355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рафаил Нудельман » Неизвестное наше тело » Текст книги (страница 11)
Неизвестное наше тело
  • Текст добавлен: 7 октября 2016, 15:03

Текст книги "Неизвестное наше тело"


Автор книги: Рафаил Нудельман


Жанры:

   

Медицина

,

сообщить о нарушении

Текущая страница: 11 (всего у книги 15 страниц)

Прионы внутри нас

Вот загадка: есть нечто – неживое, но способное размножаться, видоизменяться и приобретать сопротивляемость…

Это прионы. Профессор Вейсман из Института Скриппса во Флориде обнаружил у прионов такие эволюционные свойства, как способность адаптации к новым условиям и быстрое появление новых, резистентных форм в среде, содержащей те или иные ингибиторы. «Эти свойства, – говорит Вейсман, – сближают прионы со всеми обычными биологическими видами живых существ, позволяя назвать их „псевдовидом“».

Почему «псевдо»? Потому что прионы – не живые существа, не микроорганизмы и даже не вирусы. Прионы – это просто особый класс белковых молекул. Но особость их состоит в том, что они способны воспроизводить себе подобных, хотя не содержат никаких генов. Более того – размножившиеся прионы имеют тенденцию склеиваться или срастаться в разного рода большие колонии – микросети, микропленки, длинные цепи и т. п. В некоторых условиях такие колонии могут быть даже полезны организмам. Например, прионы некоторых бактерий, склеиваясь, образуют пленку, которая помогает колониям этих бактерий удерживаться на разных поверхностях. А уже упоминавшийся выше нейробиолог Эрик Кандель открыл, что сгустки прионов одного морского моллюска играют важную роль в образовании долговременной памяти – они помечают синапсы, помогая им связаться в единую цепь, хранящую некое воспоминание.

Однако у склеивания прионов есть оборотная сторона, и ее вред превышает любую их пользу. Как известно на нынешний день, клубки прионов, образующиеся в клетках мозга, вызывают около двадцати различных нейродегенеративных болезней, почти всегда неизлечимых и смертельных. Самые известные среди них – это нашумевшее в свое время коровье бешенство, овечья почесуха и болезнь Кройцфельда – Якоби у человека. А исторически первым исследованным прионным заболеванием была болезнь куру, некогда хронически распространенная среди людей племени форе на Новой Гвинее, а в 1950-е годы даже вызвавшая эпидемию. В свое время она считалась одной из величайших медицинских загадок. Непонятно было, почему куру, распространяясь как инфекция, не вызывает тех признаков, которые обычно сопровождают инфекцию. Она, в частности, не вызывала никакой ответной реакции защитных систем организма. Загадочным был и ее диморфизм: она поражала женщин и детей в восемь-девять раз чаще, чем мужчин. Решение загадки предложил Даниэль Гайдушек (в 1976 году получивший за это Нобелевскую премию). Он показал, что пересадка обезьянам клеток мозга умерших от куру людей вызывает у них аналогичное заболевание, а затем выдвинул гипотезу, что болезнь людей форе передается из поколения в поколение в ходе присущих этим людям каннибалистических ритуалов (поедания мяса умерших родичей); при этом женщинам и детям много чаще мужчин достаются объедки, в том числе мозги покойников, зачастую зараженные переносчиком болезни. И действительно, отказ племени от этих ритуалов вскоре свел эпидемию на нет.

Гайдушек не сумел опознать возбудителя болезни, и только в 1982 году Стенли Прузинер из Калифорнийского университета, проведя тщательное исследование клеток больных овец, предположил, что таким переносчиком является особый белок, который он назвал «прионом» (от слов «протеин» и «инфекция»). Его гипотеза вызвала яростное сопротивление и длительную дискуссию в научной прессе, но в последующие десять лет Прузинер вместе с Вейсманом и другими сотрудниками сумели ее убедительно доказать, выделив загадочный белок, и в 1997 году Прузинер был удостоен за это открытие Нобелевской премии. Справедливость требует отметить, что предположение о белковой природе возбудителя некоторых нейродегенеративных болезней первой выдвинула еще в 1967 году Тиква Альпер, открывшая, что этот возбудитель не разрушается УФ-лучами, которые всегда разрушают ДНК; но тогда эта мысль показалась совсем уж еретической, поскольку противоречила основной догме, утверждавшей, что информация передается только от ДНК к белку, но не от белка к белку и т. п.

