Текст книги "Загадки для знатоков. История открытия и исследования пульсаров"
Автор книги: Павел (Песах) Амнуэль
сообщить о нарушении
Текущая страница: 7 (всего у книги 13 страниц)
Допустим, что в момент рождения нейтронная звезда была нагрета до десяти миллиардов градусов. Ее тепловая энергия составляла 2*1051 эрг. Для сравнения: запас тепла в Солнце в 10 тысяч раз меньше. Казалось бы, нейтронная звезда долго будет оставаться горячей? Нет. Ведь величина излучения пропорциональна четвертой степени температуры. Шар размером 10 км, нагретый до 10 миллиардов градусов, излучает каждую секунду около 7*1044 эрг. Значит, всего запаса тепла нейтронной звезде хватит на 3 миллиона секунд – около месяца!
Последующие расчеты показали, что нейтронная звезда остывает еще быстрее. После взрыва, породившего Крабовидную туманность, прошло почти тысячелетие. Температура нейтронной звезды, если она там образовалась, давно упала до того самого миллиона градусов, когда нейтронную звезду можно уже считать холодной. Так что А. Камерон не ошибся в расчетах.
Но остывшая нейтронная звезда и вовсе не обладает никакой энергией. Ей нечем поддерживать активность Крабовидной туманности. А. Камерон был проницательным ученым, он вслед за Ф. Цвикки считал, что южная звезда в Крабовидной туманности – нейтронная.
И вот тут А. Камерон подошел к противоречию, из которого могло родиться открытие. Южная звезда должна быть ответственной за излучение Крабовидной туманности (должен существовать источник этой активности!), но она не может быть ответственной за излучение (в нейтронной звезде нет источников энергии). Это противоречие между теорией нейтронных звезд и наблюдениями Крабовидной туманности. Разрешить противоречие можно либо изменив теорию (это приведет к научному изобретению), либо объявив неверными наблюдения (это уже пахнет предсказанием открытия). А. Камерон не видел изъяна ни в теории, ни в наблюдениях, он пошел по наиболее простому пути: разрешил противоречие частично, сказав, что нейтронная звезда все же обладает небольшим запасом энергии (ведь она остыла не до абсолютного нуля). Этого запаса недостаточно для объяснения свечения всей туманности, но хватит, чтобы объяснить образование и исчезновение таинственных «жгутов», так удививших Р. Минковского.
Не нужно обвинять А. Камерона в недальновидности! Он был первым, кто после долгого перерыва взялся за исследование нейтронных звезд. Он первым правильно определил их максимальную массу (даже в наши дни эта величина – 2 массы Солнца – считается наиболее верной, а ведь после А. Камерона были проделаны сотни расчетов). И наконец, А. Камерон был первым, кто сказал: нейтронная звезда не является абсолютно мертвым телом.
Работа А. Камерона вышла из печати два года спустя после «Морфологической астрономии», в которой Ф. Цвикки изложил свой метод направленной интуиции и описал предсказанные им нейтронные звезды. А. Камерон читал работу своего коллеги, но… методом не воспользовался. Иначе он обязательно сделал бы вывод-предсказание, которое три года спустя вскользь прозвучало в статье советских астрофизиков В. А. Амбарцумяна и Г. С. Саакяна.
А. Камерон не задал вопрос: как должна выглядеть для наблюдателя нейтронная звезда? В физике есть закон излучения Вина: чем больше нагрето тело, тем более короткие волны оно излучает. Солнце нагрето до 6 тысяч градусов и представляется нам желтым. Температура белых карликов в несколько раз выше – они бело-голубые. А нейтронная звезда, температура которой может достигать и миллиона градусов, будет испускать уже мягкие рентгеновские лучи. Напиши А. Камерон об этом, и он предвосхитил бы возникновение рентгеновской астрономии. И тогда открытие в 1962 году первого рентгеновского источника за пределами Солнечной системы было бы не случайным, а следствием планомерного поиска. А. Камерон об этом не написал. А работа В. А. Амбарцумяна и Г. С. Саакяна вышла уже после открытия рентгеновских космических источников. Предсказание не состоялось.
Работы В. А. Амбарцумяна и Г. С. Саакяна, опубликованные в начале шестидесятых годов, стали следующим шагом в познании строения сверхплотных звезд. Эти работы были попыткой примирить идею о массивных взрывающихся дозвездных Д-телах, из которых рождаются звезды, с современной физикой – с теорией строения вещества и теорией тяготения.
