Текст книги "Курс общей астрономии"
Автор книги: П. Бакулин
Соавторы: В. Мороз,Э. Кононович
сообщить о нарушении
Текущая страница: 6 (всего у книги 17 страниц)
§ 139. Уран и Нептун. Общие вопросы строения планет-гигантов. Плутон
Все планеты, рассмотренные нами ранее, видны на небе невооруженным глазом и принадлежат к числу наиболее ярких объектов. Уран виден только в телескоп (его звездная величина 5m,8) и выглядит маленьким зеленоватым диском диаметром около 4». Большая полуось орбиты планеты равна около 19,2 а.е., а период обращения вокруг Солнца – 84 года. Масса Урана в 14,6 раза больше земной, радиус 24 800 км. Уран обладает заметным сжатием (1/14). Детали на диске Урана уверенным образом не различаются, но наблюдаются периодические колебания блеска. По этим колебаниям и по эффекту Доплера был определен период вращения вокруг оси 10h49m. Удалось установить также направление оси вращения планеты, причем оказалось, что экватор Урана наклонен к плоскости его орбиты на 82°, а направление вращения – обратное. Уран имеет пять спутников. Плоскости их орбит почти перпендикулярны к плоскости орбиты планеты и движутся они в сторону ее вращения. Угловой диаметр Нептуна около 2»,4, линейный радиус равен 25 050 км, масса – 17,2 массы Земли. Большая полуось орбиты планеты равна около 30,1 а.е., а период обращения вокруг Солнца почти 165 лет. Период вращения был определен
спектроскопически и составляет 15h,8 ±1h. Направление вращения прямое. Один из двух спутников Нептуна, Тритон, принадлежит к числу крупнейших в Солнечной системе (его радиус равен 2000 км) и движется вокруг планеты в обратном направлении. В результате спектроскопических наблюдений в спектрах Урана и Нептуна найдены водород Н2 и метан СН4. Наблюдательные данные о физических условиях на этих планетах очень ограничены. Средняя плотность Урана 1,6 г/см3, Нептуна 1,6 г/см3 – больше, чем у Юпитера и Сатурна, но размеры этих планет меньше. По-видимому, они содержат больше тяжелых элементов. Юпитер, Сатурн, Уран и Нептун образуют группу планет-гигантов (или планет типа Юпитера). По массе и размерам они значительно превосходят планеты земной группы. Все они быстро вращаются, имеют большое количество спутников. Резко отличаются планеты-гиганты от планет типа Земли по химическому составу. Юпитер и Сатурн содержат водород, гелий и другие элементы, видимо, в той же пропорции, что и Солнце, Уран и Нептун более богаты тяжелыми элементами, но водород и гелий все же преобладают. По-видимому, в центральной части протопланетного облака легкие газы были потеряны вследствие термической диссипации, здесь образовались планеты типа Земли, а на периферии, где температура была ниже, водород и гелий остались и вошли в состав планет-гигантов (см. § 180). Плутон, наиболее далекая среди известных нам планет Солнечной системы, открыт сравнительно недавно, в 1930 г. Удалось определить только верхний предел его радиуса – 2900 км. В телескоп Плутон выглядит как звезда 15m. Блеск Плутона испытывает периодические изменения, видимо, связанные с вращением (период 6,4 суток). Надежные данные о массе Плутона отсутствуют, но, скорее всего, его средняя плотность больше земной. Плутон ближе к планетам земного типа, чем к планетам-гигантам. Плутон обращается вокруг Солнца на среднем расстоянии 39,5 а.е. по орбите с большим эксцентриситетом (е = 0,249), настолько большим, что оказывается иногда ближе к Солнцу чем Нептун. Наклонение орбиты (i = 17°) тоже очень большое, и Плутон выходит за пределы пояса зодиакальных созвездий. В настоящую эпоху он находится в созвездии Девы вблизи его границы с созвездием Волос Вероники. Спутников у Плутона не обнаружено.