Сегодня уже известно, что предшественники прионов, или, как их называют, «нормальные прионы» (они именуются PrPC), – это вполне нормальные белки в мембранах клеток многих видов живых существ, включая человека; известны все 400 с лишним аминокислот, составляющие эти белки (они несколько различаются у разных видов животных); известна и их пространственная структура (они в основном свернуты в так называемые альфа-спирали). Установлено, что в результате каких-то «сбоев» в процессе деления клетки молекулы этих белков способны претерпевать изменение структуры – из «в основном спиральных» они становятся «в основном листовыми» (то есть складываются в виде так называемых бета-листов). В этом состоянии (его наименование «PrPSc») они становятся весьма инфекционными (и называются просто «прионами»).

Как только такая испорченная молекула попадает в мозг, происходит следующее: встречаясь с нормальным прионом, она немедленно изменяет структуру этого белка, превращая его в свое подобие; затем эти две испорченные молекулы изменяют структуры следующих встреченных ими нормальных прионов; и в результате этот процесс «заражения» (то есть изменения структуры) расширяется сначала по всей клетке, а потом и по другим клеткам мозга. При этом «испорченные» молекулы имеют тенденцию склеиваться в цепь, свободный конец которой работает как квазифермент: он понуждает все приближающиеся к нему нормальные молекулы прионов тут же превращаться в испорченные и приклеиваться к нему; тем самым цепь непрерывно удлиняется. Такие цепи рождаются из каждого испорченного приона, так что невольно вспоминается выражение: «Паршивая овца все стадо портит» – тем более справедливое здесь потому, что первыми, у кого этот процесс был изучен, стали именно овцы.

На последнем этапе этого процесса цепи, состоящие из испорченных прионовых молекул, спонтанно скручиваются в амилоидные бляшки, которые покрывают целые участки мозга. С этого момента развитие нейродегенеративной болезни идет очень быстро. Испорченные прионы не поддаются ни воздействию протеаз (молекул, разрушающих другие испорченные белки), ни обработке теплом или излучением. Они также резистентны к химическим веществам, которые пытались применять для их разрушения (смотри описанные в начале результаты Вейсмана). Поэтому остановить или замедлить развитие болезни нельзя. В тех участках мозга, которые покрыты такими амилоидными бляшками, постепенно образуются многочисленные вакуоли, из-за чего эти участки приобретают характерную губчатую структуру и теряют способность функционировать. Наступает смерть.

Тем не менее исследователи не теряют надежды и продолжают поиски. Но в последнее время в ходе этих поисков произошло существенное изменение. Оно не приближает пока к победе над прионными болезнями, но весьма расширяет фронт исследований, обещая – в случае успеха – куда больше, чем только излечение болезни Кройцфельда – Якоби или предотвращение новых вспышек коровьего бешенства. В последние годы многие ученые стали подозревать, что тот процесс, который лежит в основе прионных болезней, имеет куда более широкую распространенность и повинен также в целом ряде других человеческих нейродегенеративных заболеваний, в том числе таких важнейших, как болезни Альцгеймера, Паркинсона, Хантингтона и некоторые иные.

Эту мысль высказывали уже давно, но окончательное свое оформление она получила в недавней статье двух ведущих специалистов по молекулярной биологии нейродегенеративных заболеваний – американского нейробиолога Лари Уокера и немецкого ученого Матиаса Юкера. Их статья, озаглавленная «Самораспространение патогенных белковых агрегатов в нейродегенеративных заболеваниях», опубликованная в августе 2013 года, начиналась со слов: «Вот уже много лет ученые предполагали, что ключ к пониманию старческих нейродегенеративных заболеваний может быть найден в необычной биологии прионных болезней. В последнее время эта гипотеза получила сильную экспериментальную поддержку. В примечательно широком спектре болезней, от болезни Альцгеймера и до бокового амиотрофического склероза, были обнаружены специфические белки, способные неправильно скручиваться, порождая агрегаты, которые становятся зародышами такого же структурного изменения, неправильного свертывания и агрегирования других таких же белков. Эти зародыши, таким образом, становятся самораспространяющимися переносчиками болезни, наподобие прионов. Их отличие от прионов состоит лишь в том, что они не имеют инфекционного характера, то есть не могут быть переданы другому человеку, вызывая у него такую же болезнь».

