355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Павел (Песах) Амнуэль » Загадки для знатоков. История открытия и исследования пульсаров » Текст книги (страница 11)
Загадки для знатоков. История открытия и исследования пульсаров
  • Текст добавлен: 9 октября 2016, 00:19

Текст книги "Загадки для знатоков. История открытия и исследования пульсаров"


Автор книги: Павел (Песах) Амнуэль



сообщить о нарушении

Текущая страница: 11 (всего у книги 13 страниц)

Казалось бы, не одно противоречие – так другое! Почему должен вдруг уменьшиться момент инерции?

Момент инерции звезды зависит от ее массы и размеров, а также от того, как распределено внутри звезды вещество, как быстро растет плотность с приближением к центру звезды. Не будем говорить о массе – вряд ли масса нейтронной звезды может скачком уменьшиться. Но вот размеры и распределение вещества… М. Рудерман почти сразу после обнаружения сбоя периода у пульсара PSR 0833—45 дал объяснение этому феномену. Он предложил гипотезу «звездотрясения». Что-то происходит со звездой, ее неспокойные недра переживают какие-то катаклизмы, о которых мы пока ничего не знаем. И напряжения в веществе нейтронной звезды неожиданно приводят к тому же, к чему приводят напряжения в земной коре – происходят «звездотрясения». Самое мощное землетрясение на нашей планете не в состоянии своротить даже небольшой горный хребет – для этого недра Земли недостаточно активны. А «звездотрясения» в нейтронных звездах охватывают всю звезду, перестраивают ее недра, уплотняя их, и радиус звезды скачком уменьшается.

Насколько же должен уменьшиться радиус нейтронной звезды, чтобы объяснить наблюдаемый скачок периода? Оказывается, радиус звезды Минковского в Крабовидной туманности в момент «звездотрясения» стал меньше на… сотую долю миллиметра! Всего-навсего.

Наблюдая торможение вращения пульсаров, можно достаточно надежно определить: действительно ли именно энергия вращения идет на ускорение газовой туманности, на излучение туманности и пульсара. Достаточно ли для всего этого одной вращательной энергии, или нужны еще иные источники?

Крабовидная туманность и южная звезда излучают во всех диапазонах длин волн ненамного больше, чем 1037 эрг/с. А какова величина потери вращательной энергии? Изменение энергии вращения пропорционально моменту инерции нейтронной звезды, угловой скорости вращения и изменению этой скорости. Южная звезда вращается с угловой скоростью 190 рад/с. Ежесекундно эта скорость уменьшается на 2,5*109 рад. А момент инерции нейтронной звезды примерно равен 3*1044 г*см2. Перемножив эти числа, получим, что вращательная энергия южной звезды ежесекундно уменьшается примерно на 1038 эрг. Этого вполне достаточно и для ускорения расширения туманности, и для ускорения релятивистских частиц, впрыскиваемых в туманность, и для излучения туманности и пульсара, и даже остается немного на другие виды излучений, которые наши приборы пока не воспринимают.

Так в 1969 году было окончательно доказано, что в Крабовидной туманности находится активная вращающаяся магнитная нейтронная звезда.

Нужно сказать, что нам очень повезло с самого начала нашего «расследования». Повезло в том, что мы начали расследовать гибель звезды в 1054 году, а не какую-нибудь другую вспышку сверхновой.

