355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Павел (Песах) Амнуэль » Загадки для знатоков. История открытия и исследования пульсаров » Текст книги (страница 8)
Загадки для знатоков. История открытия и исследования пульсаров
  • Текст добавлен: 9 октября 2016, 00:19

Текст книги "Загадки для знатоков. История открытия и исследования пульсаров"


Автор книги: Павел (Песах) Амнуэль



сообщить о нарушении

Текущая страница: 8 (всего у книги 13 страниц)

Одно время бытовало мнение, что когда умирает человек, мозг его испускает последний сигнал, символизирующий смерть, – мощный всплеск мозгового излучения неизвестной природы. Этот гипотетический сигнал был назван некробиотическим. Существует ли в действительности некробиотическое излучение мозга – никто не знает. Вероятнее всего, что нет. Но вот, когда умирает звезда, когда коллапс сжимает ее тело, когда вещество в агонии валится к центру, – в этот смертный миг звезда испускает «некробиотический» сигнал, который можно уловить приборами на огромных расстояниях. Процесс нейтронизации длится доли секунды – столько же продолжается и всплеск нейтринного излучения. Зафиксировать такой всплеск на Земле очень трудно, но это трудности технического характера. Нужны мощные нейтринные ловушки. Нужно и изрядное везение – всплеск длится мгновение, и неизвестно, когда его ждать…

Ежегодно астрономы обнаруживают несколько вспышек сверхновых – несколько звездных смертей. Но все эти трагедии происходят в далеких галактиках, на таких больших расстояниях от Солнца, что никакие из современных нейтринных ловушек не способны уловить импульс. Единственный пока раз – в феврале 1987 года – астрономам повезло. 23 февраля в соседней карликовой галактике – Большом Магеллановом Облаке – умерла звезда. Произошло это в 7 часов 35 минут 35 секунд мирового времени. Именно тогда две группы нейтринных детекторов – одна в Камиока (Япония), другая вблизи от Кливленда (США) – зарегистрировали неожиданный всплеск нейтрино. В течение 13 секунд приборы отметили «прибытие» 11 нейтрино (точнее – антинейтрино). А вскоре, несколько часов спустя, и наблюдатели-оптики заметили на небе нечто неладное: в Большом Магеллановом Облаке появилась и начала ярко разгораться сверхновая. Впервые в истории астрономии люди уловили «некробиотический» сигнал звезды…

Мы так и не вырвались из плена общепринятого представления о том, что нейтронная звезда – мертвое тело. Методы поиска, о которых шла речь, связаны с проявлением поля тяжести нейтронной звезды, но не с ее внутренней активностью. Исключение – всплеск нейтринного излучения, но длится он недолго и возникает до образования нейтронной звезды, в процессе катастрофического коллапса. Потерпев временную неудачу с тепловым излучением нейтронной звезды, теоретики бросили все силы на поиск внешних источников энергии. Воображение буксовало – ведь все, кто занимался проблемой поиска нейтронных звезд, были первоклассными специалистами.

Это парадоксально, но противоречия в сказанном нет. Специалисту труднее преодолеть психологичен скую инерцию, связанную с господствующей точкой зрения. Чтобы быть храбрым, нужно либо усилием воли преодолеть страх, либо просто не знать, что впереди опасность. Все, кто занимался теорией нейтронных звезд, знали, что в этих звездах нет источников энергии. Вот это знание и служило тормозом для воображения…

* * *

Психологи и специалисты по теории творчества давно ищут способы активизации воображения. Мы уже говорили о мозговом штурме, синектике – это так называемые неалгоритмические методы. Они были созданы и использовались для решения изобретательских задач, но эффективнее их можно применять для развития творческого воображения. Тренировать фантазию нужно постоянно, иначе она «скукливается», и потом ее все труднее пустить в свободный полет. Психологи установили, что самым богатым воображением обладают дети. Но багажа знаний у них нет, и им не к чему свое воображение приложить – только к игре. А без приложения фантазия начинает сдавать, к тринадцати годам воображение уже катится по наклонной плоскости, да так и катится по ней… всю жизнь. Недаром в тех областях, где нужно особенно богатое воображение, – в математике, теоретической физике – наивысшие творческие достижения приходятся на возраст 25–30 лет. Потом начинается творческий спад. Вот если бы воображение тренировали с детства, если бы его приемам учили в вузах, если бы в научно-исследовательских институтах ввели курсы упражнений по развитию творческой фантазии!..