О какой «экспериментальной поддержке» говорят авторы? Еще в мае 2009 года группа американских ученых показала, что нейрофибриллярные клубки тау-белка, будучи внесены в здоровые клетки мыши, побуждают нормальные молекулы «тау» к такой же структурной перестройке. В июле того же года европейские исследователи ввели такие клубки в мозг живой мыши и обнаружили, что это вызвало массовое изменение нормальных тау-белков и их агрегацию в месте инъекции. А в начале 2012 года, как мы уже знаем, Дафф и Смол обнаружили «прионоподобный» характер распространения таких тау-клубков по всему мышиному мозгу.

Аналогичный результат был получен также для белка альфа-синуклеин, который составляет главную часть клубков, обнаруживаемых (при посмертном вскрытии) в мозгу людей, страдавших болезнью Паркинсона и некоторыми видами слабоумия. В августе 2009 года группа американских и южнокорейских исследователей показала, что агрегаты альфа-синуклеина, введенные в культуру здоровых мышиных нейронов, распространяются там из нейрона в нейрон, вызывая повсюду образование других таких же агрегатов. А в декабре 2012 года нейробиолог Вирджиния Ли из Филадельфии обнаружила, что такой же процесс имеет место в мозгу живых мышей, которым был введен искусственно созданный «неправильный» альфа-синуклеин.

Несколько раньше, в феврале 2009 года, сходные результаты были найдены для белка хантингтин, который считается главным виновником болезни Хантингтона, – этот белок обнаружил способность проникать из межклеточной жидкости внутрь клеток культуры и вызывать там агрегирование. И уже есть данные о прионоподобном поведении белка SOD1, в котором подозревают главного виновника амиотрофического латерального склероза, или болезни Лу Герига, которая стала печально знаменитой из-за пораженного и обездвиженного ею крупнейшего астрофизика современности Стивена Хокинга.

Список прионоподобных белков неумолимо расширяется, и общий их итог как раз и зафиксирован в статье Уокера и Юкера. Почему, однако, этот итог можно считать важным достижением, как полагает большинство специалистов? Ведь, казалось бы, заблокировать прионные механизмы невозможно. Какой же тогда прок от всех этих новых исследований? Исследователи, однако, видят свет в конце туннеля. Чем больше наше знание о процессе перехода прионоподобных белков из клетки в клетку, тем реальней становится возможность прервать этот процесс, атакуя испорченные белки на промежуточном этапе, во время их межклеточного существования. В конце концов это знание должно позволить ученым найти такие вещества, которые смогут соединяться с испорченными молекулами и тем самым прервать процесс их проникновения во все новые и новые клетки. И точно так же более глубокое понимание механизма неправильного скручивания прионоподобных белков рано или поздно может дать ученым возможность найти или создать такие химические молекулы, которые смогут соединяться с нормальными прионами или прионоподобными белками и пресекать их превращение в испорченные.

Иными словами: хотя и в данном случае многие знания умножают печали, но только эти многие знания, и только они, могут открыть также и обнадеживающие перспективы.

И в заключении – об ожирении

Ожирение – это некрасиво. Ожирение – это нездорово. Наконец, оно просто опасно. Это, конечно, не инфаркт, но, как считают специалисты, ожирение увеличивает риск инфаркта, а также таких серьезнейших заболеваний, как диабет второго типа, некоторые формы рака и остеоартрит. Это также, по мнению специалистов, одна из главных причин преждевременной смерти. Зачем нам умирать прежде времени? Зачем нам вообще все это нужно? Давайте бороться с нашим лишним жиром! Тем более что те же специалисты уже говорят об «эпидемии ожирения». Человечество жиреет и прежде времени загоняет себя в гроб. А впереди еще столько недоделанных, интересных дел! Нет, решительно, давайте бороться.

