355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Фейнман » Фейнмановские лекции по физике. 6. Электродинамика » Текст книги (страница 1)
Фейнмановские лекции по физике. 6. Электродинамика
  • Текст добавлен: 4 октября 2016, 02:12

Текст книги "Фейнмановские лекции по физике. 6. Электродинамика"


Автор книги: Ричард Фейнман



сообщить о нарушении

Текущая страница: 1 (всего у книги 10 страниц) [доступный отрывок для чтения: 4 страниц]

6. Электродинамика

Глава 15
ВЕКТОРНЫЙ ПОТЕНЦИАЛ

§ 1. Силы, действующие на петлю с током; энергия диполя

§ 2. Механическая и электрическая энергии

§ 3. Энергия постоянных токов

§ 4. В или А?

§ 5. Векторный потенциал и квантовая механика

§ 6. Что истинно в статике, но ложно в динамике?

§ 1. Силы, действующие на петлю с током; энергия диполя

В предыдущей главе мы изучали магнитное поле, создаваемое маленькой прямоугольной петлей, по которой течет ток. Мы нашли, что это поле диполя с дипольным моментом, равным

m= IA,(15.1)

где I – сила тока, a A – площадь петли. Момент направлен по нормали к плоскости петли, так что можно писать и так:

m=IАn,

где n – единичный вектор нормали к площади А.

Петли с током, или магнитные диполи, не только создают магнитные поля, но и сами подвергаются действию силы, попав в магнитное поле других токов. Рассмотрим сперва силы, действующие на прямоугольную петлю в однородном магнитном поле. Пусть ось z направлена по полю, а ось y лежит в плоскости петли, образующей с плоскостью xyугол q (фиг. 15.1). Тогда магнитный момент петли, будучи нормальным к ее плоскости, образует с магнитным полем тоже угол q.

Раз токи на противоположных сторонах петли текут в противоположные стороны, то и силы, действующие на них, тоже направлены врозь, а суммарная сила равна нулю (в однородном поле). Но благодаря силам, действующим на стороны, обозначенные на фиг. 15.1 цифрами 1 и 2, возникает вращательный момент, стремящийся вращать петлю вокруг оси у. Величина этих сил Flи F2 такова:

F 1 =F 2 =IBb.

Фиг. 15.1. Прямоугольная петля с током I в однородном поле В, направленном по оси z.

Действующий на нее вращательный момент равен t=mXB, где магнитный момент m=Iab.

Их плечо равно

так что вращательный момент

Вращательный момент может быть записан и векторно:

(15.2)

То, что вращательный момент дается уравнением (15.2), мы показали пока только для довольно частного случая. Но результат, как мы увидим, верен для маленьких петель любой формы. Полезно напомнить, что и для вращательного момента, действующего на электрический диполь, мы получили соотношение подобного же рода:

Сейчас нас интересует механическая энергия нашей петли, по которой течет ток. Раз есть момент вращения, то энергия, естественно, зависит от ориентации петли. Принцип виртуальной же работы утверждает, что момент вращения – это скорость изменения энергии с углом, так что можно написать

Подставляя t =+mBsinq и интегрируя, мы вправе принять за энергию выражение

(Знак минус стоит потому, что петля стремится развернуть свой момент по полю; энергия ниже всего тогда, когда m и В параллельны.)

По причинам, о которых мы поговорим позже, эта энергия не есть полная энергия петли с током. (Мы, к примеру, не учли энергии, идущей на поддержание тока в петле.) Поэтому мы будем называть ее Uмех, чтобы не забыть, что это лишь часть энергии. И, кроме того, постоянную интегрирования в (15.3) мы вправе принять равной нулю, все равно ведь какие-то другие виды энергии мы не учли. Так что мы перепишем уравнение так:

(15.4)

Опять получилось соответствие с электрическим диполем, где было

(15.5)

Только в (15.5) электрическая энергия – и вправду энергия, а Uмехв (15.4) – не настоящая энергия. Но все равно ее можно применять для расчета сил по принципу виртуальной работы. Надо только предполагать, что ток в петле (или по крайней мере магнитный момент m) остается неизменным при повороте.