Сверхновая 1054 года – поистине уникальный объект. Вспышка была так ярка, что звезда-гостья была видна даже днем. Первым газообразным остатком сверхновой, обнаруженным астрофизиками, была Крабовидная туманность – остаток вспышки 1054 года. Первым остатком сверхновой, для которого удалось определить возраст, была Крабовидная туманность. Первым (и пока единственным) остатком, расширяющимся ускоренно, является Крабовидная туманность. Первым остатком сверхновой, в котором была обнаружена внутренняя активность, быстрые движения «жгутов», была Крабовидная туманность. Первый остаток сверхновой, в центре которого обнаружена оптическая звезда, – Крабовидная туманность. Южная звезда в Крабовидной туманности (звезда Минковского) стала первым объектом, о котором сказали – это, может быть, нейтронная звезда. Среди первых радиоисточников, обнаруженных на заре развития радиоастрономии, числится Крабовидная туманность. Одним из первых обнаруженных рентгеновских источников была Крабовидная туманность. Повезло даже в том, что Крабовидная туманность регулярно затмевается Луной, а ведь вероятность такого благоприятного расположения не так уж и велика. Именно наблюдение затмения Крабовидной туманности Луной позволило определить размеры рентгеновского источника в этом остатке сверхновой. Одним из первых пульсаров, открытых учеными, был пульсар в Крабовидной туманности. Этот пульсар обладает одним из самых коротких периодов вращения. Его пульсирующее излучение наблюдается в радио, оптическом и рентгеновском диапазонах. И наконец, пульсар в Крабовидной туманности – один из двух пульсаров, в недрах которых происходят «звездотрясения»…

Целый паноптикум астрофизических аномалий! И в чем нам особенно повезло, так это в том, что сверхновая 1054 года вспыхнула на расстоянии всего 6 тысяч световых лет от Солнца. Она ведь могла вспыхнуть и на противоположном крае Галактики! Кто знает, как пошло бы тогда развитие астрофизики?

Не приходим ли опять к противоречию? Мы стремимся, чтобы открытия делались не случайно, но ведь вспышка сверхновой 1054 года со всеми ее аномалиями – именно случай… Что ж, это прекрасное противоречие! Открытие делается случайно, и в то же время оно делается не случайно. В этом диалектика познания. Мы можем предсказать, что должно быть обнаружено некое явление, но не всегда удается сказать, в какой области неба, где именно это предсказанное явление искать. Предсказание свойств пульсаров и остатков сверхновых звезд – закономерность. Открытие Крабовидной туманности со всем арсеналом ее уникальных свойств – случайность. Единичное явление может быть и случайным, общее же свойство всегда закономерно вытекает из прошлого опыта.

* * *

Научные теории – это сложные системы, развивающиеся по свойственным им законам. Научные системы отражают реальные свойства систем природных. И природные системы развиваются по свойственным им законам. Каждый элемент системы может обладать всеми свойствами, присущими системе в целом, а может обладать лишь частью этих свойств. И может – в крайнем случае – отражать лишь одно-единственное из свойств системы. Крабовидная туманность – один из элементов природной системы «остатки сверхновых». К счастью, этот элемент обладает практически всеми свойствами целой системы!

Современной науке свойствен именно системный подход к изучаемым явлениям. Объект называют системой, если его можно каким-либо определенным образом расчленить на составные части – подсистемы, а подсистемы в свою очередь – на элементы. Развитие научных систем приводит к тому, что системы сменяют друг друга. Если в одной из систем возникает противоречие, то при устранении его возникает другая система представлений. Старая и новая системы представлений могут не сильно отличаться друг от друга – тогда смена систем происходит естественно, без кризисов. А может быть и так, что старую систему приходится ломать и строить новую. Так система представлений Эйнштейна об относительности пространства-времени сломала ньютоновскую систему представлений о пространстве как о вместилище явлений и о времени как о простой последовательности событий.

Вспомним морфологические ящики Ф. Цвикки. Это ведь тоже системы, объединяющие в своих клетках-элементах все наблюдаемые и ненаблюдаемые, но вероятные свойства тел и явлений. Со временем отдельные элементы системы (клеточки ящика) приходят в противоречие друг с другом. И тогда система нуждается в изменении. Мы дополняем морфологический ящик осью изменений и называем его фантограммой. Получается, что фантограмма – это надсистема, описывающая нашу систему во всех ее возможных изменениях. И беда не в том, что фантограммы (надсистемы) и морфологические ящики (системы) слишком велики, нет, беда в том, что мы не знаем пока, как работать с такими системами. Мы изменяем всю систему, где больше, где меньше, где уменьшаем, где увеличиваем, где используем прием динамизации, а где прием «наоборот». Мы строим (мысленно и чаще всего подсознательно) множество надсистем и не знаем, где искать то единственное решение, ту единственную клеточку, тот единственный элемент новой системы, который нам нужен и который является предсказанием открытия.