Вы, возможно, читали фантастический рассказ Р. Джоунса «Уровень шума»? Это рассказ о роли творческого воображения.

«Мы постоянно взрослеем, и по мере того, как мы учимся в школе и получаем образование, в наших фильтрах шума появляются ограничительные уровни, которые пропускают лишь ничтожную часть сведений, приходящих из внешнего мира и из нашего воображения. Факты окружающего мира отвергаются, если они не подходят к установленным уровням. Творческое воображение суживается».

Ученым – персонажам рассказа – предлагают создать антигравитационный двигатель. Все знают, что это невозможно, и естественно, работа стоит на нуле. Совсем как в нашем случае – все знают, что нейтронные звезды мертвы, и потому не могут придумать ничего иного. В рассказе Р. Джоунса ученым показывают фильм об испытаниях реальной антигравитационной машины, приводят в дом, где жил погибший во время испытаний изобретатель. Ученых ставят перед фактом – антигравитация есть. Под давлением факта стена инерции падает, и за несколько дней ученый – герой рассказа – создает основы теории антигравитации. Новый двигатель сконструирован. Вот, что такое психологическая инерция! Если бы и в нашем случае удалось поставить астрофизиков перед фактом – нейтронные звезды не мертвы, то как развивались бы события?

Ученые любят фантастику. Чтение фантастики тренирует воображение. Фантасты в большинстве своем дилетанты в науке, но профессиональные выдумщики. Годами тренированное воображение помогает им при минимуме знаний в той или иной науке иногда предлагать интересные научные идеи. Сами ученые не любят в этом признаваться – это, по их мнению, ущемляет профессиональную гордость. Но факт есть факт. Жюль Верн, Герберт Уэллс, Александр Беляев, Иван Ефремов придумали не меньше нового в науке, чем хороший научно-исследовательский институт. Им помогало воображение.

Лет тридцать назад говорили: фантасты опережают науку. Сейчас принято говорить: фантастам за учеными не угнаться, наука слишком сложна, дилетантам не понять ее глубин, а значит, и предсказать в науке они ничего не могут. В пример приводят многочисленные несбывшиеся прогнозы. Есть и такие, конечно. Но фантастика ценна не столько тем, что прямо указывает ученым, что им делать, сколько тем, что исподволь учит думать раскованно, развивает фантазию.

Кстати, в самом утверждении «фантасты ошибаются чаще ученых» тоже есть существенная доля психологической инерции. Видимая строгость научных предположений заставляет забывать о том, что подавляющей их части суждено сгинуть без всякого следа. В науке (как и в фантастике!) выживают жизнеспособные идеи. Разница в том, что фантастическое произведение, если оно хорошо написано, если в нем есть характеры и интересные сюжетные находки, может долго волновать читателя и служить дотошным критикам примером того, как ошибаются фантасты. Ошибочная же научная идея живет не дольше того момента, когда ее сменяет другая идея, более близкая к истине. Разве мало ошибочных научных идей мы уже встретили в нашем расследовании гибели звезд? Вот и получается, что об ошибочной научной идее чаще всего забывают, об ошибочной идее фантаста помнят долго.