Для нашей прямоугольной петли можно показать, что Uмех соответствует также работе, затрачиваемой на то, чтобы внести петлю в поле. Полная сила, действующая на петлю, равна нулю лишь в однородном поле, а в неоднородном все равно останутся какие-то силы, действующие на токовую петлю. Внося петлю в поле, мы вынуждены будем пронести ее через места, где поле неоднородно, и там будет затрачена работа. Будем считать для упрощения, что петлю вносят в поле так, что ее момент направлен вдоль поля. (А в конце, уже в поле, ее можно повернуть как надо.)

Вообразите, что мы хотим двигать петлю в направлении x, т. е. в ту область, где поле сильнее, и что петля ориентирована так, как показано на фиг. 15.2. Мы отправимся оттуда, где поле равно нулю, и будем интегрировать силу по расстоянию по мере того, как петля входит в поле.

Фиг. 15.2. Петлю проносят через поле В (поперек него) в направлении x.

Рассчитаем сначала работу переноса каждой стороны по отдельности, а затем все сложим (вместо того, чтобы складывать силы до интегрирования). Силы, действующие на стороны 3 и 4, направлены поперек движения, так что на эти стороны работа не тратится. Сила, действующая на сторону 2, направлена по xи равна 1bВ(x); чтобы узнать всю работу против действия магнитных сил, нужно проинтегрировать это выражение по xот некоторого значения х, где поле равно нулю, скажем, от х = -Ґ до теперешнего положения х2:

(15.6)

Подобно этому, и работа против сил, действующих на сторону 1,равна

(15.7)

Чтобы вычислить каждый интеграл, надо знать, как В(х) зависит от х. Но ведь сторона 1при движении рамки расположена все время параллельно стороне 2на одном и том же расстоянии от нее, так что в ее интеграл входит почти вся работа, затраченная на перемещение стороны 2. Сумма (15.6) и (15.7) на самом деле равна

(15.8)

Но, попав в область, где В на обеих сторонах 1 и 2 почти одинаково, мы имеем право записать интеграл в виде

где В – поле в центре петли. Вся вложенная механическая энергия оказывается равной

Это согласуется с выражением для энергии (15.4), выбранным нами прежде.

Конечно, тот же вывод получился бы, если бы мы до интегрирования сложили все силы, действующие на петлю. Если бы мы обозначили через В1поле у стороны 1 а через В2– поле у стороны 2, то вся сила, действующая в направлении х, оказалась бы равной

Если петля «узкая», т. е. если В2и В1не очень различаются между собой, то можно было бы написать

Так что сила была бы равна

(15.10)

Вся работа, произведенная внешними силами над петлей, равнялась бы

а это опять -mВ. Но теперь нам становится понятно, почему получается, что сила, действующая на небольшую токовую петлю, пропорциональна производной магнитного поля, как это следовало ожидать из

Другой наш результат состоит в следующем. Хоть и не исключено, что не все виды энергии вошли в формулу Uмех= m·B (ведь это просто некоторая имитация энергии), ею все же можно пользоваться, применяя принцип виртуальной работы, чтобы узнать, какие силы действуют на петли с постоянным током.

§ 2. Механическая и электрическая энергии

Теперь мы хотим пояснить, почему энергия Uмех, о которой говорилось в предыдущем параграфе, не настоящая энергия, связанная с постоянными токами, почему у нее нет прямой связи с полной энергией всей Вселенной. Правда, мы подчеркнули, что ею можно пользоваться как энергией, когда вычисляешь силы из принципа виртуальной работы, при условии, что ток в петле (и все прочие токи) не меняется. Посмотрим теперь, почему же все так выходит.

Представим, что петля на фиг. 15.2 движется в направлении +х, а ось z примем за направление В. Электроны проводимости на стороне 2 будут испытывать действие силы, толкающей их вдоль провода, в направлении у. Но в результате их движения по проводу течет электрический ток и имеется составляющая скорости vyв том же направлении, в котором действует сила. Поэтому над каждым электроном каждую секунду будет производиться работа Fyvy , где vyкомпонента скорости электрона, направленная вдоль провода. Эту работу, совершаемую над электронами, мы назовем электрической. Оказывается, что когда петля движется в однородном поле, то полная электрическая работа равна нулю, потому что на одной части петли работа положительная, а на другой – равная ей отрицательная. Но при движении контура в неоднородном поле это не так – тогда остается какой-то чистый избыток одной работы над другой. Вообще-то эта работа стремится изменить поток электронов, но если он поддерживается неизменным, то энергия поглощается или высвобождается в батарейке или в другом источнике, сохраняющем ток постоянным. Вот именно эта энергия и не учитывалась, когда мы вычисляли Uмех в (15.9), потому что в наши расчеты входили только механические силы, действующие на провод.