И еще одно надо сказать: каждый элемент системы, каждая клетка морфологического ящика тоже может являться системой со своими элементами. Системный подход многогранен. Говоря о фантограммах для системы «растение», мы сделали заключение, что менять можно не только систему (дерево), но и подсистему (вещество дерева) или надсистему (лес). В каждом случае возникает множество новых фантастических систем. Но и подсистема (вещество дерева) в свою очередь делима и представляет собой систему по отношению к своим ячейкам-подсистемам (например, ячейка – строение вещества). Фантограмма в принципе описывает гораздо более широкий класс явлений, чем тот, для описания которого ее строили. Описывает она и явления, которые, возможно, и не существуют в природе.

Когда Э. Хьюиш обнаружил первый пульсар, он был так поражен, что пренебрег «презумпцией естественности» и на время предположил, что сигналы имеют искусственное происхождение. Так Э. Хьюиш столкнулся с новой для себя системой – морфологическим ящиком «внеземной разум». Как многие ученые до и после него, Э. Хьюиш методом проб и ошибок выбрал одну из подсистем – ту, которая приходит на ум первой и именно поэтому, вероятно, является ошибочной. Э. Хьюиш предположил, что те, достигшие в дали космоса высокой ступени разумности, мыслят и действуют так же, как мыслим и действуем мы. Более того – как мыслим и действуем мы сейчас и как, возможно, не станем мыслить и действовать завтра.

В шестидесятых годах была популярной идея о поисках радиосигналов от ближайших звезд, проект ОЗМА поиска таких сигналов уже успел закончиться ничем, но энтузиазм еще не успел угаснуть. Разрабатывались варианты космических языков, космический корабль «Пионер», отправившийся в полет за пределы Солнечной системы, унес с собой табличку с изображениями людей и расположениями планет. А на Земле тысячи «очевидцев» наблюдали выход «маленьких зеленых человечков» из летающих тарелок – межзвездных кораблей инопланетян.

Все это можно охарактеризовать одним словом – антропоморфизм. Мы не знаем, как могут выглядеть, как могут думать, как могут действовать существа из далеких звездных миров. У нас нет примеров цивилизаций, кроме нас самих. Морфологический ящик «разумная жизнь» содержит сейчас лишь одну реально обнаруженную клеточку-подсистему – человечество. И говоря об иных цивилизациях, о контактах с ними, ученые обычно, явно или неявно, говорят о нас самих. В сущности, предполагая, что исследует возможности контактов, человечество познает свои собственные – и ничьи больше – экспериментальные возможности. Человечество глядится в зеркало и полагает, что зеркала нет, что в рамке – даль бесконечного космоса…

Но внеземные цивилизации могут быть в принципе совершенно различны. И прежде чем говорить о возможности межзвездной связи, прежде чем пытаться объяснять периодические сигналы пульсаров деятельностью разума, нужно построить систему внеземных цивилизаций. Всю систему, а не одну из подсистем. Оси – среда обитания (космос, поверхность планеты, поверхность звезды, недра планеты, океан…), микроструктура (атомарный уровень, молекулярный…), форма объединения (симбиоз, общество…), направление эволюции, темп эволюции… Осей этого морфологического ящика может быть много, типов цивилизаций – еще больше. Всякая наука начинается с систематизации. С систематизации внеземных разумов должна начать и зарождающаяся наука о внеземных цивилизациях.

