Текст книги "Загадки для знатоков. История открытия и исследования пульсаров"
Автор книги: Павел (Песах) Амнуэль
сообщить о нарушении
Текущая страница: 10 (всего у книги 13 страниц)
Глава седьмая
Открытие пульсаров. Маленькие зеленые человечки! Космический прожектор. Пульсар в Крабовидной туманности. Звездотрясения. Развитие научных систем
Вод, в которые я вступаю, не пересекал еще никто.
А. Данте
Английский радиоастроном Э. Хьюиш в 1948 году заинтересовался проблемой распространения радиоволн в прозрачной неоднородной среде. Это очень интересная и важная для астрофизики проблема.
Почему мерцают звезды? Свет, проходя сквозь толщу земной атмосферы, встречает на своем пути неоднородности воздушного океана – разрежения, уплотнения, вызванные движениями воздуха. Из-за этого свет рассеивается, и нам представляется, что звезда становится то ярче, то слабее – мерцает. А радиозвезды? В 1948 году набирала силы радиоастрономия, были открыты радиозвезды – точечные, подобные звездам, источники радиоизлучения. Радиоволны, как и видимый свет, проходят сквозь неспокойную земную атмосферу. Радиозвезды тоже должны мерцать. Разница в том, что мерцания радиозвезд вызываются неоднородностями иного размера, расположенными на иной высоте. Э. Хьюиш и занялся исследованием радиомерцаний. Эта работа поглотила двадцать лет его жизни.
Э. Хьюиш был первым, кто сказал: радиозвезды мерцают не только потому, что радиоволны рассеиваются в земной атмосфере. Они мерцают и потому, что радиоволны проходят через межпланетное пространство. Ведь оно вовсе не пусто – оно заполнено плазмой солнечного ветра, и неоднородности в этой разреженной плазме тоже способны вызвать колебания яркости далеких радиоисточников.
Идея Э. Хьюиша была подтверждена в 1964 году, а год спустя Э. Хьюиш начал проектировать для Кембриджской обсерватории новый радиотелескоп с площадью антенн 18 тысяч м2. Мерцания радиоисточников заметнее всего на длинных волнах – чем короче длина волны, тем слабее мерцания. Поэтому Э. Хьюиш выбрал для наблюдений довольно длинную волну 3,7 метра. Он сконструировал радиотелескоп сам. Сам же и построил – с помощью своих сотрудников и аспирантки Ж. Белл. Телескоп был не из самых сильных, к тому же кустарно сделанный. Достоинством, выделявшим этот радиотелескоп среди других таких инструментов, было то, что с его помощью можно было исследовать быстрые мерцания радиоисточников. Приборы были способны регистрировать изменения сигнала, продолжавшиеся десятые доли секунды. Никакие другие радиотелескопы того времени не были на это способны.
А теперь слово самому Э. Хьюишу, рассказавшему о своем открытии в Нобелевской лекции 1975 года.
«Радиотелескоп закончен был и испытан к июлю 1967 г., и нами был немедленно начат обзор неба… Фактически мы наблюдали всю доступную область неба с интервалом в одну неделю. Для обеспечения непрерывного контроля данного обзора мы решили наносить на карту неба положения (сразу же после анализа каждой записи) мерцающих радиоисточников и добавлять к ним точки, когда наблюдения повторялись через неделю. Таким образом, истинные точки можно было отличать от электрических помех, поскольку последние вряд ли могли повторяться на одних и тех же небесных координатах. Надо отдать должное Белл, которая смогла справиться с потоком бумаги от четырех самописцев.