Советские ученые тоже стояли перед противоречием. Сверхплотные тела должны быть массивны (ведь из одного Д-тела образуются сотни звезд в ассоциациях), и они не могут быть массивны (так утверждает теория строения сверхплотных звезд). Как быть? Может, в сверхплотных телах все же есть силы отталкивания, способные противостоять силе тяжести, значительно больше той, что «правит бал» в нейтронных звездах А. Камерона?
Сначала казалось, что найти такую силу можно. В звездах, рассчитанных А. Камероном, отталкивание создают ядерные силы, действующие между нейтронами. А что если взять более тяжелые частицы? Ведь у тяжелых частиц – их называют гиперонами – и силы отталкивания больше. Звезды, описанные В. А. Амбарцумяном и Г. С. Саакяном, были гиперонными звездами. В их центральных областях вместо нейтронного газа был газ из более тяжелых частиц – гиперонов. Чем больше силы отталкивания, тем более массивной могла бы быть звезда. Могла бы, но не стала. Максимальная масса гиперонной звезды, по расчетам В. А. Амбарцумяна и Г. С. Саакяна, оказалась равной всего 1 массе Солнца! Даже меньше, чем нейтронная звезда А. Камерона.
Вот что писали в 1961 году В. А. Амбарцумян и Г. С. Саакян: «Можно ли для гиперонных звезд получить массы, во много раз превышающие массу Солнца, если подходящим образом выбрать функцию потенциала отталкивания? Для статических конфигураций ответ отрицателен. Проведенные нами расчеты убеждают, что при разумном выборе величины радиуса действия сил отталкивания, независимо от их интенсивности, невозможно получить статические конфигурации с большими массами».
Итак, противоречие было разрешено в пользу теории. Термин «гиперонные звезды», однако, так и не прижился. Дело в том, что гипероны существуют лишь вблизи центра звезды. Даже гиперонная звезда В. А. Амбарцумяна и Г. С. Саакяна состоит в основном из нейтронов.
Почему это так? И почему вообще в нейтронной звезде могут образоваться гипероны? Посмотрим, как, по современным представлениям, меняется структура сверхплотной звезды по мере ее сжатия.
Средняя плотность белого карлика – одна тонна в кубическом сантиметре. Если массу белого карлика увеличивать, сила тяжести будет расти быстрее, чем давление вырожденного электронного газа. Поэтому размер звезды уменьшится, а значит – плотность и давление возрастут. Когда плотность достигнет 100 тысяч т/см3, начнется процесс нейтронизации вещества. Электроны движутся так быстро, величина их Ферми-энергии оказывается такой большой, что электроны обретают способность пробить потенциальный барьер сил отталкивания и соединиться с протоном. Из слившихся протона и электрона возникает нейтрон. Если после этой реакции остается какой-то излишек энергии, его уносит нейтрино. Этот процесс и называется нейтронизацией вещества.
Почему реакция идет лишь при очень высоких плотностях? Дело в том, что нейтрон на 0,14 % массивнее протона. Значит, чтобы из протона мог образоваться нейтрон, протон должен получить дополнительную массу-энергию. Откуда эта энергия берется? Ее приносит электрон. Но откуда взяться такой энергии у электрона – ведь он «легче» протона почти в 1840 раз, его масса составляет лишь около 0,05 % массы протона. Вот если бы массу электрона увеличить втрое… Это можно сделать – нужно разогнать электрон до субсветовой скорости. Быстрые электроны существуют в вырожденном электронном газе, сжатом до плотности, в 100 тысяч раз большей, чем плотность обычного белого карлика. Только в этом случае электрон может столкнуться с протоном, захватиться им, и тогда вместо двух частиц – протона и электрона – возникают две другие – нейтрон и нейтрино. Если звезду сжать еще сильнее, то энергия электронов может стать больше предела, необходимого для нейтронизации. Избыток энергии уносят возникающие при нейтронизации нейтрино. Очевидно, что чем больше избыток энергии у электронов, тем большую энергию уносит каждое нейтрино.