Вы можете подумать: но сила, действующая на электроны, зависит от того, насколько быстро движется провод; быть может, если бы провод двигался достаточно медленно, этой электрической энергией можно было бы вообще пренебречь. Действительно, скорость, с какой высвобождается электрическая энергия, пропорциональна скорости провода, но все же полная выделенная энергия пропорциональна к тому же еще и времени, в течение которого проявлялась эта скорость. В итоге полная выделенная электрическая энергия пропорциональна произведению скорости на время, а это как раз и есть пройденное расстояние. Каждому пройденному в поле расстоянию отвечает заданное, и притом одно и то же, количество электрической работы.

Возьмем кусок провода единичной длины, по которому течет ток I. Провод движется перпендикулярно самому себе и магнитному полю В со скоростью v;провод. Благодаря наличию тока сами электроны обладают скоростью дрейфа vдрейфвдоль провода. Компонента магнитной силы, действующей на каждый электрон в направлении дрейфа, равна qe vпровод В. Значит, скорость, с какой производится электрическая работа, равна Fvдрейф = (qevпроводВ)vдрейф. Если на единице длины провода имеется N проводящих электронов, то вся величина электрической работы, производимой в секунду, такова:

Но Nqеvдрейф равно току I в проводе, так что

И поскольку ток поддерживается неизменным, то силы, действующие на электроны проводимости, не ускоряют их; электрическая энергия переходит не к электронам, а к тому источнику, который сохраняет силу тока постоянной.

Но заметьте, что сила, действующая на провод, равна IB; значит, IBvпровод – это механическая работа, выполняемая над проводом в единицу времени, dUмех/dt = IBvпровод. Отсюда мы заключаем, что механическая работа перемещения провода в точности равна электрической работе, производимой над источником тока, так что энергия петли остается постоянной!

Это не случайность. Это следствие закона, с которым мы уже знакомы. Полная сила, действующая на каждый из зарядов в проводе, равна

Скорость, с которой производится работа, равна

(15.12)

Если электрического поля нет, то остается только второе слагаемое, а оно всегда равно нулю. Позже мы увидим, что изменение магнитных полей создает электрические поля, так что наши рассуждения применимы лишь к проводам в постоянных магнитных полях.

Но тогда почему же принцип виртуальной работы дает правильный ответ? Потому, что пока мы не учитывали полную энергию Вселенной. Мы не включали в рассмотрение энергию тех токов, которые создают магнитное поле, с самого начала присутствующее в наших рассуждениях.

Но представим себе полную систему, наподобие изображенной на фиг. 15.3,а, где петля с током I вдвигается в магнитное поле B1 созданное током I2 в катушке. ТокI1, текущий по петле, тоже будет создавать какое-то магнитное поле В2 близ катушки. Если петля движется, то поле В2 изменяется. В следующей главе мы увидим, что изменяющееся магнитное поле создает поле Е, и это поле действительно начнет действовать на заряды в катушке. Эту энергию мы обязаны включить в наш сводный баланс энергий.

Мы, конечно, могли бы подождать говорить об этом новом вкладе в энергию до следующей главы, но уже сейчас можно оценить его, если применить соображения принципа относительности.

Фиг. 15.3. Вычисление энергии маленькой петли в магнитном поле.

Приближаем петлю к неподвижной катушке и знаем, что электрическая энергия петли в точности равна и противоположна по знаку произведенной механической работе. Иначе говоря,

Теперь предположим, что мы смотрим на происходящее с другой точки зрения: будем считать, что петля покоится, а катушка приближается к ней. Тогда катушка движется в поле, созданном петлей. Те же рассуждения приведут к выражению

Механическая энергия в обоих случаях одна и та же – она определяется только силой, действующей между двумя контурами.

Сложение двух уравнений дает

Полная энергия всей системы равна, конечно, сумме двух электрических энергий и взятой один раз механической энергии. В итоге выходит

Полная энергия всей системы – это на самом деле Uмех со знаком минус. Если нам нужна, скажем, полная энергия магнитного диполя, то следует писать

И только тогда, когда мы потребуем, чтобы все токи оставались постоянными, можно использовать лишь одну из частей энергии Uмех (всегда равную истинной анергии со знаком минус) для вычисления механических сил. В более общих задачах надо соблюдать осторожность, чтобы не забыть ни одной из энергий. Сходное положение наблюдалось и в электростатике. Мы показали там, что энергия конденсатора равна Q2/2C. Когда мы применяем принцип виртуальной работы, чтобы найти силу, действующую между обкладками конденсатора, то изменение энергии равно Q2/2, умноженному на изменение в 1/С, т. е.