Однажды, где-то в середине августа 1967 г., Жаклин показала мне запись флюктуирующего сигнала, который мог быть слабым источником, мерцающим, когда наблюдался в противоположном к Солнцу направлении. Это было необычно, так как сильное мерцание редко происходило в этом направлении, и мы сначала подумали, что принятый сигнал является электрической помехой. К концу сентября записи проводимого обзора показали, что источник детектировался несколько раз, хотя он и отсутствовал иногда, и я стал подозревать, что мы обнаружили вспыхивающую звезду, может быть, типа карлика класса М, которые в то время исследовал Ловелл. Однако положение источника все же менялось по прямому восхождению вплоть до 90°, и это было необъяснимой загадкой. Мы установили высокоскоростной самописец, чтобы изучить природу флюктуирующих сигналов, но не достигли успеха, так как интенсивность источника упала ниже нашего предела детектирования. В течение октября этот самописец использовался для заранее запланированных наблюдений другого источника (ЗС 273) в целях проверки некоторых аспектов теории мерцаний, и лишь 28 ноября мы получили первое доказательство, что наш загадочный источник излучает регулярные импульсы с интервалом чуть больше одной секунды. Я не мог поверить, что какой-нибудь естественный источник способен излучать таким образом, и сразу же обратился к астрономам других обсерваторий с вопросом, не экспериментируют ли они с приборами, могущими создавать электрические помехи во вполне определенное звездное время около 19 ч 19 мин.
В начале декабря интенсивность источника увеличилась, и его импульсы стали отчетливо выделяться над шумовым фоном. Зная, что сигналы в виде импульсов позволяют установить электрическую фазу, я пересмотрел записи нашего обзора. Этот пересмотр показал, что в действительности небесные координаты источника не менялись. Все еще будучи скептически настроенным, я подготовил устройство, которое через каждую секунду отмечало точное время, используя сигналы службы времени (MSF Rugby Time Service), и с 11 декабря были начаты ежедневные наблюдения. К моему удивлению, в пределах ошибки наблюдения 0,1 с сравнение записи сигналов с регулярным графиком показало, что пульсирующий источник дает сигналы с точностью <1*10—6 с. В это время мои коллеги Пилкингтон, а также Скотт и Коллинз совершенно независимыми методами обнаружили, что сигнал характеризуется быстрым изменением частоты (порядка – 5 Мгц/с). Из этого следовало, что продолжительность каждого импульса (при данной радиочастоте) равна примерно 16 мс.
Не видя никаких разумных «земных» объяснений для этих радиоимпульсов, мы стали предполагать, что их может генерировать лишь какой-нибудь источник, находящийся далеко за пределами Солнечной системы, а кратковременность каждого импульса заставляла думать, что источник по своим размерам не может быть больше небольшой планеты. Мы допускали вероятность того, что сигналы могли действительно генерироваться на планете, обращающейся около далекой звезды, и что они могли быть искусственными по происхождению. Я знал, что измерения времени, если их выполнять несколько недель, выявят любое орбитальное движение источника вследствие Допплер-эффекта, и, следовательно, до окончания таких измерений я должен был хранить полнейшее молчание по поводу нашего открытия. Эти недели в декабре 1967 г. были самыми волнующими в моей жизни».
Так вспоминал об открытии первого пульсара Э. Хьюиш, получивший за свое достижение Нобелевскую премию по физике за 1975 год. А вот что рассказывал советский физик В. Л. Гинзбург:
«…Необычность состоит в том, что открытие несколько месяцев хранилось в тайне.
