатанных железных листов, на которую навита спиральная обмотка, питается от генератора переменного тока. Магнит создает переменный поток поля 15 сквозь алюминиевый диск. Если имеются только эти две компоненты (см. фиг. 16.15, а), у нас еще нет мотора. В диске имеются вихревые токи, но они симметричны и момента не возникает. (Диск будет немного нагреваться за счет токов индукции.)
Фиг. I6.14. С помощью вращающегося поля (фиг. 16.13) можно придать кольцу из проводника вращающий момент.
Фиг. 16.15. Простой пример индукционного мотора с затененным полюсом.
Если теперь мы закроем только одну половину магнитного полюса алюминиевой пластинкой (фиг. 16.15, б), то диск начнет вращаться и мы получим мотор. Действие его связано с двумя эффектами вихревых токов. Во-первых, вихревые токи в алюминиевой пластинке препятствуют изменению потока сквозь нее, поэтому магнитное поле над пластинкой всегда отстает от поля над непокрытой частью полюса. Этот так называемый эффект «затененного полюса» создает поле, которое в «затененной» области меняется совсем так же, как и в «незатененной», за исключением постоянного запаздывания во времени. Эффект в целом такой, как будто имеется вдвое более узкий магнит, постоянно передвигающийся из незатененной области в затененную. Во-вторых, меняющиеся поля взаимодействуют с вихревыми токами диска, создавая в нем момент силы.
§ 4. Электротехника
Когда Фарадей впервые опубликовал свое замечательное открытие о том, что изменение магнитного потока создает э. д. с., его спросили (как спрашивают, впрочем, всякого, кто открывает какие-то новые явления): «Какая от этого польза?» Ведь все, что он обнаружил, было очень странным – в проводе возникал крошечный ток, когда он двигал провод возле магнита. Какая же может быть от этого «польза»? Фарадей ответил: «Какая может быть польза от новорожденного?»
А теперь вспомните о тех громадных практических применениях, к которым привело его открытие. Все, что мы описывали,– отнюдь не игрушки; это примеры, выбранные по большей части так, чтобы представить принцип той или иной практической машины. Например, вращающееся кольцо во вращающемся поле – индукционный мотор. Существует, конечно, известная разница между кольцом и практически используемым индукционным мотором. У кольца момент очень мал; протяните руку и вы можете остановить его. В хорошем моторе детали должны быть лучше пригнаны: магнитное поле не должно так щедро «растрачиваться» в воздухе. Во-первых, с помощью железа поле концентрируется. Мы не говорили о том, как это делает железо, но оно способно увеличить магнитное поле в десятки и тысячи раз по сравнению с полем одной медной катушки. Во-вторых, зазоры между частями железа делаются небольшими; с этой целью железо даже встраивается внутрь вращающегося кольца. Словом, все направлено на то, чтобы получить наибольшие силы и максимальную эффективность, т. е. превратить электрическую мощность в механическую, и такое «кольцо» уже нельзя будет удержать рукой.
Задача уменьшения зазоров и установление самого практичного режима работы есть дело инженерной науки. Она требует серьезного изучения проблем конструирования, хотя никаких новых принципов получения силы не существует. Но от основных принципов до практического и экономичного проектирования – долгий путь. И именно тщательная инженерно-конструкторская работа сделала возможным такую грандиозную вещь, как гидростанция Боулдер Дэм и все, что с ней связано.
Что такое Боулдер Дэм? Огромная река, перегороженная бетонной стеной. Но что это за стена! Изогнутая в виде идеально плавной кривой, тщательно рассчитанная так, чтобы как можно меньше бетона сдерживало напор реки. Стена утолщается книзу, образуя чудесную форму, которой любуются художники, но которую способны оценить только инженеры, потому что они понимают, насколько это хорошо. Они знают, что утолщение определяется тем, как растет давление воды на глубине. Но мы отвлеклись от электричества.