Уже при плотности 100 миллионов т/см3 большая часть электронов захватывается, большая часть протонов превращается в нейтроны – возникает нейтронная звезда. А если звезду сжать еще сильнее? Тогда энергии электронов хватит не только для образования нейтронов, но даже для рождения более тяжелых частиц – гиперонов. Плотность вещества звезды максимальна в ее центре, значит, и гипероны начинают появляться сначала именно в центральных областях нейтронной звезды. По мере дальнейшего сжатия звезды гиперонное ядро увеличивается. Казалось бы, если продолжать сжимать звезду, увеличивая ее массу, настанет момент, когда «гиперонная опухоль» захватит все тело звезды. Но этого не происходит, и вот почему. Едва в звезде возникает небольшое гиперонное ядро, устойчивость звезды теряется окончательно и бесповоротно. Сила тяжести увеличивается настолько (ведь сжатие звезды происходит из-за увеличения ее массы), что никакое давление не может ему противостоять. Катастрофический коллапс наступает, прежде чем «гиперонная опухоль» успевает сколько-нибудь разрастись.
Итак, в начале шестидесятых годов почти все современные теоретические представления о сверхплотных звездах уже сложились. Во-первых, стало ясно, что никакая статическая сверхплотная звезда не может быть массивнее, чем примерно две массы Солнца. Во-вторых, стало ясно, что нейтронная звезда вовсе не является шариком из нейтронов. Структура ее сложнее. В центре – небольшое ядро, состоящее из гиперонов. Плотность ядра выше, чем миллиард тонн в кубическом сантиметре! Основную долю массы звезды составляет нейтронная жидкость, обладающая, как показали дальнейшие исследования, весьма необычными свойствами. Например, она сверхтекуча. Вот парадокс! На Земле с трудом удается получить сверхтекучие жидкости – приходится охлаждать вещество почти до абсолютного нуля, до минус 273 градусов Цельсия. А в недрах нейтронной звезды температура достигает сотен тысяч или миллионов градусов, и все же нейтронная звезда сверхтекуча. Это естественно – при сверхвысокой плотности сотня тысяч градусов все равно что нуль…
Ближе к поверхности звезды в нейтронной жидкости появляется примесь из ядер железа и вырожденного электронного газа. Эта область похожа по своей структуре на белый карлик, там и плотность такая же, около тонны в кубическом сантиметре. А еще выше, у самой поверхности, тоненькая твердая кора из обычного невырожденного вещества. Толщина коры ничтожна – всего несколько сантиметров! Вот что такое нейтронная звезда, если описать ее языком теоретиков.
Но для того чтобы опознать нейтронную звезду по этим признакам, нужно ее вскрыть и заглянуть внутрь. Для астронома-наблюдателя важны внешние признаки. Теория давала и их. Если температура на поверхности нейтронной звезды превышает миллион градусов, то такая звезда должна быть источником рентгеновского излучения.
Рентгеновское излучение из космоса действительно было обнаружено. Вскоре после второй мировой войны в небо поднялись первые мирные ракеты с гейгеровскими счетчиками на борту. Они изучали рентгеновское излучение Солнца. Пятнадцать лет велись такие исследования, но никто не предполагал, что на небе, кроме Солнца, могут быть и другие источники рентгеновского излучения. Это естественно. Солнце лишь миллионную долю своего полного излучения отдает в рентгеновский диапазон. Приборы были способны обнаружить рентгеновский поток от Солнца только потому, что до Солнца «рукой подать». Ближайшая звезда в сотни тысяч раз дальше от Земли, чем Солнце. Рентгеновский поток слабее в миллиарды раз. Все понимали, что нет никакой возможности такое излучение обнаружить.
Правда, могут быть звезды более горячие, чем Солнце. По теории излучение звезды приходится в рентгеновскую область, если температура поверхности достигает миллиона градусов. А температура обычной звезды (на так называемой главной последовательности звезд) тем больше, чем больше ее масса. Сириус втрое массивнее Солнца и вдвое горячее его. Для того чтобы звезда была в сотни раз горячее Солнца, масса ее тоже должна составлять сотни солнечных масс. Такие массивные звезды вряд ли существуют в природе. Если бы такая звезда и образовалась, она была бы разорвана внутренним давлением (тот случай, когда газовое давление превосходит тяжесть!). Ну, а раз таких звезд нет, то и искать рентгеновское излучение, не связанное с Солнцем, смысла нет. Его и не искали.