Велись наблюдения, обрабатывались материалы, но об этом знали лишь сотрудники одной лаборатории, а даже ближайшие «соседи» – астрономы и физики в том же старинном университетском городе Кембридже об обнаружении пульсаров и не подозревали. К числу таких жертв «секретности» принадлежу и я, так как находился в Кембридже как раз в этот период (с начала ноября 1967 г. по конец января 1968 г.). Должен признаться, что вначале мне подобная скрытность людей, которым я докладывал свои собственные результаты, с которыми мы обсуждали много научных вопросов, показалась обидной и странной. Но вскоре эти чувства прошли без остатка. Секретничание действительно было бы оскорбительным, если бы относилось к отдельным лицам, в частности ко мне – гостю из другой страны. Но в том-то и дело, что результаты не сообщались никому из посторонних, и главное, как я уверен, скрывая свою работу, ее авторы руководствовались вполне достойными соображениями. Они хотели спокойно и обстоятельно провести наблюдения, сообщить надежные данные, а не поспешить с сенсационным сообщением (к тому же вначале допускалось, что речь идет о приеме сигналов от внеземной цивилизации). При этом авторы рисковали – могло случиться, что пульсары обнаружит кто-либо другой и сообщит об этом раньше их. Нужна большая выдержка, как я думаю, характерная для всего стиля, царящего в знаменитом центре английской науки, чтобы в течение месяцев не сообщать о пульсарах. Кстати сказать, последующее развитие событий показало, сколь справедливо Э. Хьюиш и его коллеги (и, видимо, руководитель радиоастрономической обсерватории в Кембридже М. Райль) опасались, что опубликование сообщения, о существовании пульсаров совершенно изменит весь характер их работы».
Итак, строго периодическое излучение небесного тела с периодом около секунды существовать не может (науке такие тела неизвестны), но оно существует. Как разрешить такое противоречие?
Нужно либо изменить интерпретацию, либо объявить неверными наблюдения. Делать второе Э. Хьюиш не собирался. Но вот интерпретация… Импульс излучения первого пульсара продолжался всего 0,016 секунды – за это время свет пробегает, около 5 тысяч километров. Таковы максимальные размеры объекта, посылающего сигнал! Это размеры планеты, размеры Земли. Так что же, излучает какая-то планета? Никто никогда не регистрировал никаких периодических сигналов от планет Солнечной системы. Может, излучает не сама планета, а некто на планете? Или нечто? Правда, был еще один вариант. Есть звезды размером с планету – это белые карлики. Или звезды, еще меньшие по размерам, – нейтронные. Может, это они и излучают? Но… в такое было еще труднее поверить, чем в сигналы внеземной цивилизации. Ведь импульсы излучения пульсара повторялись через каждые 1,3373011017 секунды. Попробуйте найти даже среди точных часов, созданных разумом человека, часы с такой стабильностью хода! А уж допустить, что такие часы существуют в естественном состоянии… Вероятно, для этого нужно было еще большее воображение, чем для предположения о внеземном разуме.
Даже после того как в декабре 1967 года Ж. Белл обнаружила еще три пульсара (пришлось исследовать больше пяти километров регистрограмм), предположение о внеземных цивилизациях отпало не сразу. Даже названия у первых четырех пульсаров были такими: LGM 1, 2, 3 и 4, что было сокращением слов Little Green Men (маленькие зеленые человечки). Таким термином часто обозначали пришельцев из космоса – жителей других миров.
Редчайший случай в истории науки: ученый нарушил принцип «презумпции естественности». Сначала была исследована возможность искусственного происхождения сигналов и лишь потом обращено внимание на естественные возможности. Уже одно это говорит, насколько сильным было убеждение в том, что нейтронные звезды не могут быть активны.
И все же факты заставили Э. Хьюиша отказаться от идеи о внеземном разуме. Если излучение идет с планеты, обращающейся около звезды, это легко доказать. Представим, что источник обращается около звезды, то приближаясь к нам (половину периода), то удаляясь (другую половину периода). Когда источник приближается, импульсы поступают на антенну чаще, а когда удаляется – реже. Частота повторения импульсов должна периодически меняться, и период этот должен в точности совпадать со звездным годом на той планете, где обитают «маленькие зеленые человечки». Этот эффект и искали Э. Хьюиш с сотрудниками весь декабрь 1967 года, вот почему этот месяц был самым волнующим в жизни Э. Хьюиша: Решался вопрос – быть или не быть межзвездным контактам! И оказалось – не быть. Наблюдения показали: частота повторения импульсов не меняется. Погибла идея о том, что передатчик находится на планете в далекой звездной системе.