Затем вода реки забирается в огромную трубу. Уже само по себе это замечательное инженерное сооружение. По трубе вода передается к «водяному колесу» – огромной турбине – и заставляет колесо вращаться. (Еще одно достижение техники.) Но зачем крутят колеса? Они присоединены к невероятно запутанной мешанине из железа и меди (там все перекручено и переплетено). Все сооружение состоит из двух частей – одна крутится, а другая – стоит. Все это сложное сооружение сделано из немногих материалов, главным образом из железа и меди, а также из бумаги и шеллака, служащих изоляцией. Вращающееся чудовище. Генератор. Откуда-то из этого месива железа и меди вылезает несколько медных концов. Плотина, турбина, железо, медь – все собрано вместе для того, чтобы на этих медных полосках появилось нечто особенное – э. д. с. Затем медные полосы проходят небольшой путь и закручиваются несколько раз вокруг другого куска железа, образуя трансформатор; на этом их работа кончается.
Но вокруг этого же куска железа обвивается еще один медный кабель, который не соединяется непосредственно с полосами, пришедшими от генератора; он проходит поблизости от полос и забирает их з. д. с. Трансформатор превращает энергию, которая имела сравнительно низкое напряжение, необходимое для эффективной работы генератора, в очень высокое напряжение, которое лучше всего подходит для экономичной передачи электроэнергии по длинным кабелям.
И все должно быть исключительно эффективным – не может быть ничего лишнего, никаких потерь. Почему? Через все эти устройства протекает вся электрическая энергия, которая используется в стране. Если пропадет всего один или два процента энергии – подумайте, как много это составит. Если в трансформаторе остается только один процент энергии, то она должна куда-то деваться. Если бы, например, она выделялась в виде тепла – все устройство расплавилось бы.
Из Боулдер Дэм выходит во всех направлениях несколько дюжин медных стержней – длинных, очень длинных стержней толщиной, пожалуй, с вашу руку и длиной в сотни миль. Узкие медные дороги, несущие энергию гигантской реки. Затем эти дороги разветвляются... трансформаторов становится еще больше... иногда они подходят к большим генераторам, переводящим ток в другие формы... иногда к машинам, выполняющим важные промышленные работы... к новым трансформаторам... Затем все новые и новые разветвления и ответвления... пока, наконец, река не распределится по всему городу; она крутит моторы, создает тепло, свет, изготовляет приборы. Чудо рождения горячего огня из холодной воды на расстоянии более 600 миль – и все это благодаря особым образом собранным кусочкам железа и меди. Большие моторы для проката стали и крошечные моторчики для бормашины. Тысячи маленьких колесиков, крутящихся под действием большого колеса в Боулдер Дэм. Остановите большое колесо, и все остальные колесики замрут; огни потухнут.
Но этого мало. Те же явления, которые помогают взять грандиозную мощь реки и распределить ее по всей округе, пока в конце концов несколько капель реки закрутят бормашину, снова приходят на помощь при создании исключительно тонких приборов... для определения неуловимо слабых токов... для передачи голосов, музыки и изображений... для вычислительных машин... для автоматических машин фантастической точности.
Все это возможно потому, что тщательно продумано устройство из меди и железа – эффективно созданы магнитные поля... железные блоки диаметром в 2 метра, вращающиеся с зазором в 2 миллиметра... рассчитаны правильно пропорции меди, чтобы получить оптимальную эффективность... выдуманы странные формы, которые все служат своим целям, так же как форма плотины.
Если археолог будущего когда-нибудь раскопает Боулдер Дэм, он, вероятно, восхитится красотой ее линий. А исследователь – гражданин какой-то великой цивилизации Будущего, посмотрев на генераторы и трансформаторы, скажет: «Заметьте, как красивы формы каждой железной детали. Подумайте, сколько мысли вложено в каждый кусочек меди».
Здесь проявляется сочетание могущества техники и тщательного расчета. В генераторе осуществляется то, что нигде более в природе не встречается. Правда, силы индукции появляются и в других случаях. Несомненно, где-то вокруг Солнца и звезд действуют эффекты электромагнитной индукции. Возможно (хотя и не наверное), что магнитное поле Земли поддерживается каким-то гигантским аналогом электрического генератора, который работает на токах, циркулирующих в недрах Земли. Но нигде нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию, как это делается в генераторе,– непрерывно и очень экономично.
