355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Поль Лаберенн » Происхождение миров » Текст книги (страница 11)
Происхождение миров
  • Текст добавлен: 26 сентября 2016, 18:01

Текст книги "Происхождение миров"


Автор книги: Поль Лаберенн



сообщить о нарушении

Текущая страница: 11 (всего у книги 17 страниц)

II. Противоречия и научные ошибки

В том факте, что папа пытается найти в некоторых научных теориях аргументы в пользу существования бога-творца, нет, по существу, ничего удивительного. Однако с первого взгляда может показаться поразительным, что роль проповедников веры взяли на себя многие крупные астрономы, которые, по-видимому, находят иногда в этом даже удовольствие. И это происходит в то время, как теоретические основы этого наступления креационистов заключаются лишь в поспешных и неоправданных обобщениях и в утверждениях столь же субъективных, как и противоречивых! Мы видим, как крупные ученые внезапно оставляют строгие вычисления и смелые, но несомненно научные гипотезы и начинают хладнокровно высказывать мысли, не имеющие никакого отношения к науке. Все происходит так, как будто они внезапно потеряли способность к научному мышлению до такой степени что их некоторые наиболее резкие и экстравагантные утверждения выглядят почти как результат умственного расстройства.

Однако не будем думать о внезапной умственной болезни. Факты, которые мы описываем, свидетельствуют прежде всего о растущем влиянии на ученых идеологии господствующего в капиталистическом обществе класса. Не следует попросту отмахиваться от этих фактов. Детальный анализ «доводов» Джинса, Вероннэ и других креационистов не только позволит обнаружить в них отсутствие серьезности, но может нам также указать путь правильного научного решения, от которого эти господа решительно отворачиваются.

Противоречие Джинса

Для того чтобы креационистская гипотеза Джинса имела правдоподобный вид, следует сначала сделать допущение, будто все спиральные туманности имеют одинаковый возраст. Но именно благодаря тому, что они находятся на весьма различных стадиях своей эволюции, мы смогли воссоздать ход этой эволюции. Удаленность туманностей никоим образом не может объяснить различие их вида, так как среди наиболее удаленных туманностей, т. е. тех, которые находятся от нас на расстоянии многих сотен миллионов световых лет и которые мы видим, следовательно, в том состоянии, в каком они были многие сотни миллионов лет назад, обнаруживаются такие же различные типы, как и среди наиболее близких туманностей.

Следовательно, если мы желаем придерживаться гипотезы Джинса, необходимо предположить исключительно большое различие в скоростях эволюции спиральных туманностей. Конечно, это не является полностью исключенным, но можно также принять гораздо более вероятное предположение о том, что различные галактики имеют разный возраст, соответствующий их строению, т. е. что в то время, как одни галактики возникают, другие «умирают».

Однако Джинс даже не обращает внимания на это возражение. Его желание утвердить необходимость сотворения мира настолько сильно, что кажется, будто он теряет элементарный здравый смысл. Ведь его креационистская гипотеза согласуется с тем, что получается при применении принципа Карно, и разве это важно, что она оказывается противоречащей фактам наблюдений.[86]86
  Заметим, что аналогичное возражение можно также предъявить другим креационистским теориям, в частности, теории «расширяющейся вселенной», поскольку она утверждает, что все галактики образовались почти в одно и то же время.


[Закрыть]

Первое начало термодинамики и «творение»

Но можно сказать еще больше. Наряду с принципом Карно, этим «святая святых» креационистов, имеется также первое начало термодинамики – принцип сохранения энергии. И следует сказать, что Джинс, Вероннэ и все другие его никак не учитывают. Первый нам рассказывает, что 200 триллионов лет тому назад бог пришел и сотворил материю, а следовательно, и энергию; таким образом, явно имело место творение энергии из ничего. Ведь это выглядит целиком антинаучно, – подумают некоторые. Совсем нет, – возражает Джинс, – так как принцип Карно невредим! А это самое существенное… Если вам любопытно узнать, что было перед этим творением, то можно посмеяться над вашей нескромной наивностью. Вас следует отослать к Эйнштейну; нет материи, следовательно, нет ни времени, ни пространства.[87]87
  Точно так же Луи Лоней, насмехаясь над математическими концепциями «еврейских ученых», писал: «Бог вполне может оказаться вне времени, если абсолютное время физически не существует» (L'Eglise et la science, стр. 202).