(15.14)

А теперь предположим, что нам надо было бы подсчитать работу, затрачиваемую на сближение двух проводников, но при другом условии – что напряжение между ними остается постоянным. Тогда правильную величину силы мы могли бы получить из принципа виртуальной работы, если бы поступили немного искусственным образом. Раз Q = CV, то полная энергия равна 1/2 CV2. Но если бы мы ввели условную энергию, равную —1/2CV2, то принцип виртуальной работы можно было бы применить для получения сил, полагая изменение этой условной энергии равным механической работе (это при условии, что напряжение V

считается постоянным). Тогда

(15.15)

а это то же самое, что написано в уравнении (15.14). Мы получаем правильный ответ, хотя пренебрегаем работой, которую электрическая система тратит на постоянное поддержание напряжения. И здесь опять электрическая энергия ровно вдвое больше механической и имеет обратный знак.

Итак, если мы ведем расчет искусственно, пренебрегая тем фактом, что источник потенциала должен тратить работу на то, чтобы напряжение оставалось неизменным, то все равно мы приходим к правильному результату. Это в точности соответствует положению дел в магнитостатике.

§ 3. Энергия постоянных токов

Зная, что Uполн = -Uмех, используем этот факт, чтобы найти истинную энергию постоянных токов в магнитных полях. Начать можно с истинной энергии небольшой токовой петельки. Обозначая Uполнпросто через U, напишем

U = m·В.(15.16)

Хотя эту энергию мы подсчитали только для плоской прямоугольной петли, все это верно и для плоской петельки произвольной формы.

Энергию контура произвольной формы можно найти, представив себе, что он состоит из небольших токовых петель. Скажем, имеется провод в форме петли Г (фиг. 15.4). Натянем на эту петлю поверхность S, а на ней наметим множество петелек, каждую из которых можно считать плоской. Если заставить ток I циркулировать по каждой петельке, то в итоге выйдет то же самое, как если бы ток шел только по петле Г, ибо токи на всех внутренних линиях взаимно уничтожатся. Система небольших токов физически не будет отличима от исходного контура, и энергия должна быть той же, т. е. должна быть равна сумме энергий всех петелек.

Если площадь каждой петельки Dа, то ее энергия равна IDаBn, где Bn – компонента В, нормальная к Dа. Полная энергия равна U = SIBnDа.

Фиг. 15.4. Энергию большой петли в магнитном поле можно считать суммой энергий маленьких петелек.

В пределе, когда петли становятся бесконечно малыми, сумма превращается в интеграл, и

(15.17)

где n – единичная нормаль к da,

Если мы положим В = СXA, то поверхностный интеграл можно будет связать с контурным (по теореме Стокса):

(15.18)

где ds – линейный элемент вдоль Г. Итак, мы получили энергию контура произвольной формы:

(15.19)

В этом выражении А обозначает, конечно, векторный потенциал, возникающий из-за токов (отличных от тока / в проводе), которые создают поле В близ провода.

Далее, любое распределение постоянных токов можно считать состоящим из нитей, идущих вдоль тех линий, по которым течет ток. Для любой пары таких контуров энергия дается выражением (15.19), где интеграл взят вокруг одного из контуров, а векторный потенциал А создан другим контуром. Полная энергия получается сложением всех таких пар. Если вместо того, чтобы следить за парами, мы полностью просуммируем по всем нитям, то каждую энергию мы засчитаем дважды (такой же эффект мы наблюдали в электростатике), и полную энергию можно будет представить в виде

(15.20)

Это соответствует полученному для электростатической энергии выражению

(15.21)

Значит, мы можем считать А, если угодно, своего рода потенциальной энергией токов в магнитостатике. К сожалению, это представление не очень полезно, потому что оно годится только для статических полей. В действительности, если поля со временем меняются, ни выражение (15.20), ни выражение (15.21) не дают правильной величины энергии.

§ 4. B или А?