Легко сказать, а как сделать? В чем, собственно, состоит причина ожирения? Что говорит по этом поводу наука? Наука в лице справочников называет три главные причины: излишние калории, недостаточная физическая активность и генетическая предрасположенность. Есть по меньшей мере еще десять. Но нам хватит и первых трех. С генами ничего не поделаешь, с лишними калориями бороться трудно (смотри об этом главу «Суета вокруг диеты»), а вот что означает физическая активность, почему она сгоняет жир? Знающие люди (среди ваших знакомых тоже есть наверняка такие) скажут вам, что энергичная зарядка сжигает жир. Что значит «сжигает»? – робко поинтересуетесь вы. Тут знающий знакомый просто руки разведет в отчаянии: какой же вы непонятливый. А если вы очень уж настойчиво поинтересуетесь, он вас пошлет – все к тем же специалистам. И те скажут следующее.

Жиры (и растительные, и животные) – это в основном триглицериды (ТГ). А триглицериды – это один из основных источников энергии в организме. По энергетической «емкости» они даже превосходят глюкозу: один грамм ТГ содержит примерно восемь килокалорий, тогда как один грамм глюкозы – всего четыре. При этом ТГ содержатся в организме в безводном состоянии, а углеводы – в соединении с водой. Вот почему у каждого из нас имеется порядка 30 миллиардов специальных клеток для хранения жира (это в основном белые жировые клетки; а есть еще и коричневые). С жирами, однако, у организма возня – они не усваиваются кишечником, организму приходится расщеплять их с помощью ферментов поджелудочной железы. Такое расщепление возможно только после превращения ТГ в эмульсию, что делает желчь (поэтому люди с удаленным желчным пузырем испытывают трудности в усвоении жиров). Расщепление превращает ТГ в свободные жирные кислоты, которые проходят через кишечный барьер и за ним снова воссоединяются в ТГ; молекулы ТГ пакуются в особые пузырьки-липосомы и поступают в кровь. Ура, они уже наши!

Кровь разносит липосомы повсюду, но собираются они главным образом в клетках печени, мышц и в уже упомянутых жировых клетках. Куда расходуется жир? Ответ – идет на производство АТФ. Мы уже знакомы с этими «биологическими батарейками», которые образуются в клетках за счет сложного процесса окисления глюкозы. Триглицериды тоже участвуют в этом процессе. В результате энергия, которая была исходно сосредоточена внутри молекул триглицеридов, переходит внутрь этих «живых конденсаторов», готовых в любую секунду и в любом месте отдать ее на благородное дело обогрева нашего организма или выполнения им какой угодно другой работы. (А также на работу того конвейера, на котором за счет поступающих жиров, белков и углеводов вырабатываются новые АТФ на смену уже израсходованным.) Это означает, что мы вводим в себя пищу для того, чтобы заряжать свои АТФ, которые являются главным мотором наших мышц и дают нам возможность двигаться, а также думать, чувствовать (и, конечно, вводить в себя пищу).

Теперь вы понимаете, почему энергичная зарядка должна «сжигать жир»? Ту энергию, которую мы затрачиваем, сильно размахивая руками и ногами, дают нам молекулы АТФ, которые в конечном счете получают ее (частично) за счет окисления (то есть сжигания) жирных кислот. Однако организм получает энергию не только от жирных кислот и не только за счет окисления углеводов, прежде всего глюкозы, – еще какую-то часть он получает от окисления аминокислот, получаемых в пище с белками. И кстати, все эти три комплекса реакций окисления связаны друг с другом, образуя общий механизм преобразования энергии, поступающей с пищей, в энергетические запасы организма. Механизм этот до того важен, что природа, отладив его миллиарды лет назад, еще на уровне бактерий, снабдила им все без исключения живые существа.

Что же касается глюкозы, то она легко усваивается, преобразуется и выделяет энергию (недаром сладкое подбадривает быстрее всего). Но вот запасать ее невыгодно: она вбирает слишком много воды, а излишки глюкозы превращаются в конечном счете в жиры. И вот что интересно: в организме имеется некий фермент АСС2, который решает, какое топливо в данный момент сжигать – жиры или углеводы. И что еще интересней – оказалось, что существуют способы так воздействовать на этот фермент (проще всего – заблокировать), что организм будет сжигать только жиры. И вот, как только этот факт был установлен, многие тут же вспомнили про эпидемию ожирения, и в их воображении родилась розовая мечта – что, если создать такую пилюлю, которая искусственно блокировала бы этот фермент, заставляя организм сжигать жир и только жир? Не глюкозу, сколько бы ее ни было, а только жир. Сжигать его и только его, причем непрерывно, ежеминутно и в массовом масштабе, как говаривал товарищ Ленин, правда по совсем иному поводу. И когда мы доберемся таким образом до наших лишних жировых запасов и начнем сжигать их, тогда мы начнем худеть, худеть и худеть без всякой зарядки!