[Закрыть]
Если вы не удовлетворены, то поистине вы слишком придирчивы… Что касается Вероннэ, мы должны признать, что он делает свои выводы несколько менее изящно и что его объяснения относительно творения довольно туманны.

«В то время существовало нечто непостижимое», – говорит он нам. Это, несомненно, указание, но так как это «непостижимое» определено чисто негативно, то указание остается весьма туманным. Мы не говорим здесь о творении, предусматриваемом Эддингтоном, так как мы уделим далее этому важному вопросу все то внимание, которое он заслуживает. И мы закончим эту предварительную критику рассуждений креационистов высказыванием Энгельса, от взгляда которого не укрылись экстраординарные рассуждения некоторых ученых по поводу принципа Карно (называемого Энгельсом принципом Клаузиуса):

«В каком бы виде ни выступало перед нами второе положение Клаузиуса и т. д., во всяком случае, согласно ему, энергия теряется, если не количественно, то качественно… Мировые часы сначала должны быть заведены, затем они идут, пока не придут в состояние равновесия, и только чудо может вывести их из этого состояния и снова пустить в ход. Потраченная на завод часов энергия исчезла, по крайней мере в качественном отношении, и может быть восстановлена только путем толчка извне. Значит, толчок извне был необходим также и вначале; значит, количество имеющегося во вселенной движения, или энергии, не всегда одинаково; значит, энергия должна была быть сотворена; значит, она сотворима; значит, она уничтожима. Ad absurdum! (До абсурда!)».[88]88
  Ф. Энгельс, Диалектика природы, Госполитиздат, 1950, стр. 229.


[Закрыть]

Можно ли рассматривать вселенную как гигантский закрытый сосуд?

Мы видим, что в целом вся аргументация наших креационистов основывается прежде всего на принципе Карно, несмотря на те противоречия, к которым он их приводит. Настало теперь время спросить, действительно ли этот принцип настолько универсален, как они это утверждают, и действительно ли мы вправе применять гениальный вывод, сделанный Карно при изучении работы первых паровых машин, к области, размеры которой измеряются сотнями миллионов световых лет, и к эпохам, уходящим в прошлое или будущее на миллиарды лет.

Первое возражение, которое можно сделать по поводу такого обобщения второго принципа термодинамики, связано с бесконечными размерами вселенной. Если даже предположить, что этот принцип справедлив во все времена и в любом месте, существенным остается тот факт, что он должен применяться к изолированной системе, т. е. к некоторому подобию плотно закрытой комнаты. Но вселенная, если она бесконечна, очевидно, не подходит под это определение; следовательно, нет никакой уверенности в том, что принцип Карно – Клаузиуса может быть действительно применен.

Этому возражению весьма общего характера некоторые космологи стали противопоставлять позднее гипотезу Эйнштейна, согласно которой вселенная конечна, хотя и неограниченна и, следовательно, содержит конечное количество материи и энергии (эта гипотеза будет рассмотрена детально в следующей главе). Таким образом, вселенная может быть рассматриваема в некотором смысле как гигантский закрытый сосуд (хотя этот сосуд обладает совершенно особыми свойствами, и физики весьма далеки от единодушия по этому поводу).

Мы скоро увидим, насколько формальной является эта математическая схема, с помощью которой они хотят представить вселенную, и почему ее не следовало бы принимать в этом виде. Но даже, если на мгновенье принять, что эта схема справедлива, то поднимается вопрос о возможности применения принципа Карно во всей вселенной аналогично тому, как поднимается вопрос о распространении на всю вселенную других законов природы. В связи с этим можно вспомнить осторожные слова Бореля в его введении к французскому переводу небольшой популярной книжки Эйнштейна «Специальная теория относительности»: «Мне кажется…, что если бы жили существа столь маленькие по отношению к капле воды, как и мы по отношению к Млечному Пути, было бы слишком самонадеянным с их стороны судить по наблюдениям внутри капли воды о свойствах земного шара, его минералах, животных и растениях».