§ 140. Малые планеты
1 января 1801 г. итальянский астроном Пиацци случайно, во время астрометрических наблюдений, обнаружил звездообразный объект, прямое восхождение и склонение которого, по дальнейшим наблюдениям, заметно изменялось от ночи к ночи. Гаусс вычислил его орбиту, и оказалось, что он движется вокруг Солнца по эллипсу, большая полуось которого равна 2,77 а.е., наклонение i = 10° и эксцентриситет е = 0,08. Стало ясно, что открыта планета, имеющая очень малые размеры. Ее назвали Церерой. Вскоре были найдены еще три такие планеты – Паллада, Веста и Юнона. В течение XIX в. количество планет-малюток постепенно увеличивалось. Их стали называть астероидами или малыми планетами. С конца XIX века для поисков малых планет начали применять фотографию. При длительных экспозициях изображение астероида вследствие изменения a и s получается в виде черточки, и его нетрудно отличить от звезд. В настоящее время известны орбиты 1800 астероидов. Самый яркий из них, Веста, представляет собой в противостоянии объект 6m,5; имеется несколько астероидов 7m-9m, все остальные – слабее. Статистика показывает, что малые планеты подчиняются определенному закону светимости: астероидов, имеющих звездную величину т, в 2,5 раза больше, чем астероидов со звездной величиной т – 1. Астероидам с хорошо определенной орбитой присвоены номера (в порядке открытия) и названия. Сначала использовались исключительно женские имена, заимствованные из мифологии, потом обычные женские имена, а позднее производные от имен известных ученых, стран и городов. Некоторым астероидам с необычной орбитой были даны мужские имена, взятые из мифологических источников. Только у четырех первых астероидов удалось прямыми измерениями определить диаметры. Самый большой оказался у Цереры (780 км), самый маленький у Юноны (200 км). Детали на дисках этих астероидов различить невозможно, но наблюдаются периодические колебания блеска и поляризации света, которые объясняются, по-видимому, вращением. В основном астероиды имеют диаметры от нескольких километров до нескольких десятков километров. Большинство малых планет движется на средних расстояниях от Солнца между 2,2 а.е. и 3,6 а.е., т.е. между орбитами Марса и Юпитера. Эта зона называется поясом астероидов. Эксцентриситеты орбит большинства астероидов (97%) меньше 0,3, а наклонения – меньше 16° (90%). Но есть планеты, орбиты которых выходят далеко за пределы пояса астероидов. Встречаются наклонения до 43° (Гидальго) и эксцентриситеты до 0,83 (Икар). Среди малых планет имеются семейства астероидов, орбиты которых близко подходят одна к другой. Две такие группы называются греками и троянцами: Ахилл, Патрокл, Гектор и др. (всего 15); 10 из них («греки») движутся вокруг Солнца приблизительно по орбите Юпитера, на 60° по долготе впереди и пять («троянцы») позади него, так что Солнце, Юпитер и эти группы астероидов образуют два равносторонних треугольника. Для этого частного случая задачи трех тел Лагранж
нашел строгое решение (см. § 56), показав, что движение тел, находящихся вблизи таких точек, устойчиво по отношению к возмущающим влияниям больших планет. Количество астероидальных тел в межпланетном пространстве, по-видимому, очень велико, и мы наблюдаем только самые большие из них. Сталкиваясь между собой, такие тела дробятся и разрушаются, и в результате межпланетное пространство должно быть заполнено роем твердых обломков самых разнообразных размеров, от пылинок диаметром в доли микрона до размеров астероидов. Сталкиваясь с Землей,
они выпадают на ее поверхность в виде метеоритов (см. § 143). Таким образом идет процесс, обратный дроблению, – захват крупными телами более мелких. Высказывалось предположение, что на ранних стадиях эволюции Солнечной системы плотность метеоритных тел в межпланетном пространстве была больше, и падения метеоритов играли существенную роль в формировании поверхности планет и спутников, в частности, Луны (см. гл. XIV). В ряде чисел, выражающих средние расстояния планет от Солнца, имеется некоторая закономерность, подмеченная еще в XVIII в. (правило Тициуса – Боде):
a = 0,1 Ч (3.2» + 4) а.е.(10.8)
где n = – Ґ для Меркурия, 0 для Венеры, 1 для Земли и т.д., а – среднее расстояние от Солнца в астрономических единицах. Табл. 8 позволяет сравнить расстояния, вычисленные по формуле (10.8), с истинными.
Из таблицы 8 видно, что средние расстояния планет вплоть до Урана удовлетворительно представляются формулой (10.8). Как раз в промежутке между Марсом и Юпитером, где должна была быть еще одна планета, находится пояс астероидов. По-видимому, в этой части Солнечной системы, которая разделяет планеты типа Земли и типа Юпитера, физические условия были таковы, что промежуточная планета не могла сформироваться или оказалась неустойчивой. Возможно, что на каком-то этапе эволюции Солнечной системы в поясе астероидов существовала одна или несколько крупных планет, но они были разрушены вследствие столкновений с другими телами или в результате действия какой-либо другой силы, например, приливного действия Юпитера. Физическая сущность приливного механизма разрушения состоит в том, что сила притяжения постороннего тела действует по-разному на различные части системы частиц, связанных между собой гравитацией, стремится их разделить и заставить каждую частицу двигаться по независимой орбите. Если это разделяющее действие окажется сильнее, чем притяжение между частицами, то система частиц (а ею может быть и твердое тело больших размеров, такое как планета) разрушится.
§ 141. Кометы
Большие кометы с хвостами, далеко простиравшимися по небу, наблюдались с древнейших времен. Некогда предполагалось, что кометы принадлежат к числу атмосферных явлений. Это заблуждение опроверг Браге, который обнаружил, что комета 1577 г. занимала одинаковое положение среди звезд при наблюдениях из различных пунктов и, следовательно, отстоит от нас дальше, чем Луна.