И тогда пришлось обратиться к идее о белых карликах или о нейтронных звездах. Вот, что писал Э. Хьюиш:
«Оказалось, что допплеровское смещение точно соответствовало движению одной лишь Земли, и мы стали искать объяснение нашему явлению, связывая его с карликовыми звездами или с гипотетическими нейтронными звездами. Мои друзья в библиотеке при оптической обсерватории были удивлены, наблюдая радиоастронома, проявляющего столь огромный интерес к книгам по эволюции звезд. Наконец я решил, Что возможный механизм, объясняющий периодическое излучение радиоимпульсов, могут дать гравитационные колебания всей звезды, однако при этом основная гармоника колебаний белых карликов была слишком мала. Я предположил, что в случае белого карлика необходимо рассматривать более высокие гармоники, а в случае нейтронной звезды с плотностью, самой низкой из всех возможных, я получил, что основные колебания могут обусловить необходимую частоту. Мы оценили также расстояние до источника при предположении, что изменение частоты связано с дисперсией импульса в межзвездной плазме, и получили значение 65 пс, т. е. обычное звездное расстояние.
Пока я старался связать наши несколько сумбурные результаты, Жаклин Белл в январе 1968 года с характерными для нее настойчивостью и трудолюбием расшифровала все записи нашего обзора и определила возможные положения других пульсаров. Были проведены повторные наблюдения с целью подтверждения пульсирующего характера их излучения, и к 8 февраля, моменту отправки нашей статьи в печать, мы были уверены в существовании еще трех новых пульсаров, хотя и их параметры были известны нам лишь приблизительно. Я хорошо помню то утро, когда Жаклин вошла ко мне в комнату с записями сигналов возможного пульсара, которые она сделала этой ночью при прямом восхождении 09 ч 50 мин. Когда мы развернули эти записи на полу и поверх их положили измерительную линейку, то сразу же обнаружили периодичность импульсов со временем 0,25 с. Это значение позже подтвердилось, когда приемник настроили на более узкую полосу, и столь быстрая частота следования импульсов этого пульсара весьма затруднила его интерпретацию с помощью модели белого карлика».
И лишь тогда, полностью убедившись, что пульсары существуют, что они – естественное природное явление, Э. Хьюиш с сотрудниками послал в журнал «Nature» сообщение об открытии. Важность его была понята сразу. Статья поступила в редакцию 8 февраля 1968 года и вышла из печати в номере журнала от 24 февраля. Две недели – ни одна статья еще не была опубликована так молниеносно!
Правда, Э. Хьюиш не доказал, что обнаружены именно нейтронные звезды. Он лишь утверждал, что сигналы естественны и что это вряд ли могут быть колебания белых карликов. А искомое доказательство нашел три месяца спустя американский астрофизик Т. Голд. Всего три месяца понадобилось, чтобы понять суть открытия. Психологическая установка – нейтронные звезды мертвы – больше не могла существовать.
Т. Голд объединил наконец разрозненные идеи о свойствах нейтронных звезд и сказал: пульсар есть нейтронная звезда, обладающая сильным магнитным полем и быстро вращающаяся вокруг оси. Магнитная ось пульсара не совпадает с осью вращения. Такое предположение было естественным – ведь и у Земли географический и магнитный полюса не лежат в одной точке, и из-за этого обычный магнитный компас вовсе не показывает точно на север!
Но для чего нужно было Т. Голду вводить такое допущение? Дело в том, что, по идее Т. Голда, радиоизлучение возникает из-за того, что быстрые электроны, вырываясь из недр нейтронной звезды в области ее магнитных полюсов, попадают в мощнейшее магнитное поле. Силовые линии этого поля стремятся «загнуть» траектории движения частиц, возникает ускорение и, следовательно, – излучение. Поскольку электроны движутся с почти световыми скоростями, они не могут излучать во все стороны. Электрон излучает преимущественно в направлении своего движения, и чем больше его скорость, тем в более узком конусе идет излучение. Если излучают электроны, вырывающиеся из области магнитных полюсов нейтронной звезды, то возникают два узких луча, два прожектора, расположенных на магнитных полюсах и освещающих космическое пространство.