Принцип Карно есть статистический закон

Среди законов природы можно различать те, которые являются абсолютно строгими (или нам кажутся такими), и те, которые справедливы лишь в среднем, т. е. когда они применяются к очень большому числу частных событий и когда учитывается эффект компенсации одних событий другими. Примером строгого закона может служить закон падения тел в пустоте: пройденный путь пропорционален квадрату расстояния. Напротив, статистические законы природы можно уподобить законам народонаселения. Предположим, что мы могли определить, что рождаемость в некоторой стране составляла в 1935 г. 15 на 1000. Отсюда, конечно, не следует, что во всех городах этой страны, насчитывающих 1000 жителей, родилось в 1935 г. точно по 15 человек. В некоторых родилось 16, 17 или даже более, в других городах меньше, и большая рождаемость в одних городах компенсировалась меньшей рождаемостью в других.

В конце XIX в. австрийский физик-материалист Людвиг Больцман показал, что принцип Карно должен считаться статистическим законом. Он пришел к этому результату, используя кинетическую теорию газов, согласно которой молекулы газа рассматриваются как идеально упругие, исключительно маленькие шарики (диаметром порядка 10 миллионных миллиметра). Эти «шарики» находятся в постоянном движении, без конца сталкиваются и ударяются о стенки сосуда, в котором заключен газ. Каждая молекула испытывает при этом многие миллиарды ударов в секунду.

«Для того чтобы полностью изучить, – говорит нам Паскье,[89]89
  L'encyclopedic, «La science», т. 2, стр. 343.


[Закрыть]
– движения молекул внутри одного кубического сантиметра газа при нулевой (по Цельсию) температуре и обычном давлении, следовало бы согласно законам классической механики написать систему тридцати миллиардов дифференциальных уравнений, каждое из которых содержит миллиарды миллиардов членов, отражающих взаимные действия всех молекул… Если бы мы захотели исследовать движение каждой из этих молекул в течение лишь одной секунды, то пришлось бы потратить на это 10 миллиардов веков, т. е. около 20 миллиардов человеческих поколений. Этого примера вполне достаточно, чтобы показать практическую невозможность решения подобной проблемы с помощью законов механики».[90]90
  Современные быстродействующие электронные вычислительные машины могут значительно сократить время, требуемое для решения подобной системы уравнений. Однако даже если в будущем, при дальнейшем усовершенствовании этих машин, удалось бы получить их решение, оно давало бы лишь закон движения каждой отдельно взятой молекулы, зависящий от ее начального индивидуального положения и скорости. Между тем статистический закон – это закон всего коллектива молекул как целого. Этот закон сохраняет свое значение и тогда, когда известны индивидуальные законы движения элементов коллектива. (Прим. ред.).


[Закрыть]

Тем не менее, теория вероятности, примененная к движению этих молекул, позволяет найти и даже уточнить законы поведения газа, открытые экспериментальным путем. Она приводит также к принципу Карно. Действительно, Больцман, изучая распределение скоростей молекул, установил следующую теорему:[91]91
  Мы излагаем результаты Больцмана в этом вопросе так, как это обычно делается в курсах физики. Следует, однако, заметить, что сами основы рассуждений Больцмана подвергались иногда критике.


[Закрыть]

Всякое распределение скоростей молекул, отклоняющееся от нормального, самопроизвольно стремится вследствие столкновений между молекулами к нормальному распределению.