Большие фармацевтические фирмы побоялись так решительно вмешиваться в сложнейший метаболизм нашего драгоценного тела. Но соблазн был так велик, что малые фирмы стали выбрасывать на рынок – тоже непрерывно, ежедневно и в массовом масштабе – всякого рода «пищевые добавки», как они их называли, «для ускоренного окисления жирных кислот». Разумеется, кроме «добавок», которые якобы блокировали АСС2, появились всякого рода иные стимуляторы такого «ускоренного окисления», обещавшие привести к быстрой и окончательной победе над ожирением (не упоминая, впрочем, о побочных эффектах). И вскоре сотни миллионов мечтающих сбросить вес, не занимаясь физзарядкой, понесли свои сотни миллионов в карманы производителей всех этих магических пилюль.

И что – сбылась мечта идиота? Сработал такой «санаторный» способ «сбрасывания веса»? Ученые из Сиднея под руководством профессора Куни вывели породу генетически модифицированных мышей, в организме которых указанный фермент был заблокирован постоянно. И проверили, грубо говоря, худеют ли такие мыши быстрее, чем немодифицированные – при одной и той же диете и физической нагрузке. И убедились, что никакой разницы нет. И выяснили далее, почему нет. Потому что, как оказалось, на бездействие фермента организм отвечает тем, что ускоренно превращает все потребляемые нами (взамен жиров) углеводы в те же жиры, непрерывно, ежеминутно и в массовом масштабе пополняя ими те самые «лишние жировые запасы», которые мы так хитро задумали истребить под корень.

Впрочем, профессор Куни в сообщении о своих опытах немного подсластил пилюлю (ту самую, которую забраковал), сказав: «Хотелось бы подчеркнуть, что наше исследование концентрировалось исключительно на влиянии окисления, жиров на общее ожирение. Мы не изучали другие возможные последствия такого ускоренного окисления и поэтому я не исключаю, что сжигание жиров может принести какую-то пользу отдельным тканям и органам. Например, такое манипулирование метаболизмом жиров может, в принципе, улучшить воздействие инсулина на мышцы или в печени, и тогда оно будет несомненно полезным противодействием ожирению в результате диабета второго типа. Однако все такие вопросы требуют дальнейшего изучения».

А что же нам, беднягам, делать, пока они будут изучать? Скажу осторожно: по возможности избегать всяких модных псевдодиетических крайностей. Не пытаться перехитрить природу. Она миллиарды лет терпеливо отлаживала баланс своих биохимических реакций, и поэтому не стоит соваться в достигнутое ею тончайшее равновесие, чтобы не оказаться слоном в посудной лавке. Нужно аккуратно питаться и, увы, – делать больше физических упражнений. Больше, больше, больше!

4. Свет в конце туннеля

Путешествия лекарств

Вот вам задача примерно того же рода, что требование разрубить саблей пуховую подушку, попасть из пушки по воробьям или укусить самого себя за локоть. Представим, что ученые придумали очередное замечательное лекарство. Но как его, это лекарство, доставить на место? Как донести до нужного органа или ткани, преодолев химические, физические и все прочие биологические преграды на пути?

Казалось бы, самый элементарный способ введения лекарств – через рот или пищевой тракт. Но это только так кажется. Да, нам легко проглотить таблетку. Проглотил – и всё. А для самой таблетки самое главное с этого только начинается. Проглоченное химическое вещество на своем пути к назначенной цели должно преодолеть множество препятствий. Оно должно выжить в путешествии через желудок и невредимым достичь кишечника, а затем проникнуть сквозь кишечные стенки в кровоток. Попав в кровь, оно должно потом профильтроваться через печень, и лишь после этого ему откроется путь в другие части тела. По дороге нашему лекарству нужно устоять перед кислотами пищеварительных соков, перепрыгнуть через мембранные барьеры или отразить ферменты-протеазы, призванные раздробить его на бесполезные обломки.