В возможность открытия рентгеновского излучения других звезд не верили настолько, что считали: скорее уж можно зарегистрировать рентгеновское излучение… Луны. Да, Луны, которая холодна и светит отраженным светом Солнца. Но Луну бомбардируют потоки космических лучей. До Земли они не долетают – мешает магнитное поле. На Луне же магнитного поля практически нет. Быстрые частицы врезаются в лунные породы, отдают свою энергию, заставляют поверхность Луны флюоресцировать. Примерно так, как испускала рентгеновские лучи трубка Крукса в том знаменитом опыте, когда К. Рентген обнаружил икс-лучи, получившие затем его имя. Вот эту рентгеновскую флюоресценцию Луны и хотели обнаружить американские ученые из группы Б. Росси, запустившие 18 июня 1962 года ракету типа «Аэроби» в верхние слои атмосферы. Обнаружить свечение Луны не удалось, но неожиданно был зарегистрирован сильный рентгеновский поток из области, близкой по направлению на центр нашей Галактики. Ничего больше о новом источнике узнать тогда не удалось.
Начали готовить следующий запуск. Новые счетчики могли локализовать источник на небесной сфере – если его удастся вновь обнаружить – с точностью до двух-трех угловых градусов. Для начала шестидесятых годов это была неплохая точность. Полет состоялся год спустя. Ракета «Аэроби» подняла счетчики на высоту 500 км. Напряженное ожидание – ведь миновал год после первого полета! – оказалось не напрасным. Источник был зафиксирован вновь. Удалось определить, что он находится в созвездии Скорпиона. И вот что удивительно! Во время второго полета приборы обнаружили еще один источник, и расположен он был в направлении на Крабовидную туманность.
Теперь предстояло выяснить, что же излучает – вся туманность или знаменитая южная звезда? Дело в том, что спектр синхротронного излучения Крабовидной туманности совершенно не похож на обычный спектр нагретого газа. Быстрые электроны, если уж каким-то образом они образуются в туманности, если они дают излучение в оптическом диапазоне, могут в принципе дать и более жесткое излучение – ультрафиолетовое и даже рентгеновское.
Идею проверки предложил И. С. Шкловский. 7 июля 1964 года должно было произойти довольно редкое событие – Луна, перемещаясь вдоль эклиптики, должна была закрыть собой Крабовидную туманность. Приборы того времени не обладали достаточной разрешающей способностью, чтобы дать изображение туманности в рентгеновском диапазоне, не могли выделить излучение южной звезды. Но представьте, что к туманности по небу приближается Луна. Если рентгеновским источником является южная звезда, Луна закроет ее мгновенно, и рентгеновское излучение мгновенно исчезнет. Если же излучает вся туманность, то источник будет гаснуть постепенно, по мере того как Луна будет наползать на туманность. Наконец, когда Луна полностью закроет туманность, источник погаснет. Полное затмение должно продолжаться 12 минут, затем источник появится вновь.
Ракета «Аэроби» стартовала в срок, а на Земле у приборов ученые с волнением ждали начала затмения. Эксперимент был сложным. Ведь наблюдения с борта ракеты непродолжительны – только в течение пяти минут ракета находится высоко над Землей. А затмение продолжается 12 минут. Ракету нужно было запустить с таким расчетом, чтобы захватить обязательно центральную фазу затмения, тот момент, когда Луна закроет южную звезду. В момент включения прибора на высоте 100 км скорость счета фотонов составляла 300 импульсов в секунду. Скорость счета плавно уменьшалась, и две минуты спустя источник исчез. Стало ясно: излучает не южная звезда, а вся туманность! Синхротронный ее спектр простирается до рентгеновского диапазона.
С новой силой дало о себе знать старое противоречие. В туманности обязательно должен быть инжектор релятивистских электронов (ведь это они дают рентгеновское излучение, двигаясь в магнитном поле Крабовидной туманности). Но в туманности нет такого инжектора. Это противоречие между наблюдениями и интерпретацией. Либо неверна интерпретация излучения Крабовидной туманности синхротронным механизмом, либо нужно искать источник быстрых частиц. Идея о синхротронном излучении туманности под сомнение не ставилась. В ее пользу говорил и вид спектра, и тот факт, что в радио и оптическом излучении была обнаружена поляризация, а это свойственно именно синхротронному излучению. Итак, нужно было искать источник.
Нагревать туманность или снабжать ее быстрыми электронами могло лишь нечто, расположенное в самой туманности. А в ней не было пока обнаружено ничего, кроме южной звезды. И не было никаких доказательств того, что южная звезда – нейтронная. Впрочем, даже если бы удалось найти какие-то веские аргументы в пользу такого предположения, это еще не могло разрешить противоречия. Крабовидная туманность ежесекундно излучает во всех диапазонах электромагнитных волн больше 1037 эрг. В тысячи раз больше полного излучения Солнца. В нейтронной звезде не предполагалось наличия таких источников энергии.