Если магнитная ось и ось вращения звезды совпадают, то эффекта пульсара не возникнет. Ведь лучи прожекторов в этом случае неподвижны. Если нейтронная звезда «смотрит» на Землю своим полюсом, то всегда будет виден направленный на нас луч прожектора. Если «не смотрит», то этот луч мы никогда не увидим. А если магнитная ось не совпадает с осью вращения, то и конус излучения будет вращаться вместе со звездой – он станет «чиркать» по Земле, подобно маяку, который виден лишь в моменты, когда луч вращающегося прожектора попадает в глаза. Именно с небесным маяком лучше всего сравнить излучение пульсара – вращающейся нейтронной звезды. Такое излучение астрофизики быстро окрестили «карандашным» – два луча света действительно напоминают два вращающихся карандаша.
Излучение может быть и «ножевым» – тогда излучают электроны, движущиеся в плоскости магнитного экватора нейтронной звезды. В этом случае луч подобен не карандашу, а ножу, который мы видим, если он повернут к нам своим узким лезвием. И в том и в другом случае наблюдатель фиксирует сигнал лишь в течение очень непродолжительного времени по сравнению с периодом вращения звезды. Вспышки продолжаются почти мгновение и повторяются через промежутки времени, равные периоду вращения нейтронной звезды. Именно то, что и наблюдал Э. Хьюиш.
Так-то оно так, и идея эта была быстро оценена по достоинству всеми астрофизиками, но… откуда все же берется энергия, излучаемая пульсаром? Откуда черпают свою энергию вырывающиеся из нейтронной звезды быстрые электроны? Из энергии вращения звезды, утверждал Т. Голд, повторив вывод, сделанный Н. С. Кардашевым тремя годами раньше. По идее Н. С. Кардашева, энергию вращения отнимала у нейтронной звезды газовая туманность – остаток сверхновой. И шла эта энергия на увеличение магнитного поля туманности и на ускорение ее расширения. А по Т. Голду, эта энергия тратилась на ускорение быстрых частиц. Но как? Ведь тогда должен существовать некий процесс, отнимающий у звезды ее энергию вращений и ускоряющий до огромных скоростей элементарные частицы да еще и выбрасывающий потом эти частицы из звезды. Процесс, который невозможен в мертвой звезде.
Оживление мертвеца – вот к чему привело открытие пульсаров. Мы говорили об «убийстве» звезды, искали ее мертвое тело, а оказывается – звезда жива! Она лишь переменила обличье…
А сейчас давайте вернемся к Крабовидной туманности. Южная звезда – что это все-таки за объект? Если это нейтронная звезда, как думал Ф. Цвикки, то и она должна быть пульсаром!
Обидно за Крабовидную туманность, которая раскрыла нам столько загадок: было бы справедливо, если бы и первый пульсар обнаружили именно в Крабовидной туманности. И ведь так бы оно и было – наблюдатели много раз подходили к самому порогу открытия! Э. Хьюиш мог бы сообщить об открытии пульсара еще в 1965 году, но… помешала вездесущая психологическая инерция. Вот что Э. Хьюиш писал впоследствии:
«Первый действительно необычный источник был открыт с помощью этого метода (метода исследования мерцаний, – П. А.) в 1965 г., когда я вместе со своим студентом Окойе исследовал радиоизлучение Крабовидной туманности. Мы обнаружили интенсивную мерцающую компоненту этого радиоизлучения, локализованную внутри туманности и слишком малую по размерам, чтобы компоненту можно было объяснить обыкновенным механизмом синхротронного излучения, и мы предположили, что она может быть вызвана остатком звезды, уже взорвавшейся, но еще проявляющей активность в виде радиоизлучения типа всплесков. Как оказалось позже, этот источник был не чем иным, как знаменитым пульсаром в Крабовидной туманности».