Производители лекарств предлагают разные решения, однако, как правило, они годятся только для частных случаев. Например, можно покрыть таблетку оболочкой, которая не растворяется в желудочном соке, но легко растворяется, попав в щелочную среду тонкого кишечника. Вроде бы прекрасная идея. Но если лекарство состоит из белка, как большинство тех лекарств, которые используются в биотехнологии, оболочка не спасет его от активности протеаз – ферментов, разрушающих белки.

Введение лекарственного вещества прямо в кровь позволяет избежать препятствий и опасностей, содержащихся в желудке и кишечнике, но, увы, многие пациенты, по вполне понятным соображениям, неохотно соглашаются на слишком частые уколы или ежедневные визиты в амбулаторию. Поэтому естественно, что ученые настойчиво ищут новые пути доставки лекарств в организм. Одно из новшеств – препарат «Натропин депо». Он представляет собой полимерные микросферы, внутри которых содержатся молекулы человеческого гормона роста. Эти микросферы достаточно вводить всего один раз в месяц, но действовать они будут в организме постоянно, неуклонно выделяя содержащийся в них гормон. Другой препарат, «Глиадель», представляет собой облатку, которую можно имплантировать непосредственно в мозг, где она будет выделять необходимые для химиотерапии вещества прямо в мозговую опухоль.

Наряду с изучением чуть не каждой части тела – кожи, носа, легких, кишечника – в качестве возможного входа для лекарственных препаратов ученые ищут также нетрадиционные способы введения лекарственных молекул – например, с помощью ультразвука или микрочипов, которые доставляли бы их точно в нужное место и время. Новые технологии используются также для решения старой проблемы беспрепятственного проникновения лекарства сквозь стенки кишечника. Так, изобретен способ завлечь белки в очень маленькие капли клейкого биологического вещества, способного проходить между клетками внутренней оболочки кишечника. Роль такого вещества хорошо выполняют гидрофобные (водоотталкивающие) полимеры полиангидриды. Эта технология сейчас испытывается для создания нового типа таблеток инсулина, которые можно будет принимать перорально. Важность такого способа доставки в организм инсулина легко понять, если вспомнить, что при диабете инсулин необходим постоянно. Испытания нового метода на животных уже показали многообещающие результаты.

Неожиданно для самих исследователей оказалось, что капли, образованные определенными биоадгезивными полимерами и обволакивающие лекарственные белки, могут, вдобавок к другим своим полезным свойствам, также менять размеры в зависимости от уровня кислотности окружающей среды. В кислотной среде такой полимерный шарик раздувается, а в щелочной – сжимается. Это позволяет капле выдавливать из себя в нужный момент лекарственное вещество. Полимерные капли способны также защитить белки от протеаз в верхней части тонкого кишечника.

Недавно разработан и другой остроумный способ транспортировки белковых лекарств сквозь слизистую оболочку кишечника. Он состоит в упаковке белка в упругие «носители», которые сжимают белковые молекулы до очень небольших размеров, позволяя им быстрее проникнуть сквозь клеточные мембраны. Выполнив свою работу по внесению лекарства, упругий носитель отделяется от него и тем самым дает возможность белку вернуться в свою прежнюю, активную форму. Сейчас исследователи проверяют возможность использования применения этой методики для введения инсулина, а также кроверазжижающего белка гепарина, необходимого при операциях, которые могут сопровождаться возникновением тромбов.

Еще один новейший метод, который находится в стадии активной разработки, заключается в присоединении лекарственных белков к молекулам, которые направлены на специальные рецепторы в желудочно-кишечном тракте. Эти молекулы-«носители» помогают белковым лекарствам преодолеть кислотный барьер и влиться в кровоток.

Очень соблазнителен также путь введения лекарств в организм через кожу, позволяющий избежать проблем, возникающих при их введении через рот. Однако жесткий наружный кожный слой, эпидермис, препятствует лекарственным молекулам пройти к кровеносным сосудам, расположенным внутри кожи. Тем не менее некоторые лекарства обладают такими физическими и химическими характеристиками, которые позволяют преодолевать кожный барьер в достаточных количествах. И вот теперь разработаны и уже поступили в широкую продажу специальные пластыри, пропитанные такими лекарствами. Такой пластырь приклеивается к коже и постепенно вводит в организм содержащееся в нем лекарство – например, никотин, помогающий людям бросить курить, или женские гормоны для облегчения симптомов менопаузы.