Вы, возможно, думаете, что конструирование электрических генераторов уже не представляет интереса, что это уже мертвая наука, ведь все они давно созданы. Почти совершенные генераторы или моторы можно взять просто с полки. Но даже если бы это было и так, нужно восхищаться чудесной законченностью решения проблемы. Однако осталось немало и нерешенных задач. И даже генераторы и моторы становятся снова проблемой. Возможно, что скоро для решения проблемы распределения электрической энергии понадобится использовать всю область низких температур и сверхпроводников. Будут созданы новые оптимальные установки с учетом радикально новых факторов. Возможно, энергетические сети будущего будут мало похожи на сегодняшние.
Итак, вы видите, что при изучении законов индукции можно заняться бесчисленным множеством приложений и проблем. Конструирование электрических машин само по себе может стать задачей всей жизни. Мы не будем слишком углубляться в этот вопрос, но мы должны осознать то, что открытие закона индукции неожиданно связало теорию с огромным числом практических применений. Область эта принадлежит инженерам и тем ученым прикладной науки, которые занимаются детальной разработкой различных приложений. Физика дает им лишь основу – основные законы, не зависящие от того, к чему они применяются. (Создание этой основы еще далеко не закончено, потому что предстоит еще подробно рассмотреть свойства железа и меди. Немного позже мы увидим, что физика может кое-что сказать и о них.)
Современная электротехника берет свое начало с открытий Фарадея. Бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить.
Глава 17
ЗАКОНЫ ИНДУКЦИИ
§ 1. Физика индукции
§ 2. Исключения из «правила потока»
§ 3. Ускорение частицы в индуцированном электрическом поле; бетатрон
§ 4. Парадокс
§ 5. Генератор переменного тока
§ 6. Взаимная индукция
§ 7. Самоиндукция
§ 8. Индуктивность и магнитная энергия
§ 1. Физика индукции
В предыдущей главе мы описали множество явлений, которые показали, что эффекты индукции весьма сложны и интересны. Сейчас мы хотим обсудить основные законы, управляющие этими эффектами. Мы уже определяли э. д. с. в проводящей цепи как полную силу, действующую на заряды, просуммированную по всей длине цепи. Более точно, это тангенциальная компонента силы на единичный заряд, проинтегрированная по всему проводу вдоль цепи. Следовательно, эта величина равна полной работе, совершаемой над единичным зарядом, когда он обходит один раз вокруг цепи.
Мы дали также «правило потока», которое утверждает, что э. д. с. равна скорости изменения магнитного потока сквозь такую цепь проводников. Давайте посмотрим, можем ли мы понять, почему это так. Прежде всего рассмотрим случай, когда поток меняется из-за того, что цепь движется в постоянном поле.
На фиг. 17.1 показана простая проволочная петля, размеры которой могут меняться. Петля состоит из двух частей – неподвижной U-образной части (а) и подвижной перемычки (b), которая может скользить вдоль двух плеч U. Цепь всегда замкнута, но площадь ее может меняться. Предположим, что мы помещаем эту петлю в однородное магнитное поле так, что плоскость U оказывается перпендикулярной полю. Согласно правилу, при движении перемычки в петле должна возникать э. д. с., пропорциональная скорости изменения потока сквозь петлю. Эта э. д. с. будет порождать в петле ток. Мы предположим, что сопротивление проволоки достаточно велико, так что токи малы.
Фиг. 17.1. В рамке наводится э.д.с., если поток меняется за счет изменения площади рамки при перемещении перемычки b.
Тогда магнитным полем от этого тока можно пренебречь.
Поток через петлю равен wLB, поэтому «правило потока» дало бы для э. д. с. (ее обозначим через о)
где v – скорость смещения перемычки.
Нам следовало бы понимать этот результат и с другой точки зрения, отправляясь от магнитной силы vXB, действующей на заряды в движущейся перекладине. Эти заряды будут чувствовать силу, касательную к проволоке и равную vB для единичного заряда. Она постоянна вдоль длины w перемычки и равна нулю в остальных местах, поэтому интеграл равен
E= -wvB,
что в точности совпадает с результатом, полученным из скорости изменения потока.