Недостаток воображения – вот причина того, что пульсар в Крабовидной туманности не был открыт еще в сороковых годах. Об этом недвусмысленно сказал американский астрофизик Ф. Дайсон на Ферми-лекциях в 1970 году:
«Уже 35 лет назад было бы нетрудно установить, что звезда Бааде – Минковского обладает импульсным излучением, если бы у кого-нибудь хватило воображения использовать для наблюдений фотоумножитель, позволяющий получить хорошее разрешение во времени. Это может служить поучительным примером того, как часто люди не совершают великих открытий, потому что слишком доверяют ошибочным теоретическим аргументам. Излучение звезды не может пульсировать с частотой порядка миллисекунды, потому что она не может быть нейтронной звездой, потому что она слишком яркая! Разумеется, скрытый порок этого рассуждения состоит в том, что излучение не обязано (и не может) быть тепловым.
Лет десять назад я сам проявил подобную непростительную близорукость. Я тогда занимался пульсациями белых карликов, которые, как ожидалось, должны были иметь периоды порядка 10—30 с, и предложил Стрёмгрену попытаться обнаружить короткопериодическую переменность их излучения. У него как раз была подходящая система фотоумножителей, и он провел наблюдения двух белых карликов. Он не обнаружил никаких изменений блеска, а у меня не хватило воображения попросить его повторить наблюдения для звезды Бааде – Минковского! Если бы он сделал это и тщательно обработал результаты, он открыл бы пульсар в 1961 году, тем самым изменив ход развития науки».
Поучительное свидетельство. Однако перейдем к фактам. Через год после открытия Э. Хьюиша австралийские радиоастрономы Д. Стейлин и Е. Рейфенстейн наблюдали Крабовидную туманность и обнаружили в ней пульсирующий радиоисточник, координаты которого точно совпали с положением южной звезды. К тому времени было известно уже около двух десятков пульсаров, и открытие еще одного не могло произвести сенсации. Но сенсация произошла. Во-первых, пульсар был обнаружен в остатке сверхновой – еще один, пусть косвенный, аргумент в пользу того, что пульсары являются именно нейтронными звездами. И во-вторых, у пульсара в Крабовидной туманности оказался рекордно малый период следования импульсов – всего 33 миллисекунды. Пульсар в Крабовидной туманности посылает на Землю всплеск излучения 30 раз в секунду!
Тогда-то и отпали наконец последние сомнения в том, что обнаружены нейтронные звезды. В течение 1968 года – до открытия пульсара в Крабовидной туманности – появлялись теоретические работы, авторы которых пытались объяснить излучение пульсаров колебаниями белых карликов. Это трудно, но все же возможно, если привлечь высокие гармоники колебаний, высокие «обертоны» основной частоты. Но никакие обертоны не дадут возможности наблюдать при колебаниях белых карликов всплески излучения с периодом 33 миллисекунды. Это невозможно мало! И зимой 1968 года всем стало очевидно, что нейтронные звезды наконец-то обнаружены. Более того, блестяще подтвердилась идея Ф. Цвикки о том, что нейтронные звезды образуются при вспышках сверхновых, в процессе катастрофического коллапса.
Для астрономов-наблюдателей наступила пора прозрения. Минута, когда пришлось убедиться, насколько это страшная штука – психологическая инерция.
Казалось бы, если явление реально существует, если приборы его фиксируют, то наблюдатели должны это явление наблюдать. Должны? Не всегда. Методика измерений сейчас столь сложна, что сами по себе показания приборов еще ни о чем не говорят, их приходится подвергать долгой и сложной обработке. Одно и то же показание прибора можно обработать по-разному и нередко получить разные результаты. А поскольку каждый наблюдатель еще до начала работы прикидывает, что он вероятнее всего получит, то… и ищет, есть это ожидаемое явление или нет. А побочные сведения часто остаются неучтенными.