Чтобы сделать эпидермис проходимым и для других лекарственных веществ, включая белковые, в последнее время стали применять ионофорез – безболезненные электрические импульсы, которые «проводят» заряженные молекулы лекарства сквозь наружный слой кожи прямо в кожные кровеносные сосуды. Кроме того, как обнаружил израильский ученый Иосеф Кост, проделать в наружном кожном покрове крошечные канальчики, через которые лекарство может диффундировать внутрь, способны ультразвуковые волны. Таким образом в несколько тысяч раз повышается проводимость кожи для ряда белковых лекарств, включая инсулин.

Еще одни важные ворота в наше тело представляют собой легкие. Через них можно вводить лекарства как для лечения самих легких, так и для другие целей, требующих быстрого включения препарата в кровоток. Легкие состоят из микроскопических мешочков, альвеол, непосредственно связанных с кровеносными сосудами. Подобно тому как в процессе дыхания через альвеолы поступает в кровеносные сосуды кислород, так могут проникать в кровь и более крупные молекулы лекарственных веществ, в том числе и белковых. Проблема заключается в том, как увеличить при этом долю лекарства, попадающую по назначению.

Ум человеческий неугомонен и потому не ограничивается поиском возможностей введения лекарств извне. Сейчас исследователи разрабатывают также способы саморегулируемой доставки лекарственных веществ изнутри организма, причем в нужное место и в нужное время. Это не научная фантастика. Такие «разумные» системы подачи лекарств уже существуют, во всяком случае частично. Они умеют принимать химические сигналы извне и высвобождать лекарство в ответ на такие сигналы, непрерывно поддерживая его концентрацию в организме на нужном терапевтическом уровне. Задачу эту решают «микрочипы» (вроде тех, на которых работают все электронные приборы), содержащие несколько резервуарчиков, которые заполняются лекарством и покрываются шапочками из тонкой золотой фольги. Такой микрочип внедряется в нужное место организма, и в нужное время на него подается электрический сигнал, который растворяет одно или более золотых покрытий и высвобождает лекарство. Микрочип может быть имплантирован под кожу или в спинной или головной мозг для доставки любых лекарств, начиная от обезболивающих и до химиотерапевтических против опухоли. Опыты на животных показывают, что лекарства, подаваемые таким образом, не вызывают побочных эффектов. Системы, основанные на имплантированных чипах, могут содержать точное расписание потребности данного пациента в лекарстве или датчики, которые сами измеряют уровень лекарства в организме и в ответ на полученный результат высвобождают соответствующую новую дозу.

Что же касается самого нового раздела медицины – генной терапии, то и тут проблема доставки занимает центральное место. Сегодня, после расшифровки человеческого генома, становится вполне возможным изготовить искусственные копии подлежащего исправлению гена. После этого остается «только» ввести эти копии в клетки больного организма. Но это «только» оказывается серьезной проблемой. Чтобы доставить копии гена в нужные клетки, необходимо прицепить их к подходящим носителям, так называемым «векторам». Долгое время ученые использовали в качестве таких «векторов» специальным образом обезвреженные вирусы, но оказалось, что, несмотря на всю «обезвреженность», они сохраняют определенную опасность. Поэтому сейчас, параллельно с усилиями уменьшить риск вирусного «вектора», разрабатываются другие способы доставки генов, основанные на полимерах или жирных молекулах-липидах.

Американским ученым уже удалось ввести в организм кролика специфический ген, от которого зависит рост кровеносных сосудов, «обернув» его в полимер и липопротеин. Не за горами, надо полагать, и вовлечение в эксперименты такого рода людей, страдающих ишемическими заболеваниями сердца. Есть надежда, что введение этого гена стимулирует рост обходных кровеносных сосудов, которые будут доставлять кислород и питание обескровленным участкам сердечной мышцы.


    Ваша оценка произведения:

Популярные книги за неделю