Это «нормальное распределение» является попросту наиболее вероятным распределением. Для газа, заключенного в закрытый сосуд, наиболее вероятное состояние таково, что масса газа повсюду имеет одинаковую плотность (т. е. каждый кубический сантиметр газа содержит одно и то же число молекул) и в каждой части объема скорость молекул в среднем одинакова. Последнее, очевидно, равносильно равенству температур по всему объёму газа (как известно, температура газа повышается с увеличением средней скорости его молекул и снижается при ее уменьшении). Разумеется, что нормальное, или наиболее вероятное распределение осуществляется лишь в среднем, и его можно теоретически предсказать для обычных условий, при которых имеют место лишь только небольшие отклонения (флуктуации) плотности и температуры от их средних значений. Но так как эти колебания, как правило, чрезвычайно малы и, кроме того, продолжаются лишь несколько миллионных долей секунды, то обычно они ускользают от наших наблюдений.[92]92
  Если подвесить на очень тонкой нити весьма маленькое зеркальце, то «зайчик», отраженный от этого зеркальца, не будет неподвижным, а будет непрестанно колебаться. Причиной этих колебаний являются удары отдельных молекул воздуха о зеркальце. Таким образом, в этом простом опыте наглядно проявляются молекулярные флуктуации, о которых пишет автор. (Прим. ред.)


[Закрыть]

Если смешать в одном сосуде два газа, находящихся вначале при разном давлении и разной температуре, мы получаем в конце концов однородную смесь, обладающую во всех точках равными температурой и давлением (если не говорить о тех флуктуациях, которые остаются незаметными). Таким образом, теорема Больцмана приводит нас в частном случае газа к новой формулировке принципа Карно, которая, объясняя этот принцип, позволяет в то же время понять его истинную природу и дает представление о степени его ограниченности.

Можно было сказать, что в ходе эволюции вселенной также имеется постоянная тенденция к переходу из данного состояния в наиболее вероятное. Наиболее вероятное состояние, к которому окончательно стремится вселенная, характеризуется превращением всей энергии в тепло и полным выравниванием температуры. Но если исходить из этой новой точки зрения на принцип Карно, то он уже не является абсолютным, как это могло казаться в эпоху, когда Клаузиус его обобщал на все случаи. Действительно, возможно, хотя бы теоретически, представить, что за некоторым данным состоянием следует другое, более далекое от нормального, что, например, газ, в котором температура распределена равномерно, перейдет в такое состояние, когда температуры в различных частях объема, занимаемого газом, будут более или менее отличными друг от друга, ибо вероятность такого события, вообще говоря, не равна нулю. Правда, когда рассматривают системы, содержащие большое число близких друг к другу молекул и промежутки времени в масштабе человеческой жизни, эта вероятность настолько мала, что ее можно считать практически равной нулю. Об этом, однако, слишком легко забывают креационисты, и, несомненно, Джинс считал себя победителем, предлагая следующий пример:

«Я ставлю кастрюлю с холодной водой на огонь; конечное состояние таково, что вода превращается в пар… Конечно, возможно такое состояние этой вселенной в миниатюре, при котором вода превратится в лед, а огонь будет становиться все более и более горячим, отнимая тепло у воды… Но его вероятность бесконечно мала».

К несчастью, этот пример ничего не доказывает, поскольку Джинс, не имея на это никакого права, смешивает вселенную с домашней кухней. В защиту своей мысли Джинс приводит и другой аргумент: поскольку общее количество элементарных частиц; вселенной (протонов и электронов) выражается числом, состоящим из единицы с 79 нулями, то вероятность перехода вселенной к менее вероятному состоянию равна обратному значению этого числа и, значит, практически абсолютно невозможна. Однако и этот аргумент не более весок, чем прежний, так как Джинс и здесь предполагает, что вся вселенная не очень отличается от кухни или, если говорить более научным языком, что явления, происходящие с различными материальными объектами, могут быть всегда уподоблены тем, которые происходят в масштабе человеческих восприятий.[93]93
  С другой стороны, необходимо отметить, что, как показал советский физик И. Р. Плоткин, применение понятия флуктуаций Больцмана к бесконечной вселенной приводит к неустранимым противоречиям. (Прим. ред.)


[Закрыть]

Действительно, хотя опыты и подтверждают гипотезу Больцмана, но вместе с тем такое, например, явление, как броуновское движение, уже показывает, что принцип Карно неприменим в молекулярных масштабах.