Можно привести в пример книгу замечательного английского астрофизика А. Эддингтона «Внутреннее строение звезд», опубликованную в тридцатых годах. А. Эддингтон был одним из первых, кто указал на ядерные источники энергии звезд. Начинал же он практически с нуля. Не удивительно поэтому, что в книге А. Эддингтона среди десятка научных идей, давно преданных забвению из-за их неверности, оказались несколько идей и решений, которые были близки к истине – потому и дожили до наших дней. Польский фантаст С. Лем в своей статье «Космология и научная фантастика», опубликованной в 1977 году, назвал книгу А. Эддингтона научно-фантастической. Приведем для примера лишь одну идею: звезды теряют массу в ходе эволюции. Вот ход рассуждений ученого. Звезды эволюционируют от состояния горячего массивного гиганта до состояния немассивного красного карлика – таким было представление об эволюции звезд в первой трети нашего века (ошибочное представление!). Но раз звезды рождаются массивными, а умирают немассивными, значит, они в течение жизни теряют массу. Логично? Вполне. Как же они теряют массу? Единственный способ взаимодействия звезды с окружающей средой – излучение (еще одна ошибочная идея!). Значит, звезды теряют массу посредством излучения, согласно знаменитой формуле Е = Мс2. Логично? Да. Но верно лишь в той части утверждения, где говорится, что звезды теряют массу.

Это утверждение справедливо и сейчас, но вот причина потерь массы и следствия из этого совершенно иные! Теперь представим себе писателя-фантаста, который на заре тридцатых годов, вдохновленный идеей А. Эддингтона, написал бы рассказ о том, как «худеет» звезда, о возможной человеческой трагедии, связанной с этим фактом. Будучи хорошо написанным, рассказ читался бы и сейчас, служа примером ошибочности идей фантаста…

Вернемся к одной из главных функций фантастической литературы – развитию творческого воображения. Не так уж много существует в мире методик по развитию воображения, и в большей своей части методики эти – следствие изучения фантастических идей.

Одна из самых популярных методик, но далеко не самая эффективная, разработана профессором Стенфордского университета Д. Арнольдом. Методика такая: инженерам дают решать какую-нибудь конструкторскую задачу, но ставят условие, что конструкция будет использована не на Земле, а на вымышленной планете Арктур– IV. На этой планете специфические условия: температура колеблется от —43 до —151 градуса Цельсия, атмосфера состоит из метана, моря – из аммиака, тяжесть вдесятеро больше земной. И на этой планете живут разумные существа – метаняне. Придумайте, говорит Д. Арнольд, в каких домах они должны жить? Какой у них транспорт? Чем они питаются"? Какие у них дороги? Машины?

Регулярно проводя со своими студентами занятия, Д. Арнольд расшатывает психологические барьеры в их сознании, и на обычные земные проблемы они начинают смотреть иначе, под более широким углом зрения, будто став пришельцами из иного мира, став своего рода дилетантами в мире нашем. И лучше решают другие творческие задачи.

Тех же результатов можно достигнуть, читая научно-фантастические произведения, действие которых происходит на вымышленных планетах. Например, романы Д. Харберта, У. Ле Гуин, X. Клемента. Планета – место действия – представлена вполне зримо, хотя и поражает воображение необычностью, так и призывает читателя думать с автором: а какие еще следствия должны вытекать из этой фантастической посылки, что еще можно придумать. Вот роман X. Клемента «Экспедиция «Тяготение» (на русский язык переведен в 1972 году). Действие происходит на очень массивной планете, вращающейся так быстро, что сила тяжести на экваторе почти уравновешена центробежной силой, а на полюсах ускорение свободного падения в 800 раз превышает земное! Лишь в районе экватора и могут жить земные космонавты, прибывшие на эту странную планету. В районе же полюсов не выдерживают и иные аборигены. Сверхбыстрым вращением определяется и форма планеты: она чрезвычайно сплющена и больше напоминает блин, чем привычный для нас шар. Будто пользуясь методом Арнольда, мы рассуждаем вместе с писателем-фантастом: как должны выглядеть на такой планете живые существа? Как они перемещаются? Строят ли города? Как представляют себе свой мир?..