Рентгеновское излучение Крабовидной туманности наблюдалось много раз. С 1963 года, когда оно было впервые обнаружено, состоялись десятки запусков ракет. Результаты проверялись и перепроверялись. Зимой 1968 года в Крабовидной туманности был обнаружен пульсар. Возник вопрос: если пульсар так сильно меняет радиоблеск, то почему постоянно рентгеновское излучение?
А может, оно и не постоянно, сказали наблюдатели, мы об этом не думали. Заметьте: не думали, а потому и не увидели. Новых ракетных стартов не потребовалось. Группа американских ученых, возглавляемая Е. Болдтом, неоднократно запускала ракеты для исследований Крабовидной туманности. Последний старт состоялся в марте 1968 года. Несколько месяцев спустя Е. Болдт с сотрудниками заново обработал результаты этого полета с учетом того, что переменность рентгеновского источника может быть быстрой. И переменность нашли – точно такую же, как у радиопульсара, с периодом 33 миллисекунды. Вот вам и достоверность наблюдательных данных…
Смущенные наблюдатели решили реабилитировать себя до конца. Решили найти быструю переменность и у оптического объекта – южной звезды. Лет десять назад для постановки такой задачи нужна была изрядная фантазия, а теперь не поставить ее было просто невозможно!
В январе 1969 года в обсерватории Стюарда при Аризонском университете Дж. Кок, Дж. Дисней и Дж. Тейлор провели серию оптических наблюдений южной звезды, использовав фотоумножители, способные фиксировать быстрые колебания блеска. И открыли первый оптический пульсар. Восемьдесят лет астрономы наблюдали южную звезду, а после второй мировой войны даже догадывались (правда, лишь некоторые!), что это нейтронная звезда. Но ее пульсирующее излучение было обнаружено лишь после того, как пройти мимо этого открытия стало совершенно невозможно. Это открытие наблюдатели были вынуждены сделать.
Тридцатипятилетняя эпопея поиска нейтронной звезды в Крабовидной туманности завершилась морозными январскими ночами 1969 года…
* * *
Ф. Цвикки утверждал, что нейтронные звезды возникают при взрывах сверхновых. Но во время взрыва образуется и газовая оболочка. Почему же пульсары в основном оказались не связанными с газовыми расширяющимися остатками сверхновых? Нет ли какого-то скрытого порока в рассуждениях Ф. Цвикки?
Правда, Крабовидная туманность не одинока. Пульсар был обнаружен и в другом остатке, расположенном в созвездии Парусов. В 1968 году австралийские радиоастрономы открыли в этом остатке (он называется Паруса X) пульсар с очень коротким периодом – 89 миллисекунд.
Но главное не в этом. Газовая туманность – остаток взрыва сверхновой – довольно быстро рассеивается в межзвездном пространстве. Через несколько десятков тысячелетий после взрыва туманность уже очень трудно обнаружить, радиоизлучение ее уменьшается, газ смешивается с межзвездной средой. А пульсар светит в течение значительно более длительного времени. Так что вполне может случиться, что туманности уже нет, а пульсар еще есть.