Броуновское движение

Если в стакан с водой насыпать очень маленькие частички вещества (размерами в тысячные доли миллиметра или менее) и рассматривать поверхность воды в микроскоп, то окажется, что частички находятся в состоянии поистине «вечного движения». Причина этого удивительного явления состоит в том, что частички вещества, плавающие на поверхности воды, испытывают непрерывные удары со стороны молекул воды. Удары молекул могут привести к заметному эффекту лишь при условии достаточной малости частичек. Поэтому наблюдаемое движение тем интенсивнее, чем меньше размеры частичек. Точно так же рыбацкая лодка раскачивается во все стороны волнами, тогда как пассажиры проходящего мимо океанского парохода не чувствуют никакой качки.

Вывод, который можно сделать на основании изучения такого движения частичек (замеченного впервые английским ботаником Броуном), заключается в том, что молекулы жидкости находятся в непрестанном движении. Такова экспериментальная проверка кинетической теории материи. Применив законы молекулярной физики к газу, Больцман смог подтвердить правильность принципа Карно. Было бы, следовательно, неправильным сказать, что броуновское движение опровергает второе начало термодинамики. Напротив, оно нам удачно напоминает о том, что сами основы, на которых базируется это начало, ограничивают условия его применения. В молекулярном масштабе, а тем более в мире атомов, принцип Карно, конечно, несправедлив. Следовательно, можно с полным основанием сомневаться в его применимости и в масштабе вселенной.

Недавний результат Плоткина

Недавно советский ученый Плоткин[94]94
  И. Р. Плоткин, Журнал теоретической и экспериментальной физики, т. 20, стр. 1051, 1950.


[Закрыть]
смог теоретически установить вполне строгим путем, что принцип Карно не применим ни к бесконечной вселенной, ни к какой-либо части вселенной, при условии, что эта часть содержит бесконечно большое число частиц.

Таким образом, становятся полностью оправданными с принципиальной точки зрения те теории, которые уже выдвигались некоторыми учеными в качестве объяснения вечного восстановления миров, о чем речь пойдет ниже. Хотя эти «фантазии», как их назвал Джинс в отрывке, цитированном выше, еще далеко не могут нас удовлетворить, но все же, на наш взгляд, Джинс проявил к ним несколько большее презрение и несколько меньшее внимание, чем они этого заслуживают.

III. Теории возрождения миров
Теория Аррениуса

Космогоническая теория Сванте Аррениуса пользовалась очень большим успехом в начале нашего века. Мы не считали, однако, целесообразным излагать ее рядом с теориями Лапласа и Джинса, поскольку очень быстро после своего появления она безнадежно устарела. Главная заслуга Аррениуса состоит в попытке показать, что принцип Карно никоим образом не влечет за собой утверждения о тепловой смерти вселенной и, следовательно, о сотворении мира.

Аррениус утверждал, что вселенная не имеет конца, что она не может стариться, что миры беспрестанно рождаются и умирают. Цикл этой вечной эволюции он рисует следующим образом. Горячее солнце (звезда) охлаждается, затем потухает, покрывается твердой корой, но сохраняет очень высокую внутреннюю температуру. Столкновение такого потухшего солнца с другим потухшим солнцем приводит к возникновению так называемой новой звезды. Эта новая звезда превращается в спиральную туманность, которая в свою очередь становится звездным скоплением. Звезды скопления охлаждаются, и ход явлений возобновляется снова.

Многочисленные слабые стороны этой теории, конечно, видны сразу. В частности, в настоящее время известно, что новые звезды и спиральные туманности, содержащие миллиарды звезд, представляют собой объекты, которые никак нельзя сравнивать друг с другом.