Астрофизики были уверены, что нейтронная звезда, горячая в момент образования, быстро остывает и из полумертвого тела становится окоченевшим трупом, которому одна дорога – на звездное кладбище. И это был прогресс в представлениях, ведь десятью годами раньше астрофизики и вовсе не верили в нейтронные звезды. А. Камерон сказал: может, нейтронная звезда хоть немного активна? Хотя бы для объяснения «жгутов»?.. В 1963 году американский астрофизик Дж. Бербидж – прекрасный наблюдатель и теоретик – писал, что источником небольшой активности нейтронной звезды могут быть радиоактивные изотопы, которые образовались в момент взрыва сверхновой и не «улетели» в пространство вместе с оболочкой. Конечно, и эта идея не объясняла, почему излучает туманность. Загадка оставалась. Нужна была более радикальная идея, но прежде предстояло сломать общее представление о нейтронных звездах как о мертвых телах.
Великая психологическая инерция скрывается в магии слов. Мертвая звезда. Мертвое тело, следствие гибели звезд. Слова гипнотизируют больше, чем нам порой кажется. Мы думаем – большое ли дело название, на ход рассуждений оно не влияет. Не влияет, если название бессмысленное. Как, например, сверхновые. Это лишь обозначение, физического смысла в нем нет. Но мертвая звезда…
В решении изобретательской задачи первый шаг —
формулировка условия без каких бы то ни было специальных терминов. К сожалению, в научной работе и этот способ не привился. Напротив, считается, что без соответствующей терминологии задачу просто невозможно сформулировать. А между тем сами термины начинают подталкивать наше сознание в определенном направлении. И часто – не в ту сторону, где лежит решение. Приведем примеры из техники, а потом вернемся к мертвым нейтронным звездам.
Как-то группе инженеров было предложено перекинуть через глубокую и широкую пропасть трубопровод, по которому должна перекачиваться нефть. Задача казалась неразрешимой – никакое увеличение сечения трубы не мешало ей изгибаться и ломаться. Но вот из условия задачи было выброшено слово «трубопровод». Нужно перебросить через пропасть какую-то «штуку» и по ней качать нефть. Решение пришло сразу. Нужно сделать эту «штуку» в форме двутавра, который обладает большим запасом прочности на изгиб. Не нужна труба, нужно сделать полый двутавр…
Еще пример. Десятки лет льды Арктики штурмуют мощные ледоколы, и столько же времени инженеры бьются над совершенствованием их конструкции. Но дело движется с трудом, потому что все сводится к увеличению мощности двигателя и усилению корпуса – колоть лед с большей силой. Такова магия названия – ледокол. Нужно было избавиться от нее, чтобы предложить идею корабля, состоящего из двух частей – верхней, которая находится над льдом, и нижней, расположенной под льдом. А соединены эти половинки параллельными стенками, которые, будто лезвия острых ножей, режут лед. Вовсе не нужно протискивать сквозь лед всю махину корабля – только узкие лезвия легко проходят насквозь, а сам корабль (можно ли назвать его ледоколом?) движется над и под льдом…
Таких примеров магии слов в технике множество. Есть они и в науке.
Впрочем, общее представление о нейтронных мертвых звездах, казалось, подтверждается и фактами. Речь идет о звездах рентгеновских.
Открытие источника излучения в созвездии Скорпиона, а затем Крабовидной туманности привело к рождению нового направления исследований: рентгеновской астрофизики. К середине 1964 года было открыто около 20 космических рентгеновских источников. Все они, кроме Крабовидной туманности, были переменными – уже одно это говорило в пользу звездной природы объектов. Рентгеновские источники меняли свою яркость в два-три раза от одного полета ракеты до другого. Это означает, что размеры излучающей области не очень-то велики и сравнимы скорее всего с размерами звезд. Но обычные звезды, как мы уже говорили, в рентгеновском диапазоне практически не излучают. Значит, остаются звезды компактные, то есть нейтронные. И даже более того. Речь конкретно шла о горячих нейтронных звездах. О какой-то иной активности и речи не было. Нейтронные звезды могут только остывать, а если рентгеновские источники могут быть нейтронными звездами, то только остывающими.