Чтобы согласиться с этой гипотезой, нужно знать, сколько времени светит пульсар. Мы говорили, что пульсар – это не мертвая нейтронная звезда. А нужно, вообще говоря, сказать – пока не мертвая. В конце концов за счет чего бы пульсар ни излучал, запас энергии иссякнет, и нейтронная звезда станет именно такой, какой ее раньше и представляли: невидимым десятикилометровым «шариком» без признаков активности. Мы знаем, что энергия, идущая на излучение пульсара, черпается из энергии вращения звезды. Значит, энергия вращения должна со временем уменьшаться. Вращение звезды должно тормозиться. То есть период повторения импульсов должен непрерывно возрастать…
Такой эффект действительно есть. Периоды пульсаров растут. Впервые это обнаружил Д. Ричардс сразу после открытия пульсара в Крабовидной туманности. По измерениям Д. Ричардса, период этого пульсара (его обозначение PSR 0531+21) увеличивается на 0,05 % в год. Вскоре было обнаружено, что период другого пульсара, расположенного в остатке сверхновой (пульсар в туманности Паруса X обозначается PSR 0833—45), также увеличивается, но несколько медленнее, всего на 0,01 % в год. Прошло несколько месяцев, и свои данные опубликовал Т. Коул, работавший в Кембридже под руководством Э. Хьюиша. Ему удалось установить увеличение периода у всех четырех пульсаров, открытых в Кембридже. Правда, эти пульсары тормозили свое вращение значительно медленнее двух первых.
Теперь можно приблизительно рассчитать, сколько времени светит тот или иной пульсар. Если период все время возрастает на определенную долю, то какое-то время назад период был вдвое меньше, а раньше – меньше вчетверо, в восемь раз и так далее. В конце концов можно добраться до момента, когда период вращения нейтронной звезды был и вовсе равен нулю. Ясно, что раньше этого момента пульсар существовать не мог, вот мы и получили приблизительно время его рождения. Возраст пульсара ненамного отличается от времени, в течение которого период увеличивается вдвое.
Период пульсаций южной звезды в Крабовидной туманности увеличивается на 1/2000 своей величины в год. Получается, что этот пульсар образовался что-то около 2000 лет назад. Но мы знаем, что взрыв сверхновой произошел в 1054 году. Возраст южной звезды должен быть не два тысячелетия, а только девять веков…
Не нужно, однако, требовать от метода больше того, что он может дать. Возраст южной звезды оценен в предположении, что торможение вращения пульсара всегда происходило равномерно. Но было ли так на самом деле? Помните, как астрономы ошиблись в определении возраста Крабовидной туманности? Они не учли, что туманность расширяется ускоренно.
Прием динамизации: мы принимали, что изменение периода вращения звезды остается постоянным со временем, а оно оказалось переменным. И наблюдатели нашли этому прямое доказательство.
Австралийские радиоастрономы П. Ричли и Д. Даунс в 1969 году наблюдали пульсар в остатке сверхновой Паруса X. Всю зиму наблюдения показывали, что период пульсаций стабильно увеличивается. С 24 февраля по 3 марта наблюдения не проводились, а когда радиотелескоп вновь направили на пульсар, то… период оказался совсем не таким, как ожидалось! Он почему-то не увеличился, а уменьшился. Пораженные наблюдатели продолжали исследования. Еще неделя, еще месяц… Пульсар тормозил свое вращение в том же самом темпе, что и до «инцидента», как будто ровно ничего не случилось! Что же произошло? Будто сбой пульса у совершенно здорового человека…
Несколькими месяцами позднее такой же сбой периода произошел у звезды Минковского – поистине все аномалии неба собрались в этом уникальном объекте! Летом 1971 года опять сбился с ритма пульсар в Парусах. Да и пульсар в Крабовидной туманности не отставал.
Можно ли надежно определять возраст пульсара по замедлению его вращения, если период то и дело скачком уменьшается? Да и как вообще объяснить это уменьшение периода? Торможение вращения звезды – это понятно. Энергия вращения теряется на ускорение частиц и на излучение. А уменьшение периода? Получается, что некто накачивает в пульсар дополнительную энергию?
Впрочем, все объяснилось достаточно просто. Энергия вращения звезды пропорциональна не только угловой скорости, но моменту инерции. Допустим, что энергия вращения не изменилась, а угловая скорость вдруг увеличилась. О чем это говорит? Только о том, что неожиданно уменьшился момент инерции звезды.