Но Аррениус сумел, так сказать, «обратить» второй закон термодинамики, никак его не нарушая. Он предположил, что спиральная туманность, рождающаяся в результате удара двух потухших солнц, поглощает часть материи, которая выбрасывается звездами под давлением светового излучения, и слипается, образуя сначала метеориты. Таким образом, вселенная функционирует как некоторая тепловая машина, состоящая из горячих источников (звезд) и холодных источников (туманностей). Если догматически применять принцип Карно, то следовало бы говорить о выравнивании температур, т. е. об охлаждении звезд и об одновременном разогревании туманностей. Подобный механизм должен был бы в конце концов прекратить свою деятельность, и вселенная должна была бы умереть, поскольку перестал бы осуществляться обмен энергии.

Но согласно Аррениусу дело происходит не так. Он замечает, что туманности имеют очень малую плотность и, следовательно, весьма мало способны удерживать газовые молекулы, находящиеся вблизи их внешних границ.

Рис. 14. Большая туманность в созвездии Ориона

Когда звезды (солнца) посылают свое тепло туманностям посредством излучения света и материальных частиц, то эта энергия сообщает некоторым молекулам дополнительную скорость. Эти молекулы преодолевают притяжение туманности и покидают ее навсегда. Но самые быстрые молекулы характерны как раз для состояний с высокой температурой, и поэтому энергия, которая передается от звезд к туманностям, не повышает температуру последних. По выражению Аррениуса, «энергия распыляется или „портится“ в телах, находящихся в состоянии солнц и, напротив „улучшается“ в телах, которые находятся в состоянии туманностей».[95]95
  S. Arrenius, L'evolution des mondes, стр. IV.


[Закрыть]
Что касается «горячих» молекул, покидающих туманность, то они могут увеличить энергию других активных солнц.

Эту схему весьма любопытно рассмотреть с принципиальной точки зрения. Конечно, трудно сказать, что она в какой-то мере соответствует реальности. Аррениус не учитывает ни превращения вещества в излучение, ни многих других явлений, открытых к настоящему времени. Тем не менее, его теория остается интересной, поскольку она иллюстрирует тот факт, что принцип Карно не должен обязательно приводить к тепловой смерти, и, кроме того, напоминает нам, что статистические законы не могут применяться, если реализуются некоторые особые условия, не предусмотренные в общем случае.

Замечание Анри Пуанкаре

Рассуждения Аррениуса привлекли внимание Анри Пуанкаре, который, правда, не считал их ни легко осуждаемыми, ни полностью убедительными. Но они навели Пуанкаре на мысль о других случаях, где принцип Карно оказывается также неприменимым:

«Тепло отличается от живой механической силы, – говорит он,[96]96
  H. Poincare, Lemons sur le hypotheses cosmogonique, стр. XXIII.


[Закрыть]
– тем, что горячие тела образованы многочисленными молекулами, скорости которых имеют всевозможные направления в то время, как скорости, приводящие к наличию живой механической силы, направлены в одну и ту же сторону. Совокупность газовых молекул образует газ, который может быть холодным и контакт с которым охлаждает. Напротив, изолированные молекулы являются как бы метательными снарядами, удары которых разогревают. В межпланетном же пространстве молекулы отделены друг от друга огромными расстояниями и являются поэтому изолированными. Следовательно, их энергия как бы повышается качественно, она перестает быть просто теплом и продвигается в разряд работы».

Современная постановка проблемы

Теория Аррениуса рассматривала вечное восстановление миров без учета превращения корпускулярной материи в излучение. На современном уровне наших знаний проблема ставится совсем иначе. Действительно, как мы видели в гл. II, сейчас считают, что часть атомов, из которых состоят различные небесные тела, должна превратиться в излучение. Следовательно, для того чтобы было возможным возрождение миров, необходимо, чтобы имело место обратное явление, а именно, чтобы в некоторых областях вселенной происходило превращение излучения (в особенности гравитации) в корпускулярную материю.