Возникает вопрос: нам такие цивилизации неизвестны – что же систематизировать? Нужно систематизировать возможности! Если нет фактов, нужно построить систему артефактов. Такую систему медленно, но верно методом проб строят писатели-фантасты. Каждое новое произведение о внеземной цивилизации – заполнение новой клеточки-подсистемы в огромном морфологическом ящике. Попробуйте систематически достроить эту систему – и вы найдете в ней и нас с вами, и мыслящий океан Солярис, и птиц, летающих под поверхностью планеты (они описаны в рассказе Ф. Брауна «Планетат – безумная планета»), и плазменное существо, обитающее в недрах Солнца («Правда» С. Лема), и мыслящие газовые облака («Черное облако» Ф. Хойла), и многие другие формы разума, описанные и еще не описанные фантастами…

В этом морфологическом ящике будут клетки, которые снимут известное противоречие. Вот оно: внеземной разум, если он достаточно развит, должен проявлять себя в космических масштабах. Но он не может проявлять себя в космических масштабах, потому что ничего подобного не наблюдается.

Как обычно снимается это противоречие? Используют приемы ограничения и локализации. Ограничивают время жизни цивилизаций и локализуют возможные области зарождения разума. Суживают систему «внеземные цивилизации», искусственно выбрасывают из нее очень многие клетки-возможности. При этом четко соблюдается принцип антропоморфизма. Просто сейчас нет цивилизаций. Нет в ближайших окрестностях, нет в Галактике, а возможно, нет нигде во Вселенной. Советский астрофизик И. С. Шкловский считал, что последнее предположение не противоречит диалектическому материализму. Это так. Но что на самом деле представляет собой мнение И. С. Шкловского? Клетка «антропоморфные цивилизации» пуста. Значит ли это, что в космосе нет цивилизаций вообще? Пуста одна клетка системы – значит ли это, что вся система являет собой, как говорят математики, пустое множество?

В фантастике нет постепенности, присущей науке, фантасты пользуются очень сильными приемами. Например – приемом искусственности. И проблема «молчания космоса» снимается. Точнее, фантасты заполняют морфологический ящик «космические сигналы» своими идеями.

Так, искусственными были объявлены квазары.

Предполагалось, что мы видим работающие двигатели чужих звездолетов (рассказ Г. Альтова «Порт Каменных Бурь»). В том же рассказе шаровые скопления тоже объяснялись деятельностью сообщества цивилизаций. «Презумпция естественности» запрещает ученым не только принимать, но даже обсуждать серьезно такие предположения. А между тем все ли «естественные» объяснения небесных явлений истинны?

Пример: правильные короткопериодические переменные звезды. Их называют еще звездами типа RR Лиры. Период их пульсаций – всего несколько часов. Конечно, до пульсаров им далеко, но речь сейчас о другом. Представим себе, что когда-то около звезды типа RR Лиры на одной из планет возникла жизнь, а затем и разум. Жизненные процессы в этих существах, их «биоритмы» будут определяться ритмом пульсаций звезды. Начав галактическую экспансию, такая цивилизация прежде всего колонизует планеты около звезд типа RR Лиры. А если таких звезд окажется мало, то разум будет стремиться изменить нужным образом параметры обычных звезд. Начнет вмешиваться во внутризвездные процессы, создавая пульсации, которые так необходимы ему для нормального существования. Не потому ли так много короткопериодических цефеид в шаровых звездных скоплениях – самых древних образованиях в Галактике?..

Не думайте, что все сказанное – лишь игра воображения, интересная для фантастики и не имеющая отношения к реальности. Да, игра – но по правилам. И потому выигрыш в этой игре обеспечен. Морфологический ящик «деятельность иных цивилизаций» постепенно заполняется, и к сожалению, ученые в этом почти не принимают участия. А между тем какие-то клетки этого морфологического ящика могут соответствовать реальности…

Внеземные цивилизации – пример системы, еще не исследованной, но очень богатой возможностями. И прекрасный объект для тренировки творческого воображения. Один из многих.