Казалось бы, это легко проверить. У любого нагретого тела очень специфическое распределение энергии в спектре – такой спектр называется излучением черного тела. Достаточно запустить ракету, измерить, сколько излучает источник в разных диапазонах, и… И ничего бы не получилось. Точность измерений в то время еще не позволяла сказать надежно, какой именно спектр наблюдается. Это мог быть и спектр черного тела, и нагретой прозрачной плазмы, и синхротронное излучение электронов, как в Крабовидной туманности. У интерпретатора была полная свобода выбора. А интерпретировать наблюдения проще всего было именно спектром черного тела. Не нужно было искать новых объяснений. Так получилось, что первым свойством нейтронных звезд, которое было хорошо исследовано теоретически, было свойство их остывания. В течение двух-трех лет были опубликованы десятки работ и выяснилось, что нейтронная звезда остывает очень быстро, лет за десять ее температура уменьшается до сотен тысяч градусов. А при такой температуре нейтронная звезда уже не может быть источником рентгеновского излучения.
К тому же выяснилось еще одно обстоятельство. Двадцать обнаруженных рентгеновских источников располагались на небе преимущественно в направлении на центр Галактики. Из этого следовало, что расстояние до них в среднем сравнимо с расстоянием до галактического центра. Действительно, если бы источники находились значительно ближе к Земле, чем центр Галактики, то они с равной вероятностью могли бы наблюдаться во всех направлениях на небе, кроме разве что высоких галактических широт, где звезд вообще мало. А расстояние до центра Галактики велико, около 10 кпс. Чтобы рентгеновский источник на таком расстоянии имел наблюдаемую интенсивность, он должен ежесекундно излучать до 1038 эрг! В десятки тысяч раз больше, чем излучает Солнце во всех диапазонах. Может ли излучать так много горячая нейтронная звезда? Не может. Даже нагретая до 10 миллионов градусов нейтронная звезда будет излучать лишь 6*1036 эрг/с. К тому же такая высокая температура в нейтронной звезде держится очень недолго. Возникает противоречие: горячих нейтронных звезд должно наблюдаться очень мало, на самом деле число рентгеновских источников уже в 1965 году перевалило за два десятка. Реальное же число могло достигать и сотен – ведь ракеты осматривали небольшие участки неба…
Противоречие между наблюдениями и интерпретацией: либо рентгеновские источники вовсе не такие мощные, как кажется, либо это не горячие нейтронные звезды. А что же тогда?
Внутри нейтронной звезды нет иных источников энергии, кроме тепловых. Значит, нужно искать источники внешние. Что-то, находящееся вне нейтронной звезды, сообщает ей энергию.
Вне нейтронной звезды – космос, пространство, заполненное межзвездным газом. Местами газ собирается в облака повышенной плотности, в газовые туманности. Если в облаке оказывается яркая голубая звезда, она освещает облако будто прожектор, она ионизует водород, из которого состоит облако, и мы наблюдаем яркие диффузные туманности. А если яркой звезды поблизости нет, газ не светится, и мы видим черные провалы, сквозь которые с трудом проникает свет далеких звезд. Газа в Галактике немало – около десятой доли массы всей нашей звездной системы. Однако средняя плотность этого газа – одна частица в см3! Чем может помочь эта непустая пустота?
На этот вопрос ответил в 1964 году советский ученый Я. Б. Зельдович, с именем которого связано развитие релятивистской астрофизики в нашей стране. Пусть в межзвездном газе движется звезда. Она притягивает все вокруг, в том числе, конечно, и частицы газа. Газ начинает падать на звезду. Газ достигает поверхности звезды, и накопленная им при падении кинетическая энергия выделяется в виде тепла. Газ нагревается и излучает. Вот и источник энергии.
О том, что звезды могут в принципе захватывать газ, было известно и раньше. Такой процесс называется аккрецией. Как-то предлагали аккрецию для объяснения, почему светят звезды. Было это, конечно, до открытия ядерных источников звездной энергии. Но расчеты показали, что звезда захватывает слишком мало вещества, объяснить с помощью аккреции свечение звезд совершенно невозможно.