Метод Д. Арнольда неплох, но он неалгоритмичен. В нем нет системы, он не дает объяснений – как придумать? Как вообразить? Это все тот же метод проб и ошибок, только поставленная задача – фантастическая.

В нашей стране разработана алгоритмическая методика развития творческого воображения. Отличается она тем, что развивает фантазию по определенной четкой и ясной системе. Курс развития творческого воображения (РТВ) читается слушателям школ и институтов изобретательского творчества. Таких школ и институтов, работающих на общественных началах, где изучается теория решения изобретательских задач (ТРИЗ), в СССР больше сотни. В этих школах учат изобретать, и с этой целью учат творчеству вообще.

Один из методов, используемых для развития воображения, – метод приемов. Сам метод возник из двух «зерен» – ТРИЗ и теории фантастики. Оказалось, что изобретатели и фантасты, придумывая новые идеи, пользуются по большей части одними и теми же приемами. Пользуются этими приемами и ученые.

Какие это приемы?

Вспомним гипотезы о причинах вспышек новых звезд, попробуем отыскать в их последовательности внутреннюю логику. И для этого вспомним, что каждая гипотеза – это научное изобретение. Изобретение это появляется, если нужно разрешить возникшее научное противоречие. В основном это противоречие между наблюдением и его интерпретацией. И для того чтобы противоречие разрешить, мы обычно меняем интерпретацию. Как именно?

Вот одна из первых гипотез о происхождении вспышек. Звезда движется в межзвездном газе, попадает в плотное облако, разогревается от трения, вот и вспышка. И вот противоречие. Звезда должна нагреваться, чтобы произошла вспышка, но она не может нагреться, потому что в космосе слишком мало газа, он слишком разрежен. И тогда для разрешения возникшего противоречия был пущен в дело прием увеличения. Нужно увеличить плотность газа (если звезда нагревается от трения) или плотность числа звезд (если причина вспышки в близких прохождениях звезд). Но увеличив мысленно плотность газа, мы опять столкнемся с противоречием. В космосе нет таких плотных облаков, какие нам нужны. Выход? Либо сделать заявку на открытие (в космосе должны быть сверхплотные газовые комплексы, давайте их искать!), либо еще раз изменить интерпретацию. Использовать другой прием.

Например: уменьшение. Уменьшим мысленно расстояние между звездами. Пусть звезды проходят друг около друга так близко, что возникают приливы, извержения, вспышки. Но ведь и здесь противоречие – расстояние между звездами нельзя уменьшать, как нам хочется. Факты говорят, что звезды отделены друг от друга в среднем расстоянием 2–3 световых года. Однако нет ли здесь психологической инерции? Всегда вспоминайте о ней, когда говорите «не бывает». Для объяснения вспышек новых звезд вовсе не обязательно, чтобы звезды были близки друг к другу все время – вспышка ведь продолжается несколько месяцев. Пусть звезды проносятся на расстоянии двух-трех радиусов друг от друга, а потом разлетаются. Этого не бывает, шепчет память профессионала. Но допустим, что это есть. Противоречие, к сожалению, не исчезнет – ведь, когда звезды пролетают друг около друга, увеличивается и скорость их движения. Звезды разлетаются быстро, и силы тяжести не успевают вызвать катастрофических явлений.

Итак, для взаимодействия не хватает времени. Используем еще раз прием увеличения. Пусть звезды не только пролетают друг около друга, но остаются рядом в течение длительного времени. И теперь уже ни один астроном не скажет: так не бывает. Так бывает – в двойных системах.

Последовательное применение приемов уменьшения и увеличения (самых простых приемов, используемых в курсе РТВ) привело к гипотезе: вспышки новых происходят в двойных звездных системах, когда одна из звезд своим тяготением вызывает катастрофические явления на поверхности звезды-соседки.