Приведенное доказательство можно распространить на любой случай, когда магнитное поле постоянно и провода движутся. Можно в общем виде доказать, что для любой цепи, части которой движутся в постоянном магнитном поле, э. д. с. равна производной потока по времени независимо от формы цепи.
Ну а что произойдет, если петля будет неподвижна, а магнитное поле изменится? На этот вопрос мы не можем ответить с помощью тех же аргументов. Фарадей открыл (поставив опыт), что «правило потока» остается справедливым независимо от того, почему меняется поток.
Сила, действующая на электрические заряды, в общем случае дается формулой F = q(E+vXB); новых особых «сил за счет изменения магнитного поля» не существует. Любые силы, действующие на покоящиеся заряды в неподвижной проволоке, возникают за счет Е. Наблюдения Фарадея привели к открытию нового закона о связи электрического и магнитного полей: в области, где магнитное поле меняется со временем, генерируются электрические поля. Именно это электрическое поле и гонит электроны по проволоке, и, таким образом, оно-то и ответственно за появление э. д. с. в неподвижной цепи, когда магнитный поток изменяется.
Общий закон для электрического поля, связанного с изменяющимся магнитным полем, такой:
(17.1)
Мы назовем его законом Фарадея. Он был открыт Фарадеем, но впервые в дифференциальной форме записан Максвеллом в качестве одного из его уравнений. Давайте посмотрим, как из этого уравнения получается «правило потока» для цепей. Используя теорему Стокса, этот закон можно записать в интегральной форме
(17.2)
где, как обычно, Г – произвольная замкнутая кривая, a S – любая поверхность, ограниченная этой кривой. Вспомним, что здесь Г – это математическая кривая, зафиксированная в пространстве, a S – фиксированная поверхность. Тогда производную по времени можно вынести за знак интеграла:
(17.3)
Применяя это соотношение к кривой Г, которая идет вдоль неподвижной цепи проводников, мы получаем снова «правило потока». Интеграл слева – это э. д. с., а в правой части с обратным знаком стоит скорость изменения потока, проходящего внутри контура. Итак, соотношение (17.1), примененное к неподвижному контуру, эквивалентно «правилу потока».
Таким образом, «правило потока» согласно которому э. д. с. в контуре равна взятой с обратным знаком скорости, с которой меняется магнитный поток через контур, применимо, когда поток меняется за счет изменения поля или когда движется контур (или когда происходит и то, и другое). Две возможности —«контур движется» или «поле меняется» – неразличимы в формулировке правила. Тем не менее для объяснения правила в этих двух случаях мы пользовались двумя совершенно разными законами: vXВ для «движущегося контура» и СXЕ = -dB/dt для «меняющегося поля».
Мы не знаем в физике ни одного другого такого примера, когда бы простой и точный общий закон требовал для своего настоящего понимания анализа в терминах двух разных явлений. Обычно столь красивое обобщение оказывается исходящим из единого глубокого основополагающего принципа. Но в этом случае какого-либо особо глубокого принципа не видно. Мы должны воспринимать «правило» как совместный эффект двух совершенно различных явлений.
На «правило потока» мы должны посмотреть следующим образом. Вообще говоря, сила на единичный заряд равна F/q = Е+vXB. В движущихся проводниках сила возникает за счет v. Кроме того, возникает поле Е, если где-либо меняется магнитное поле. Эти эффекты независимы, но э. д. с. вокруг проволочной петли всегда равна скорости изменения магнитного потока сквозь петлю.
§ 2. Исключения из «правила потока»
Здесь мы приведем несколько примеров, частично известных Фарадею, которые показывают, как важно ясно понимать разницу между двумя эффектами, ответственными за возникновение наведенной э. д. с. Наши примеры включают те случаи, когда «правило потока» неприменимо либо потому, что вообще никаких проводов нет, либо потому, что путь, избираемый индуцированными токами, проходит внутри объема проводника.
Вначале сделаем важное замечание: та часть э. д. с., которая возникает за счет поля Е, не связана с существованием физической проволоки (в отличие от части vXВ). Поле Е может существовать в пустом пространстве, и контурный интеграл от него по любой воображаемой линии в пространстве есть скорость изменения потока В через эту линию.