Об основных методах тренировки воображения мы уже говорили – о методе приемов, морфологическом анализе, фантограммах. Есть и другие методы.

Например, метод ассоциаций (фокальных объектов). Давно известно, что на ум приходят прежде всего ассоциации близкие, родственные. Вы думаете о снеге и, по ассоциации, о дожде, о белом цвете, о погоде вообще… Но наиболее продуктивны, и в научном творчестве приводят к успеху, ассоциации далекие, неочевидные, безумные. Поэтому на занятиях по РТВ для создания ассоциативных связей используют совершенно случайные слова. Например, «животное» и «туннельный эффект». Ничего общего? Но мы тренируем воображение – давайте придумаем фантастическую идею, используя эту ассоциацию. Животное, обладающее свойством туннельного эффекта. Как это возможно, ведь туннельный эффект – свойство элементарных частиц с той или иной вероятностью преодолевать потенциальный барьер. Спокойно, давайте фантазировать. Вот наше животное, обычное на вид, скажем кот, но отличающееся тем, что способно иногда преодолевать любой силовой барьер. Или проходить сквозь стены (правда, не всегда, а с определенной вероятностью!). Может пройти, а может и нет. Жизнь у нашего кота сложная. Он знает, что от собаки может удрать сквозь стену. Но не знает – сможет ли сделать это в данном конкретном случае. Возможно, и не получится. Можно написать рассказ о таком животном, даже о целой их колонии на далекой планете. Прилетают наши космонавты, располагаются, и неожиданно посреди комнаты возникает… Попробуйте написать сами – на досуге.

Вот еще один метод тренировки воображения, предложенный писателем-фантастом Г. Альтовым. Называется метод этажным конструированием.

Каждую фантастическую идею можно расположить на одном из четырех этажей фантазии. На первом этаже воображение еще не включено – вы просто выбираете объект, который собираетесь подвергнуть изменению. В качестве примера Г. Альтов описывает объект «космический скафандр». Итак, первый этаж – один скафандр. Этаж второй – система скафандров. Идея первого этажа еще не фантастична: это идея использования скафандра при работе в открытом космосе. Идея второго этажа: космические поселения, тысячи или миллионы людей в скафандрах обживают космос.

Идея третьего этажа формируется так: нужно достичь той же цели, что и на первых этажах, но без использования объекта. То есть нужно защитить человека от пустоты космоса, но без скафандра.

Мы столкнулись с противоречием: человек не может находиться в космосе без скафандра (так есть), и человек должен находиться в космосе без скафандра (так мы хотим). Как разрешить противоречие? Нужно что-то изменить: либо человека, либо космос. Начнем с человека – это третий этаж. Изменим человека так, чтобы он мог находиться в открытом космосе без скафандра. Фантастика знает такие идеи – идеи киборгизации человека…

Поднимемся этажом выше. Здесь должна быть описана ситуация, когда вовсе отпадает необходимость в достижении поставленной цели. Какая у нас была цель? Оградить человека от космоса. Значит, четвертый этаж – человека не нужно ограждать от космоса. Вернемся к нашему противоречию. Вы уже догадались, что нужно сделать? Конечно, изменить космос, сделать его таким, чтобы обычные люди могли в нем жить. Так возникает идея Большого Диска. Нужно раздробить одну из планет, например Юпитер. Раздробить в пыль, в газ и рассеять по космическому пространству. В плоскости эклиптики возникнет газопылевое облако, как на заре эволюции Солнечной системы. В это облако можно добавить кислорода (долой психологическую инерцию, мы ведь учимся фантазировать!), и появится возможность дышать. Появится возможность летать в межпланетном пространстве на обычных винтовых самолетах, даже на воздушных шарах. В космосе будут собираться тучи, и греметь космические грозы, и сверкать космические молнии…