Этого же результата можно было достичь другим путем, применив более сильный прием объединения: если объекты разобщены – сведите их в единую систему.

Гипотезу о двойственности новых звезд предложил, как вы помните, Клинкерфус больше восьмидесяти лет назад. В принципе она считается верной и в наши дни. Но вот что любопытно. Почти полвека гипотеза о двойственности новых считалась неверной. И все потому, что для преодоления очередного противоречия был ислользован не тот прием!

Когда была высказана гипотеза о двойственности новых, оказалось, что известные в то время двойные системы не настолько тесные, звезды в них не настолько близки друг к другу, чтобы приливные силы оказались достаточно велики. Даже в двойных системах приливы не вызывают катастрофических явлений. И тогда вместо простого приема уменьшения (уменьшим расстояние между звездами; предположим, что есть очень тесные двойные системы, попробуем такие системы найти) был использован значительно более сильный прием наоборот: если что-то не получается, сделаем наоборот. Если взрывы не удается объяснить внешними причинами, поищем причины внутренние.

Но если причина вспышки кроется в особенностях внутреннего строения звезд, то зачем нужна идея о двойственности новых? И гипотеза Клинкерфуса была забыта…

ТРИЗ предлагает много приемов устранения технических противоречий, десятки приемов развития воображения предлагает и теория фантастики. Позднее мы еще вернемся к приемам, а сейчас уясним общую схему.

От метода проб и ошибок мы перешли к морфологическому анализу – стали систематически исследовать все поле проб. Потом поняли, что это непроизводительная трата времени. Хорошо бы не пропалывать все поле (по системе или без нее), а сразу идти прямой дорогой к решению проблемы. В поисках этого пути мы выяснили, что научная задача, как и техническая, заключается в необходимости выявить и устранить противоречие. Возник вопрос: как именно можно устранить противоречие? Нужно, сказали мы, изменить одну из конфликтующих сторон. Изменить, но как? Вот для этого и нужна специальная система, нужен алгоритм. ТРИЗ является единственной пока алгоритмической методикой решения творческих изобретательских задач – приемы ТРИЗ прямо ведут к искомому решению. В решении научных задач такой завершенной теории пока нет. Использование приемов для устранения научных противоречий – лишь первые шаги.

Все, что можно в принципе сделать с явлением, фактом, рассуждением, эти приемы должны объединить в себе. На примере новых звезд мы видим, что противоречия могли быть устранены с помощью стандартных приемов увеличения, уменьшения, объединения… Но беда в том, что в науке использование приемов пока ничем не эффективнее обычного метода проб и ошибок. Потому что нет еще правил пользования приемами, нет алгоритма научного творчества.

В технике – иное дело. Советский изобретатель

Г. С. Альтшуллер проанализировал сотни тысяч изобретений и выявил несколько десятков стандартных приемов устранения технических противоречий. Более того, установил – материала было достаточно! – какие именно приемы нужно использовать для разрешения конкретных типов противоречий. Так в шестидесятых годах был создан алгоритм решения изобретательских задач (АРИЗ), ставший основой современной теории (ТРИЗ). В науке такое исследование, такой анализ научных изобретений и открытий еще не проведены. Если научное противоречие и выявлено, то еще совершенно неясно, какой именно прием нужно использовать для его разрешения. Поэтому ученые перебирают все приходящие на ум возможности (а если увеличить, а если уменьшить, а если сделать наоборот, а если объединить), и получается, в сущности, лишь переработанный вариант метода проб и ошибок. Поэтому и те приемы, о которых уже шла речь, и те, о которых пойдет речь ниже, используются пока не там, где нужен целеустремленный научный поиск, а для развития творческого воображения.

Глава шестая
Необычные свойства нейтронных звезд. Нейтронная звезда в Крабовидной туманности! Приемы, приемы… Что такое фантограмма! Нужен эвристор!