Прежде чем переходить к подробному изложению этой проблемы, рассмотрим сущность такого явления и возможное его значение. Солнце теряет вследствие распада своих атомов одну десятитриллионную долю своей массы в течение года. Ради простоты предположим, что другие небесные тела вселенной теряют массу в той же пропорции и что восстановление начинается с формирования наиболее простых атомов, т. е. атомов водорода, тех первичных элементов, из которых могут образовываться более сложные атомы. Тогда можно вычислить, например, сколько атомов водорода должно рождаться в одном кубическом метре пространства, чтобы процессы превращения корпускулярной материи в излучение и излучения в корпускулярную материю компенсировали друг друга. Результат вычислений зависит, конечно, от определенных статистических данных, касающихся, в частности, средних плотностей вещества во вселенной, которые еще не известны достаточно точно. Но все же некоторые астрономы получили при вычислениях, что в одном кубическом метре пространства должен рождаться каждые 100 триллионов лет один атом водорода из излучения. Для того чтобы дать представление об этом числе, следует сказать, что слой земной атмосферы толщиной 100 км (если считать от поверхности Земли) занимает объем в 50 триллионов кубических метров; и в этом колоссальном объеме должно рождаться каждые два года лишь по одному атому водорода. Даже если увеличить этот результат, учитывая возможные ошибки при определении исходных данных, в 10 или 100 раз, то можно все же утверждать, что подобное явление восстановления вещества, если бы оно действительно имело место, оставалось бы непосредственно совершенно незаметным. Только некоторые последствия такого явления помогли бы нам обнаружить его существование. Впрочем, было бы неизвестно, происходит ли оно в земной атмосфере, или вблизи небесных тел, или в относительно пустом межзвездном пространстве.[97]97
  Под «пустым» пространством или «вакуумом» следует понимать не пространство, лишенное материи (которого вообще не существует), а пространство с крайне малой плотностью вещества, рассеянного в нем в виде космической пыли, но пронизываемого излучением разных видов. (Прим. ред.)


[Закрыть]

Первые теории, созданные с целью показать возможность такого восстановления корпускулярной материи, как, например, теория Нернста, прибегали еще за помощью к световому эфиру – в том виде, как его представляли в конце последнего века. Это была гипотетическая среда – носитель световых и электромагнитных явлений, заполняющая все пространство, являющаяся одновременно и невесомой и твердой и обладающая столькими противоречивыми свойствами, что пришлось отказаться от предположения о ее существовании. Мы не будем останавливаться на этих теориях, так как их основы были разрушены современной наукой, и рассмотрим те решения данной проблемы, которые можно предвидеть сегодня.

«Материализация» фотона

Проблема могла быть поставлена корректно благодаря созданию квантовой теории света, которая была выдвинута впервые в 1905 г. Эйнштейном и в дальнейшем получила блестящее подтверждение.[98]98
  Впервые понятие о квантовом (прерывном) характере света выдвинул крупнейший немецкий физик М. Планк. (Прим. ред.)


[Закрыть]

В 1925 г. немецкий ученый Штерн поставил вопрос, не может ли столкновение двух частиц света (или, как их называют, двух фотонов) привести к рождению атома водорода, т. е. довольно сложной системы, состоящей из ядра с положительным электрическим зарядом (или протона) и из материальной частицы, заряженной отрицательно (или электрона). Штерн сделал вывод о возможности подобного явления при выполнении целого ряда условий, которые весьма редко могут быть осуществлены, особенно в межзвездном пространстве.[99]99
  Предположение Штерна об образовании атомов водорода из излучения является неправильным. Дело в том, что при всех превращениях излучения в вещество всегда образуются не единичные частицы, а «пары» частиц с противоположными зарядами: электрон – позитрон, протон – антипротон. Поэтому наряду с образованием из излучения атомов водорода должны в равном количестве образовываться атомы «антиводорода» с антипротоном в качестве ядра, вокруг которого обращается позитрон. (Прим. ред.)


[Закрыть]
Действительно, это возможно, по Штерну, прежде всего лишь в условиях исключительно высокой температуры (равной многим миллионам градусов); впрочем, и обратное превращение, т. е. возникновение двух фотонов вследствие распада атома водорода, требует такой же температуры. Кроме того, для этого необходима исключительно большая плотность фотонов в данной области пространства. В 1931 г. немецкий ученый Доннан пришел к аналогичным выводам (в частности, в отношении температурных условий).