Но сейчас речь идет не об обычных звездах, а о нейтронных. Частица, достигшая поверхности нейтронной звезды, обладает энергией в 20 тысяч раз большей, чем такая же частица, упавшая на Солнце. При аккреции межзвездного газа на нейтронную звезду на каждый грамм падающего вещества выделяется в 20 тысяч раз больше энергии, чем при аккреции на звезду обычную. Теоретики подсчитали, что звезда с массой, равной массе Солнца, ежесекундно может захватить из межзвездного пространства около миллиарда тонн вещества. По нашим земным меркам это очень много. Но давайте считать дальше. Если все это вещество упадет на Солнце, выделится около 1030 эрг энергии. Это в 4 тысячи раз меньше, чем Солнце в действительности излучает. Значит, излучение Солнца аккрецией никак не объяснить. А теперь вернемся к нейтронной звезде. Миллиард тонн вещества, упавший на ее поверхность, выделит до 1035 эрг энергии.
Это много, но не очень. Светимость рентгеновских источников, как мы видели, может быть в сотни раз больше. Нужно, однако, учесть, что выше речь шла об аккреции «обычного» межзвездного газа с плотностью одна частица в кубическом сантиметре. А в Галактике много плотных газовых облаков, где в каждом кубическом сантиметре находятся сотни и тысячи атомов. Соответственно возрастает скорость аккреции, увеличивается рентгеновская светимость источника…
Однако описанный процесс слишком оптимистичен. В действительности есть силы, уменьшающие аккрецию. Советский астрофизик В. Ф. Шварцман, много сделавший для теории аккреции, пришел к выводу, что релятивистская звезда не в состоянии захватить столько межзвездного вещества, чтобы обеспечить светимость даже 1035 эрг/с, не говоря о более высокой. Точный расчет показал, что максимум, на который можно надеяться, это всего лишь 1030 эрг/с. Обнаружить такой слабый источник двадцать лет назад нечего было и пытаться…
Но может быть, существуют другие способы обнаружения нейтронных звезд? Давайте применим морфологический метод. Построим морфологический ящик, куда включим все возможные свойства нейтронных звезд и все внешние тела и процессы.
Во-первых, нейтронная звезда проявляет себя силой тяжести. Во-вторых, если она нагрета, то проявляет себя излучением. В-третьих… Пожалуй, все.
Не много. Попробуем другую ось. Что находится вне нейтронных звезд? Во-первых, межзвездный газ. Во-вторых, другие звезды – обычные…
Достаточно. Ящик еще почти пуст, а неплохая идея найдена. Вспомним открытие белого карлика – спутника Сириуса. Так же можно поступить и сейчас, только с еще большими шансами на успех. Ведь масса нейтронной звезды больше массы белого карлика. Представьте, что спутником Сириуса является нейтронная звезда, а не белый карлик. В телескопы мы ничего не увидим – в отличие от белого карлика нейтронная звезда быстро остывает. Однако, пользуясь законами небесной механики, мы могли бы определить массу невидимого тела в системе Сириуса и сказали бы: вот странная звезда! Масса ее больше, чем масса самого Сириуса, но мы ее не видим. А между тем звезда должна светить тем ярче, чем она массивнее. Значит, мы обнаружили необычную звезду. Но и не белый карлик – слишком велика масса. Остается одно – объявить, что в системе Сириуса находится звезда сверхплотная. Та, которую мы ищем.
Описанный метод поиска нейтронных звезд и черных дыр в двойных системах был предложен советскими учеными Я. Б. Зельдовичем и О. X. Гусейновым в 1965 году. В том же году Я. Б. Зельдович и И. Д. Новиков сделали еще одно интересное заключение. Представьте опять двойную систему, состоящую из обычной и сверхплотной звезд. Обычные звезды теряют свое вещество – существует, например, звездный ветер, как у Солнца. Но Солнце «худеет» очень медленно. В двойной системе звезда способна терять вещество значительно быстрее. Это вещество – точнее, его часть – захватывается полем тяжести сверхплотной звезды. Такой процесс эффективнее процесса аккреции межзвездного газа. Значит, нейтронная звезда или черная дыра в двойной системе могут стать рентгеновскими источниками большой яркости!
Итак, вот уже несколько способов обнаружения нейтронных звезд. Первый – горячие нейтронные звезды. Второй – нейтронные звезды, заглатывающие межзвездный газ. Третий – нейтронные звезды в двойных системах.
Добавим еще один способ. В 1964 году Я. Б. Зельдович и О. X. Гусейнов обратили внимание на то, что в момент смерти звезды, когда идет процесс коллапса, когда из протонов и электронов рождаются нейтроны, в пространство уходит мощный импульс нейтринного излучения.