Наука выигрывает, когда ее крылья раскованы фантазией.

М. Фарадей

Середина шестидесятых годов – начало расцвета рентгеновской астрофизики. Середина шестидесятых годов – это бум исследований квазаров. Это открытие реликтового излучения. Это исследование активных галактик. В общем, это кульминация революции в астрофизике.

Именно в середине шестидесятых окончательно оформилось как ветвь астрофизики новое направление исследований – релятивистская астрофизика. Это название было впервые произнесено на симпозиуме в Далласе в 1963 году. Релятивистская астрофизика объединила изучение небесных тел и явлений, в природе которых важную, а то и определяющую роль играют эффекты и следствия общей и частной теорий относительности. Рентгеновские источники заставили поверить: нейтронные звезды могут существовать в Галактике. Открытие квазаров заставило поверить: в жуткой дали Вселенной могут существовать коллапсирующие тела с массами в миллиарды масс Солнца. А открытие реликтового излучения заставило поверить: самое начало нашей Вселенной тоже можно описать теорией относительности Эйнштейна.

Революция в астрофизике достигла кульминации, но… в поиске нейтронных звезд кульминация еще не наступила. Рентгеновские измерения в шестидесятых годах не обладали нужной точностью и чувствительностью. Оптический поиск нейтронных звезд и черных дыр в двойных системах, о возможности которого писали Я. Б. Зельдович и О. X. Гусейнов, в то время еще не проводился. А нейтринная обсерватория, способная обнаружить всплеск нейтринного излучения во время коллапса, существовала только в мечтах энтузиастов. Новые идеи появлялись, но новых наблюдений не было…

Морфологический ящик «нейтронные звезды» заполнялся медленно. Какие свойства имеет нейтронная звезда? Мы уже спрашивали об этом. И ответили: поле тяжести и теплота. Разве это все? Давайте поищем другие клетки. И для этого обратимся к обычным звездам, например, к Солнцу. Какие из его свойств сохранятся, если сжать Солнце до размеров нейтронной звезды? В недрах Солнца идут ядерные реакции – это свойство не сохранится, гореть в нейтронных звездах нечему.

Солнце вращается вокруг оси, делает один оборот за 27 дней. Если вращающееся тело сжать, оно начинает вращаться быстрее. Если размер тела уменьшить вдвое, вращение станет вчетверо быстрее. Радиус нейтронной звезды в сто тысяч раз меньше солнечного. Если уменьшить размер тела в 100 тысяч раз, его вращение ускорится в 10 миллиардов раз! Нейтронная звезда должна совершать один оборот вокруг оси за одну десятитысячную долю секунды!

Вспомним теперь о законе природы, благодаря которому нейтронная звезда оказывается наделенной еще одним удивительным свойством. Это закон сохранения магнитного потока. У Солнца есть магнитное поле. По мнению астрофизиков, Солнце обладает регулярным дипольным магнитным полем, напряженность которого на поверхности равна примерно 1 гауссу. Представим опять, что Солнце сжалось до размеров нейтронной звезды. Количество силовых линий, пересекающих поверхность звезды, не может измениться. Но сама поверхность стала теперь меньше в 10 миллиардов раз. Значит, на единицу поверхности теперь приходится в 10 миллиардов раз больше силовых линий, чем прежде. А это означает, что в 10 миллиардов раз увеличилось магнитное поле. Один гаусс на поверхности обычной звезды – и 10 миллиардов гауссов на поверхности звезды нейтронной! Если такое огромное магнитное поле вообще может существовать в природе, то именно в нейтронных звездах.

Но размер черной дыры еще меньше, значит, ее магнитное поле еще больше?