В этом параграфе нам хотелось бы обсудить такой вопрос: что такое векторный потенциал – просто полезное для расчетов приспособление (так в электродинамике полезен скалярный потенциал) или же он как поле вполне «реален»? Или же «реально» лишь магнитное поле, так как только оно ответственно за силу, действующую на движущуюся частицу?

Для начала нужно сказать, что выражение «реальное поле» реального смысла не имеет. Во-первых, вы вряд ли вообще полагаете, что магнитное поле хоть в какой-то степени «реально», потому что и сама идея поля – вещь довольно отвлеченная. Вы не можете протянуть руку и пощупать это магнитное поле. Кроме того, величина магнитного поля тоже не очень определенна; выбором подходящей подвижной системы координат можно, к примеру, добиться, чтобы магнитное поле в данной точке вообще пропало.

Под «реальным» полем мы понимаем здесь вот что: реальное поле – это математическая функция, которая используется нами, чтобы избежать представления о дальнодействии. Если в точке Р имеется заряженная частица, то на нее оказывают влияние другие заряды, расположенные на каком-то удалении от Р. Один прием, которым можно описать взаимодействие,– это говорить, что прочие заряды создают какие-то «условия» (какие – не имеет значения) в окрестности Р. Если мы знаем эти условия (мы их описываем, задавая электрическое и магнитное поля), то можем полностью определить поведение частицы, нимало не заботясь после о том, что именно создало эти условия.

Иными словами, если бы эти прочие заряды каким-то образом изменились, а условия в Р, описываемые электрическим и магнитным полем в точке Р, остались бы прежними, то движение заряда тоже не изменилось бы. «Реальное» поле тогда есть совокупность чисел, заданных так, что то, что происходит в некоторой точке, зависит только от чисел в этой точке и нам больше не нужно знать, что происходит в других местах. Именно с таких позиций мы и хотим выяснить, является ли векторный потенциал «реальным» полем.

Вас может удивить тот факт, что векторный потенциал определяется не единственным образом, что его можно изменить, добавив к нему градиент любого скаляра, а силы, действующие на частицы, не изменятся. Однако это не имеет ничего общего с вопросом реальности в том смысле, о котором мы говорили, К примеру, магнитное поле как-то меняется при изменении относительного движения (равно как и Е или А). Но нас нисколько не будет заботить, что поле можно изменять таким образом. Нам это безразлично; это никак не связано с вопросом о том, действительно ли векторный потенциал—«реальное» поле, пригодное для описания магнитных эффектов, или же это просто удобный математический прием.

Мы должны еще сделать кое-какие замечания о полезности векторного потенциала А. Мы видели, что им можно пользоваться в формальной процедуре расчета магнитных полей заданных токов, в точности как j может применяться для отыскания электрических полей. В электростатике мы видели, что j давалось скалярным интегралом

(15.22)

Из этого j мы получали три составляющих Е при помощи трех дифференцирований. Обычно это было легче, чем вычислять три интеграла в векторной формуле

(15.23)

Во-первых, их три, а во-вторых, каждый из них вообще-то немного посложнее, чем (15.22).

В магнитостатике преимущества не так ясны. Интеграл для А уже сам по себе векторный:

(15.24)

т. е. здесь написаны три интеграла. Кроме того, вычисляя ротор А для получения В, надо взять шесть производных и расставить их попарно. Сразу не ясно, проще ли это, чем прямое вычисление

(15.25)

В простых задачах векторным потенциалом часто бывает пользоваться труднее, и вот по какой причине. Предположим, нас интересует магнитное поле В в одной только точке, а задача обладает какой-то красивой симметрией. Скажем, нам нужно знать поле в точке на оси кольцевого тока. Вследствие симметрии интеграл в (15.25) легко возьмется и вы сразу получите В. Если бы, однако, мы начали с А, то пришлось бы вычислять В из производных А, а для этого надо было бы знать А во всех точках по соседству с той,которая нас интересует. Большая же часть их не лежит на оси симметрии, интеграл для А усложняется. В задаче с кольцом, например, пришлось бы иметь дело с эллиптическими интегралами. В подобных задачах А, разумеется, не приносит большой пользы. Во многих сложных задачах, бесспорно, легче работать с А, но в общем трудно было бы доказывать, что эти технические облегчения стоят того, чтобы начать изучать еще одно векторное поле.