* * *

Мы, пожалуй, увлеклись развитием воображения, а ведь наше расследование еще не закончено. Мы узнали, как астрономы открыли пульсары – нейтронные звезды. Но можем ли мы сказать, что такое взрыв сверхновой: трагическая случайность или закономерный конец, ожидающий каждую звезду, масса которой больше чандрасекаровского предела? Или иначе. Всегда ли пульсар – нейтронная звезда – является на свет после взрыва сверхновой? На эти и на многие другие вопросы еще предстояло ответить…

Глава восьмая
«Тихий» коллапс. Подсчеты вспышек. Почему вспыхивают сверхновые! Перспективы

…Почти в каждой детективной новелле наступает такой момент, когда исследователь собрал все факты, в которых он нуждается…

Эти факты часто кажутся совершенно странными, непоследовательными и в целом не связанными. Однако великий детектив заключает, что в данный момент он не нуждается ни в каких дальнейших розысках и что только чистое мышление приведет его к установлению связи между собранными фактами. Он играет на скрипке или, развалясь в кресле, наслаждается трубкой, как вдруг, о Юпитер, эта самая связь найдена…

А. Эйнштейн

Подойдем к проблеме систематически. Есть сверхновые и есть пульсары. Мы связали их однозначно, но правильно ли это? В системе «пульсары и сверхновые» есть несколько подсистем. Вариант первый: все пульсары рождаются при взрыве сверхновой, и при взрыве каждой сверхновой рождается пульсар. Вариант второй: не все пульсары рождаются при взрывах сверхновых. Вариант третий: не каждый взрыв сверхновой приводит к рождению пульсара. Третий вариант можно в свою очередь разделить на элементы. Один элемент: взрыв сверхновой приводит к образованию не пульсара – нейтронной звезды, а черной дыры. Другой элемент: при взрыве сверхновой звезда разваливается полностью, никакого звездообразного остатка вовсе не образуется. Третий элемент: при взрыве сверхновой нейтронная звезда возникает, но не проявляет себя как пульсар по тем или иным причинам…

Видите, сколько возможностей? А мы все время говорили об одной. В ходе расследования нам нужна была рабочая гипотеза, но сейчас, когда нам скоро предстоит поставить точку, нужно исследовать и другие возможности. Например: образование пульсара без такого катастрофического явления, как взрыв сверхновой. «Тихо», без театральных эффектов.

Казалось бы, в этом рассуждении уже есть ошибка. Мы ведь говорили, что потенциальная гравитационная энергия нейтронной звезды составляет примерно 1053 эрг. Эта энергия должна выделиться при сжатии, при катастрофическом коллапсе звезды. Не может же она исчезнуть! И выделиться эта энергия обязана быстро – ведь процесс катастрофического коллапса продолжается секунды, самое большее минуты.

Все это верно. Но в какой форме эта энергия выделяется – вот вопрос! Мы все время считали, что энергия выделяется в основном в форме лучистой энергии вспышки и кинетической энергии разлета оболочки. Но вспомним – вся эта энергия, с которой связывается взрыв сверхновой, вряд ли больше 1051 эрг. Это ведь сотая доля той энергии, которая должна в действительности выделиться!

Что же получается? Вспышка сверхновой недостаточна – она не столь энергична, как нужно. Но если она недостаточна, то зачем она вообще нужна? Почти вся энергия – около 99 % – выделяется в неизвестной нам пока форме. Но сказать «почти вся» или «вся» – разница невелика. Вполне могло быть и так, что пульсар образовался, коллапс произошел, а сверхновая не вспыхнула – некая, еще не известная нам причина унесла не почти всю, а полностью всю энергию…

Однако мы ведь видим вспышки сверхновых своими глазами! Правда, из этого следует только то, что какая-то часть (может, большая, а может, и малая, заранее этого не скажешь) нейтронных звезд рождается с грандиозным фейерверком, а другая часть – без внешних эффектов. Энергия куда-то уходит, вот и все.