Нет. Магнитное поле черной дыры равно нулю! В 1964 году к такому выводу пришел советский физик В. Л. Гинзбург. Звезда, катастрофически сжимаясь, скрывается под своим гравитационным радиусом и с этого момента начисто пропадает для наблюдателя. И вместе со звездой исчезает для наблюдателя и ее магнитное поле. Исчезает, как мы уже говорили, не мгновенно, этот процесс растягивается для внешнего наблюдателя на бесконечное число лет. Исчезают все свойства, кроме трех: массы, заряда и момента вращения… Пролетая мимо черной дыры на звездолете, мы могли бы только констатировать, что на траверзе находится некое притягивающее, заряженное и вращающееся тело. И больше никаких свойств. В середине шестидесятых годов американский физик Дж. Уилер сказал, что «черная дыра не имеет волос». Это верно – она лысая… Правда, в семидесятых годах Э. Хокинг показал, что это не совсем верно. Реденькие «пряди волос» у черной дыры все-таки есть. Например, вблизи сферы Шварцшильда в вакууме могут рождаться пары частиц и античастиц, способные покидать черную дыру, вылетать в космос. Но рассказ об этих особенностях черных дыр уведет нас далеко от нашего расследования.

Вернемся к нейтронным звездам. Итак, нейтронная звезда очень быстро вращается и обладает огромным магнитным полем. В РТВ, как мы говорили, есть прием объединения разнородных свойств. В 1964 году советский астрофизик Н. С. Кардашев объединил в одной нейтронной звезде свойства быстрого вращения и огромного магнитного поля. Речь шла о гипотетической нейтронной звезде в Крабовидной туманности.

Астрономы установили, что Крабовидная туманность расширяется все быстрее и быстрее, и объяснения этому странному явлению не было. Всем астрофизикам известна сила, способная затормозить расширение туманности – это сопротивление межзвездной среды. Но какая сила может ускорить расширение?

Это было противоречие между наблюдением и интерпретацией. Верную интерпретацию впервые дал Н. С. Кардашев. Он использовал прием объединения: объединил в одну систему туманность и нейтронную звезду в ней. Они ведь действительно неразрывно связаны общим магнитным полем. Тысячу лет назад не было ни туманности, ни нейтронной звезды. Была звезда-старушка, конец которой приближался. Звезда обладала магнитным полем. Звезда вращалась вокруг оси. Потом она взорвалась. Оболочка разлетелась, а ядро стало нейтронной звездой. Оболочка унесла с собой и магнитные силовые линии. Ведь силовые линии магнитного поля не могут разорваться. Выйдя из какой-то точки, они в нее и возвращаются – силовые линии магнитного поля замкнуты. Выйдя из нейтронной звезды и пройдя сквозь туманность, силовые линии вновь возвращаются к нейтронной звезде. Силовые линии связывают звезду и туманность невидимыми тугими нитями. Если бы нейтронная звезда не вращалась, то силовые линии просто вытягивались бы при расширении туманности. Но нейтронная звезда быстро вращается, и силовые линии наматываются на нее как на барабан. Магнитное поле, проходящее сквозь туманность, становится подобно спирали, ветви которой скручиваются все туже. Силовые линии сближаются. Растет магнитное поле. Значит, растет и магнитное давление. Нейтронная звезда как бы «накачивает» в туманность магнитное поле. А давление магнитного поля расталкивает плазму в туманности, заставляет ее расширяться все быстрее.

Но ведь чтобы разогнать газ в туманности, нужна энергия. Откуда она берется? Н. С. Кардашев дал ответ: из энергии вращения нейтронной звезды. Нейтронная звезда вращается намного быстрее, чем туманность. Собственно говоря, настолько быстрее, что по сравнению с нейтронной звездой можно считать, что туманность не вращается вовсе. Но силовые линии стремятся двигаться вместе с туманностью, ведь они, как говорят астрофизики, «вморожены» в плазму. Значит, и силовые линии тоже стремятся не вращаться. И тянут за собой звезду – тормозят ее вращение. Звезда вращается все медленнее, энергия ее вращения уменьшается, передается магнитным силовым линиям, то есть переходит в энергию магнитного поля. И в конечном счете идет на ускорение расширения туманности.