По мнению этих ученых, превращение излучения в корпускулярную материю может происходить лишь во внутренних и очень горячих областях звезд. Оно не может иметь места в межзвездном пространстве, и его нельзя, разумеется, воспроизвести сейчас в лабораториях.

Но вопреки этому мнению именно в лаборатории была осуществлена двадцать лет назад «материализация» фотонов, правда, в рамках иного процесса, чем тот, который рассматривался Доннаном и Штерном. Речь идет об экспериментальных работах Андерсона и супругов Жолио-Кюри. Хотя эти ученые и не занимались построением атома водорода путем столкновения двух фотонов, но, по крайней мере, обнаружили возможность эффективной «материализации» фотонов и создания в лабораториях более сложных атомов из более простых.

Первое явление такого рода было обнаружено в лабораториях в результате изучения некоторых свойств так называемых космических лучей. Космические лучи, приходящие на Землю по всем направлениям из пространства, обладают очень большой проницающей силой и содержат в числе других маленькие заряженные частицы, аналогичные электронам, но заряженные положительно – отсюда их название «положительных электронов» или позитронов. Подобные частицы до 1933 г., когда их открыл американский ученый Андерсон, никогда еще не наблюдались.

Андерсон, бомбардируя пластинку свинца радиоактивным излучением тория, сумел получить в лаборатории те же позитроны, сопровождаемые отрицательными электронами. Он объяснил появление этих частиц тем, что фотон с большой энергией, излучаемый торием, при встрече с ядром атома свинца превращается в две материальные частицы, обладающие противоположными электрическими зарядами. Таким образом, можно сделать вывод о настоящей «материализации» излучения (именно этот термин использовали супруги Жолио-Кюри, которые повторили подобный опыт во Франции), поскольку фотон, частица излучения, рождает две частицы вещества: отрицательный и положительный электроны. Наоборот, если отрицательный электрон встречается с позитроном, то они могут «дематериализоваться» («аннигилироваться»), превращаясь в два фотона (опыты Ф. Жолио и Ж. Тибо).

Супруги Жолио-Кюри пошли гораздо дальше в своих исследованиях и сумели осуществить превращение одних химических элементов в другие, подвергая их воздействию излучения различного рода. В большом числе случаев образованные таким путем новые элементы сразу же распадаются, давая начало третьим элементам (искусственная радиоактивность). Так, например, бомбардируя соответствующим излучением алюминий, эти ученые превратили его в неустойчивый фосфор, который вел себя как радиоактивный элемент в течение нескольких минут, а затем (через достаточно большой промежуток времени) окончательно превращался в кремний. В то же самое время можно было наблюдать образование многочисленных позитронов. Следует обратить внимание на то, что атомное число (соответствующее степени сложности атомной структуры) для получаемого кремния меньше такового для фосфора, но больше атомного числа первичного алюминия.

Эти работы, продолженные многочисленными коллективами ученых всех стран, привели к осуществлению превращений всех известных химических элементов. Более того, они позволили создать совсем новые химические элементы. Если русский ученый Менделеев насчитывал в своей периодической таблице 63 элемента, то теперь их известно уже 101. Новые элементы, полученные искусственным путем, неустойчивы и быстро превращаются вследствие радиоактивного распада в элементы с устойчивыми атомами.

В заключение можно сделать следующий вывод:

1. Корпускулярная «материализация» излучения осуществляется в лабораторных условиях при превращении фотона в пару «электрон – позитрон» и при этом не требуется ни очень высокой температуры, ни исключительной плотности фотонов. Правда, одна из двух частиц, образующихся из фотона, – позитрон, не входит в состав частиц, образующих атомы, и превращается быстро опять в излучение, если образование позитрона происходит не в пустоте (где он может существовать неограниченное время). Но во всяком случае «положительный электрон» – позитрон – существует и является одной из важных составляющих вещества. С другой стороны, возможна «дематериализация» (аннигиляция) двух противоположно заряженных частиц – электрона и позитрона, столкновение которых приводит к возникновению двух или более фотонов.


    Ваша оценка произведения:

Популярные книги за неделю