Фиг. 17.2. При вращении диска слагаемое vXB порождает э.д.с., но поток сквозь цепь не меняется.
Фиг. 17.3. При повороте пластинок в однородном магнитном поле поток может сильно меняться, но э.д.с. не возникает.
(Заметьте, что это совсем непохоже на поле Е, создаваемое статическими зарядами, так как в электростатике контурный интеграл от Е по замкнутой петле всегда равен нулю.)
Теперь опишем случай, когда поток через контур не меняется, а э. д. с. тем не менее существует. На фиг. 17.2 показан проводящий диск, помещенный в магнитное поле и который может вращаться на неподвижной оси. Один контакт приделан к оси, а другой трется о внешний край диска. Цепь замыкается через гальванометр. Когда диск вращается, «контур» (в смысле места в пространстве, где текут токи) всегда остается тем же самым. Но часть «контура» проходит в диске, в движущемся материале. Хотя поток по контуру постоянен, э. д. с. все же есть, в этом можно убедиться по отклонению гальванометра. Ясно, что здесь перед нами случай, когда за счет силы vXB в движущемся диске возникает э. д. с., которая не может быть равна изменению потока.
В качестве обратного примера мы сейчас рассмотрим несколько необычный случай, когда поток через «контур» (снова в смысле того места, где текут токи) изменяется, а э. д. с. отсутствует. Представим себе две металлические пластины со слегка изогнутыми краями (фиг. 17.3), помещенные в однородное магнитное поле, перпендикулярное их плоскости. Каждая пластина присоединена к одному из полюсов гальванометра, как показано на фигуре. Пластины образуют контакт в одной точке Р, так что цепь замкнута. Если теперь повернуть пластины на небольшой угол, точка контакта сдвинется в Р'.
Если мы вообразим, что «цепь» замкнута внутри пластин по пунктирной линии, то по мере поворота пластины взад и вперед магнитный поток через этот контур изменяется на большую величину. Но поворот может произойти от незначительного движения, тогда vXB очень мало и э. д. с. практически отсутствует. В этом случае «правило потока» бессильно. Оно справедливо лишь для контуров, материал которых остается неизменным. Когда материал контура меняется, приходится обращаться снова к основным законам. Правильное физическое содержание всегда дается двумя основными законами:
§ 3. Ускорение частицы в индуцированном электрическом поле; бетатрон
Мы уже говорили, что э. д. с., созданная изменяющимся магнитным полем, может существовать даже в отсутствие проводников; т. е. магнитная индукция возможна без проводов. Мы можем представить себе э. д. с. вдоль произвольной математической кривой в пространстве. Она определяется как тангенциальная компонента Е, проинтегрированная вдоль кривой. Закон Фарадея гласит, что этот контурный интеграл равен скорости изменения магнитного потока через замкнутую кривую [соотношение (17.3)].
В качестве примера действия такого индуцированного электрического поля мы сейчас рассмотрим движение электрона в изменяющемся магнитном поле. Представим себе магнитное поле, которое всюду на плоскости направлено по вертикали (фиг. 17.4). Магнитное поле создается электромагнитом, но детали нас здесь интересовать не будут. В нашем примере мы предположим, что магнитное поле симметрично относительно некой оси, т. е. напряженность магнитного поля зависит только от расстояния до оси.
Фиг. 17.4. Электрон ускоряется в аксиально-симметричном магнитном поле, зависящем от времени.
Магнитное поле меняется также со временем. Представим теперь, что электрон в этом поле движется по круговой траектории постоянного радиуса с центром на оси поля. (Позже мы увидим, как можно создать такое движение.) Меняющееся магнитное поле создает электрическое поле Е, касательное к орбите электрона, которое будет двигать его по окружности. Вследствие симметрии это электрическое поле всюду на окружности принимает одну и ту же величину. Если орбита электрона имеет радиус r, то контурный интеграл от Е по орбите равен скорости изменения магнитного потока через окружность. Контурный интеграл от Е равен просто величине Е, умноженной на длину окружности 2pr. Магнитный поток, вообще говоря, дается интегралом. Обозначим через Bср – среднее магнитное поле внутри окружности; тогда поток равен этому среднему магнитному полю, умноженному на площадь круга.