Выводы Н. С. Кардашева, подкрепленные расчетами, хорошо согласуются с наблюдениями Крабовидной туманности. Нейтронная звезда, если она есть в центре туманности, вполне способна обеспечить наблюдаемое ускорение. Более того: нейтронная звезда вполне способна «накачать» в туманность и наблюдаемое в ней магнитное поле. Оно, казалось бы, не велико – всего 0,0003 гаусса, но ведь это в 100 раз больше среднего магнитного поля межзвездного газа. И наконец, энергия вращения нейтронной звезды, которая при этом теряется, составляет примерно 1037 эрг/с. Столько, сколько ежесекундно излучает Крабовидная туманность во всех диапазонах длин волн. Нужны ли более убедительные аргументы в пользу того, что в Крабовидной туманности должна быть нейтронная звезда?

Все эти аргументы были известны в 1964 году, однако существовало сильнейшее и никем еще не поколебленное предубеждение: нейтронная звезда – мертвое тело. Работа И. С. Кардашева этого предубеждения не поколебала. Магнитное поле, вращение – это ведь свойства пассивные, это то, что осталось нейтронной звезде в наследство от звезды, погибшей при взрыве.

Была еще идея С. Б. Пикельнера, высказанная в 1956 году: в Крабовидной туманности есть источник релятивистских электронов. Никто против этого не возражал. Но в качестве источника частиц предлагалось все, что угодно, кроме активности нейтронной звезды. В 1966 году И. С. Шкловский писал, что источником частиц может стать турбулентная плазма, окружающая нейтронную звезду. Активность есть, без нее не обойтись, но пусть она будет вне звезды.

Правда, были в те годы и работы, где говорилось о возможности (кратковременной!) генерации быстрых частиц в недрах нейтронной звезды. Об этом писали советские астрофизики О. X. Гусейнов и В. Ц. Гурович. Нейтронная звезда возникает в процессе катастрофического коллапса. Но ведь падая на центр, частицы вещества приобретают огромные скорости. В момент, когда образуется нейтронная звезда, падение прекращается (давление вырожденного нейтронного газа уравновешивает тяготение). А что происходит с той кинетической энергией, которой запаслись, падая, частицы? Она диссипирует в тепло – так происходит всегда, когда движение тормозится. Диссипирует в тепло, но… не сразу. Сначала эта энергия переходит в энергию колебаний звезды и лишь потом, после затухания колебаний, превращается в тепло. Некоторое время (недолгое, конечно) нейтронная звезда вздувается и опадает, и при этом генерируются быстрые частицы, способные покинуть звезду, «испариться» с ее поверхности.

Вернемся к морфологическому ящику «нейтронные звезды». Вот клетка: огромное магнитное поле. Вот клетка: быстрое вращение. Вот клетка: нейтронная звезда колеблется. Вот клетка: нейтронная звезда генерирует быстрые частицы. Но… о предсказании открытия, которому суждено было стать астрономическим событием века, речи не было. Психологическая инерция не позволила думать, что всеми перечисленными свойствами может обладать одна нейтронная звезда. Но и этого было недостаточно. Чтобы предсказать пульсары, нужно было значительно увеличить способность нейтронных звезд выбрасывать релятивистские частицы.

Недоставало субъективного фактора: человека, который, обладая интуицией, догадался бы использовать приемы объединения и увеличения. Интересно, если бы пульсары не были случайно открыты в 1967 году, смогли бы теоретики предсказать их за прошедшие с тех пор два десятилетия? Или астрофизики и сейчас считали бы, что нейтронные звезды мертвы? Хочется верить, что смогли бы. Идея носилась в воздухе. Недаром первая правильная работа о причинах излучения пульсаров появилась всего через три месяца после опубликования заметки об открытии.


    Ваша оценка произведения:

Популярные книги за неделю