Мы ввели А потому, что оно действительно имеет большое физическое значение. Оно не просто связано с энергиями токов (в чем мы убедились в последнем параграфе), оно – «реальное» физическое поле в том смысле, о котором мы говорили выше. В классической механике силу, действующую на частицу, очевидно, можно записать в виде

F = q(E+vXB), (15.26)

так что, как только заданы силы, движение оказывается полностью определенным. В любой области, где В = 0, хотя бы А и не было равно нулю (например, вне соленоида), влияние А ни в чем не сказывается. Поэтому долгое время считалось, что А – не «реальное» поле. Оказывается, однако, что в квантовой механике существуют явления, свидетельствующие о том, что поле А на самом деле вполне «реальное» поле, в том смысле, в каком мы определили это слово. В следующем параграфе мы покажем, что все это значит.

§ 5. Векторный потенциал и квантовая механика

Когда мы от классической механики переходим к квантовой, то наши представления о важности тех или иных понятий во многом меняются. (Кое-какие из этих понятий мы уже рассматривали раньше.) В частности, постепенно сходит на нет понятие силы, а понятия энергии и импульса приобретают первостепенную важность. Вместо движения частиц, как вы помните, речь теперь идет уже об амплитудах вероятностей, которые меняются в пространстве и времени. В эти амплитуды входят длины волн, связанные с импульсами, и частоты, связываемые с энергиями. Импульсы и энергии определяют собой фазы волновых функций и по этой-то причине они важны для квантовой механики.

Фиг. 15.5. Интерференционный опыт с электронами.

Вместо силы речь теперь идет о том, каким образом взаимодействие меняет длину волны. Представление о силе становится уже второстепенным, если вообще о нем еще стоит говорить. Даже когда, к примеру, упоминают о ядерных силах, то на самом деле, как правило, работают все же с энергиями взаимодействия двух нуклонов, а не с силой их взаимодействия. Никому не приходит в голову дифференцировать энергию, чтобы посмотреть, какова сила. В этом параграфе мы хотим рассказать, как возникают в квантовой механике векторный и скалярный потенциалы. Оказывается, что именно из-за того, что в квантовой механике главную роль играют импульс и энергия, самый прямой путь введения в квантовое описание электромагнитных эффектов – сделать это с помощью А и j.

Надо сперва слегка напомнить, как действует квантовая механика. Мы снова вернемся к описанному в вып. 3, гл. 37, воображаемому опыту, в котором электроны испытывали дифракцию на двух щелях. На фиг. 15.5 показано то же устройство. Электроны (все они обладают примерно одинаковой энергией) покидают источник и движутся к стенке с двумя узкими щелями. За стенкой находится «защитный» вал – поглотитель с подвижным детектором. Этот детектор предназначен для измерения частоты I, с которой электроны попадают в небольшой участок поглотителя на расстоянии х от оси симметрии. Частота эта пропорциональна вероятности того, что отдельный электрон, вылетевший из источника, достигнет этого участка «вала». Вероятность обладает распределением сложного вида (оно показано на рисунке), которое объясняется интерференцией двух амплитуд, по одной от каждой щели. Интерференция двух амплитуд зависит от их разности фаз. Иными словами, когда амплитуды равны С1еiф1и С2еiф2, разность фаз d=Ф12 определяет интерференционную картину [см. вып. 3, гл. 29, уравнение (29.12)]. Если расстояние от щелей до экрана равно L, а разность длин путей электронов, проходящих через две щели, равна а (как показано на фигуре), то разность фаз двух волн дается отношением

(15.27)

Как обычно, мы полагаем l= l/2p, где l – длина волны, отвечающая пространственному изменению амплитуды вероятности. Для простоты рассмотрим лишь те значения х, которые много меньше L; тогда можно будет принять

и

(15.28)

Когда х равно нулю, то и d равно нулю; волны находятся в фазе, а вероятность имеет максимум. Когда d равно п, волны оказываются в противофазе, интерферируя деструктивно, и вероятность достигает минимума. Так электронная интенсивность получает волнообразный вид.

Теперь мы хотим сформулировать тот закон, которым в квантовой механике заменяется закон силы F=qvXВ. Этот закон будет определять собой поведение квантовомеханических частиц в электромагнитном поле. Раз все происходящее определяется амплитудами, то закон должен будет объяснить, как сказывается на амплитудах влияние магнитного поля; с ускорениями же частиц мы больше никакого дела иметь не будем. Закон этот состоит в следующем: фазу, с какой амплитуда достигает детектора, двигаясь по какой-то траектории, присутствие магнитного поля меняет на величину, равную интегралу от векторного потенциала вдоль этой траектории, умноженному на отношение заряда частицы к постоянной Планка. То есть

Если бы магнитного поля не было, то наблюдалась бы какая-то определенная фаза прибытия. Если же где-то появляется магнитное поле, то фаза прибытия возрастает на величину интеграла в (15.29).