Куда и как? Обратимся к морфологическому анализу. Давайте перечислим, какие виды энергий существуют в природе, кроме кинетической и лучистой.

Например, гравитационное излучение. Расчеты, однако, показывают, что на гравитационное излучение уходит тоже всего несколько процентов полной потенциальной энергии. Волны тяготения – все равно, что помощь мышонка в вытягивании репки. Правда, вытянул ее именно мышонок, но что бы он делал, если бы бабка да дедка не взяли на себя 99 % труда? Вот нам и нужно найти для нашей задачи таких бабку и дедку…

Тепловая энергия. Энергия тяготения переходит в тепло, а уж тепло… Нет, тепловая энергия тоже не годится. Звезда теряет тепло с поверхности, и это медленный процесс. Продолжается он не секунды месяцы и годы.

Есть еще ядерная энергия, энергия частиц. Как мы увидим, здесь и скрывается решение. Но это – позднее. Оставим на время физический подход и попробуем подойти к проблеме с точки зрения астрофизики. Допустим на минуту, что смерть звезды всегда сопровождается грандиозным фейерверком. Подсчитаем, сколько звезд с массами больше чандрасекаровского предела умирают ежегодно в Галактике. И подсчитаем отдельно, сколько ежегодно возникает в Галактике пульсаров. И если оба числа точно совпадут…

Если оба числа точно совпадут, это может оказаться и случайностью. Вспомним, как все 12 сверхновых, обнаруженных Р. Минковским и Ф. Цвикки в тридцатых годах, оказались сверхновыми первого типа. Был сделан «естественный» вывод: все сверхновые именно такие. Слишком уж мала была вероятность случайного совладения. Сейчас мы знаем, однако, что сверхновые I и II типов вспыхивают в спиральных галактиках почти одинаково часто. Или пример Крабовидной туманности – счастливая, богатая загадками, случайность.

Можно привести немало примеров из истории астрономии, когда случайности, статистические отклонения определяли развитие исследований на годы и десятилетия. Но случайности только оттеняют закономерности. Нужно все же исходить из того, что все в природе происходит с закономерностью. При этом нужно помнить, что речь идет о закономерности статистической, где всегда есть, конечно, риск случайного совпадения или отклонения. Если каждый год рождается, скажем, одна нейтронная звезда, и если каждый год происходит одна вспышка сверхновой, и если мы к тому же знаем, что эти два явления связаны, то из этого следует с определенной вероятностью, что связаны они однозначно.

Прежде чем перейти к числам, давайте проследим жизненный путь звезды с самого момента ее рождения.

Звезды рождаются при конденсации межзвездного газа. Газ сжимается под действием собственного тяготения. Разваливается на сгустки. Каждый сгусток продолжает сжиматься, пока недра его не станут настолько горячи, что начинают идти ядерные реакции. Так рождается звезда.

Звезды при рождении имеют самые разные массы. И чем больше масса звезды, тем меньше вероятность ее рождения. Самые распространенные звезды в Галактике – это карлики с массой меньшей, чем масса Солнца. Время их жизни так велико, что даже те карлики, которые родились вместе с Галактикой, еще не завершили эволюцию. А вот массивные звезды, напротив, живут недолго. Звезда с массой 10 масс Солнца светит так ярко, что весь свой запас ядерного топлива сжигает за 100 миллионов лет. И гибнет. Если бы такие звезды не возникали постоянно и в наши дни, то давно бы ни одной массивной звезды в Галактике не осталось. Существует так называемое динамическое равновесие – сколько звезд с данной массой ежегодно рождается, столько же примерно и умирает. Так что общее число таких звезд остается без изменения.