Хотя для наших теперешних рассуждений в этом нет необходимости, заметим все же, что влияние электростатического поля тоже выражается в изменении фазы, равном интегралу по времени от скалярного потенциала j со знаком минус:

Эти два выражения справедливы лишь для статических полей, но, объединив их, мы получим правильный результат для любого, статического или динамического, электромагнитного поля. Именно этот закон и заменяет собой формулу F= q(E+vXВ). Мы сейчас, однако, будем говорить только о статическом магнитном поле.

Положим, что опыт с двумя щелями проводится в магнитном поле. Мы хотим узнать, с какой фазой достигают экрана две волны, пути которых пролегают через две разные щели. Их интерференция определяет то место, где окажется максимум вероятности. Фазу волны, бегущей по траектории (1), мы назовем Ф1; а через Ф1 = 0) обозначим фазу, когда магнитного поля нет. Тогда после включения поля фаза достигает величины

(15.30)

Аналогично, фаза для траектории (2) равна

(15.31)

Интерференция волн в детекторе зависит от разности фаз

Разность фаз в отсутствие поля мы обозначим d = 0); это та самая разность, которую мы подсчитали в уравнении (15.28). Кроме того, мы замечаем, что из двух интегралов можно сделать один, идущий вперед по пути (1), а назад – по пути (2); этот замкнутый путь будет обозначаться (1—2). Так что получается

(15.33)

Это уравнение сообщает нам, как под действием магнитного поля изменяется движение электрона; с его помощью мы можем найти новые положения максимумов и минимумов интенсивности.

Прежде чем сделать это, мы хотим, однако, поставить один интересный и важный вопрос. Вы помните, что в вектор-потенциальной функции есть некоторый произвол. Две разные вектор-потенциальные функции А и А', отличающиеся на градиент Сy некоторой скалярной функции, представляют одно и то же магнитное поле (потому что ротор градиента равен нулю). Они поэтому приводят к одной и той же классической силе qvXВ. Если в квантовой механике все эффекты зависят от векторного потенциала, то какая из многих возможных А-функций правильна?

Ответ состоит в том, что в квантовой механике продолжает существовать тот же произвол в А. Если в уравнении (15.33) мы заменим А на А' = А+Сy, то интеграл от А превратится в

Интеграл от Сy вычисляется по замкнутому пути (1—2); но интеграл от касательной составляющей градиента по замкнутому пути всегда равен нулю (по теореме Стокса). Поэтому как А, так и А' приводят к одним и тем же разностям фаз и к одним и тем же квантовомеханическим эффектам интерференции. И в классической, и в квантовой теории важен только ротор 4; любая функция А, у которой ротор такой, как надо, приводит к правильной теории.

Тот же вывод становится очевидным, если мы используем результаты, приведенные в гл. 14, § 1. Там мы показали, что контурный интеграл от А по замкнутому пути равен потоку В через контур, в данном случае потоку между путями (1) и (2). Уравнение (15.33) можно, если мы хотим, записать в виде

где под потоком В, как обычно, подразумевается поверхностный интеграл от нормальной составляющей В. Результат зависит только от В, т. е. только от ротора А.

Но раз результат можно выражать и через В и через А, то может создаться впечатление, что В удерживает свои позиции «реального» поля, а А все еще выглядит искусственным образованием. Но определение «реального» поля, которое мы вначале предложили, основывалось на идее о том, что «реальное» поле не смогло бы действовать на частицу на расстоянии. Мы же беремся привести пример, в котором В равно нулю (или по крайней мере сколь угодно малому числу) в любом месте, где частицы могут оказаться, так что невозможно представить себе, что В непосредственно действует на них.

Вы помните, что если имеется длинный соленоид, по которому течет электрический ток, то поле В существует внутри него, а снаружи поля нет, тогда как множество векторов А циркулирует снаружи соленоида (фиг. 15.6). Если мы создадим такие условия, что электроны будут проходить только вне соленоида (только там, где есть А), то, согласно уравнению (15.33),


    Ваша оценка произведения:

Популярные книги за неделю