Мы хотим знать, сколько звезд данной массы ежегодно умирает в Галактике. Из наблюдений обычных звезд мы можем, однако, определить, да и то приблизительно, только число рождений. Впрочем, если мы говорим, что умирает ровно столько звезд данной массы, сколько рождается, то достаточно, казалось бы, определить число рождений…

На самом деле все не так просто. Звезда проходит нелегкий жизненный путь, ядерные реакции в ее недрах то затухают, то идут более интенсивно. Меняются источники энергии – когда кончаются запасы водорода, начинают «сгореть» более тяжелые элементы. Кроме того, недра звезды постоянно «клокочут» – одни слои поднимаются вверх, другие опускаются, вещество перемешивается. Из-за этих, а также из-за множества других причин звезда постоянно «худеет» – теряет вещество. Масса звезды перед смертью оказывается заметно меньше той, что была при рождении. А сколько именно вещества звезда успевает потерять – точно неизвестно. Вот еще одна загадка, и, не разгадав ее, никто не сможет сказать, сколько именно звезд в Галактике имеют перед смертью массу большую, чем чандрасекаровский предел. Ведь если масса звезды в конце эволюции окажется меньше, чем 1,4 массы Солнца, то возникнет «всего лишь» белый карлик. Рождение белого карлика сопровождается красивым явлением – образованием и расширением так называемой планетарной туманности. А рождение нейтронной звезды? Можно ли наконец сказать, что оно всегда сопровождается взрывом сверхновой?

Если верны подсчеты звездных рождений, то нужно ожидать, что в Галактике каждые несколько лет коллапсирует одна звезда. А если верны подсчеты вспышек сверхновых, то числа получаются несколько иными…

Еще в 1933 году Ф. Цвикки начал патрулирование далеких галактик с целью поиска сверхновых. Это патрулирование возобновилось после второй мировой войны, продолжается оно и сейчас. Обнаружено более 400 вспышек в различных галактиках. Редко в какой галактике удается наблюдать две или три вспышки – ведь сверхновые вспыхивают редко. Поэтому, для того чтобы оценить, как часто вспыхивают сверхновые, астрофизикам приходится использовать косвенные методы. Так, американский астрофизик Л. Барбон собрал в единый список все вспышки, подсчитал число галактик, в которых эти вспышки произошли, разделил число вспышек на число галактик да еще на время, в течение которого велось патрулирование, и получил, что, например, в спиральных галактиках, таких, как наша, одна вспышка сверхновой случается каждые 30—100 лет. Довольно неопределенная величина, верно? А между тем некоторые исследователи считают, что сверхновые вспыхивают еще реже. Или, наоборот, чаще.

А если попробовать оценить, как часто происходят вспышки сверхновых в нашей собственной Галактике? Сразу скажем, что эта задача потруднее.

В созвездии Кассиопеи находится ярчайший радиоисточник Кассиопея-А. Сверхновая, породившая эту туманность, вспыхнула примерно в 1700 году. Кассиопея никогда не заходит за горизонт в Европе. И все же до недавнего времени считалось, что никто этой сверхновой не видел! 1700 год – прошел почти век после работ Галилея, Кеплера, Коперника. Существовали телескопы. И все же вспышку сверхновой в Кассиопее действительно не видел почти никто.

Лишь в 1979 году американский исследователь У. Эшворт, изучая труды астронома XVII века Д. Флэмстида, обнаружил его записи о звезде-гостье. Вспышка произошла в 1680 году, звезда в максимуме яркости достигала всего лишь шестой звездной величины, находилась на пределе возможности наблюдений невооруженным глазом! Д. Флэмстид включил звезду в свой каталог, опубликованный в 1725 году. Но когда каталог выходил вторым изданием (после смерти Д. Флэмстида), издатели решили, что звездочка в созвездии Кассиопеи нанесена по ошибке – ведь на самом-то деле там, где ее обозначил Д. Флэмстид, ничего нет… Два столетия должны были пронестись над миром, чтобы ошибка издателей была исправлена, а репутация Д. Флэмстида как первоклассного наблюдателя полностью восстановлена.


    Ваша оценка произведения:

Популярные книги за неделю