Движение комет по небу объяснил впервые Галлей (1705 г.), который нашел, что их орбиты близки к параболам. Он определил орбиты 24 ярких комет, причем оказалось, что кометы 1531, 1607 и 1682 гг. имеют очень сходные орбиты. Отсюда Галлей сделал вывод, что это одна и та же комета, которая движется вокруг Солнца по очень вытянутому эллипсу с периодом около 76 лет. Галлей предсказал, что в 1758 г. она должна появиться вновь, и в декабре 1758 г. она действительно была обнаружена. Сам Галлей не дожил до этого времени и не мог увидеть, как блестяще подтвердилось его предсказание. Эта комета (одна из самых ярких) была названа кометой Галлея (рис. 184). Поиски комет производились сначала визуально, а потом и по фотографиям, но открытия комет при визуальных наблюдениях совершаются нередко и сейчас. Кометы обозначаются по фамилиям лиц, их открывших. Кроме того, вновь открытой комете присваивается предварительное обозначение по году открытия с добавлением буквы, указывающей порядковый номер среди комет, найденных в данном году. Потом предварительное обозначение пересматривается, и буква заменяется римской цифрой, указывающей последовательность прохождения кометы через перигелий в данном году. Лишь небольшая часть комет, наблюдаемых ежегодно, принадлежит к числу периодических, т.е. известных но своим прежним появлениям. Большая часть комет движется по очень вытянутым эллипсам, почти параболам. Периоды обращения их точно не известны, но есть основания полагать, что они достигают многих миллионов лет. Такие кометы удаляются от Солнца на расстояния, сравнимые с межзвездными. Плоскости их почти параболических орбит не концентрируются к плоскости эклиптики и распределены в пространстве случайным образом. Прямое направление движения встречается так же часто, как и обратное. Периодические кометы движутся по менее вытянутым эллиптическим орбитам и имеют совсем иные характеристики. Из 40 комет, наблюдавшихся более чем один раз, 35 имеют орбиты, наклоненные меньше чем на 45° к плоскости эклиптики. Только комета Галлея имеет орбиту с наклонением, большим 90°, и, следовательно, движется в обратном направлении. Остальные движутся в прямом направлении. Среди короткопериодических (т.е. имеющих периоды 3-10 лет) комет выделяется «семейство Юпитера» – большая группа комет, афелии которых удалены от Солнца на такое же расстояние, как орбита Юпитера.. Предполагается, что семейство Юпитера образовалось в результате захвата планетой комет, которые двигались ранее по более вытянутым орбитам. В зависимости от взаимного расположения Юпитера и кометы эксцентриситет кометной орбиты может как возрастать, так и уменьшаться. В первом случае происходит увеличение периода или даже переход на гиперболическую орбиту и потеря кометы Солнечной системой, во втором – уменьшение периода. Орбиты периодических комет подвержены очень заметным изменениям. Иногда комета проходит вблизи Земли несколько раз, а потом притяжением планет-гигантов отбрасывается на более удаленную орбиту и становится ненаблюдаемой. В других случаях, наоборот, комета, ранее никогда не наблюдавшаяся, становится видимой из-за того, что она прошла вблизи Юпитера или Сатурна и резко изменила орбиту. Кроме подобных резких изменений, известных лишь для ограниченного числа объектов, орбиты всех комет испытывают постепенные изменения. Изменения орбит не являются единственной возможной причиной исчезновения комет. Достоверно установлено, что кометы быстро разрушаются. Яркость короткопериодических комет ослабевает со временем, а в некоторых случаях процесс разрушения наблюдался почти непосредственно. Классическим примером является комета Биэлы. Она была открыта в 1772 г. и наблюдалась в 1815, 1826 и 1832 гг. В 1845 г. размеры кометы оказались увеличенными, а в январе 1846 г. наблюдатели с удивлением обнаружили две очень близкие кометы вместо одной. Были вычислены относительные движения обеих комет, и оказалось, что комета Биэлы разделилась на две еще около года назад, но вначале компоненты проектировались один на другой, и разделение было замечено не сразу. Комета Биэлы наблюдалась еще один раз, причем один компонент был много слабее другого, и больше ее найти не удалось. Зато неоднократно наблюдался метеорный поток, орбита которого совпадала с орбитой кометы Биэлы. Когда комета приближается к Солнцу, она испытывает целый ряд изменений. Возрастает ее яркость, увеличивается размер хвоста, иногда наблюдаются быстрые изменения структуры. Хвост кометы обычно имеет вид конуса, в вершине которого находится размытое пятно (голова). Голова состоит из туманной оболочки (комы) и звездообразного ядра, которое является самой яркой точкой кометы. Яркость комы возрастает по направлению к ядру. Головы комет могут иметь очень большие размеры
– несколько десятков и даже сотен тысяч километров. Хвост кометы всегда направлен от Солнца. Когда расстояние от Солнца велико, хвост отсутствует или очень мал, хорошо видна только кома. Быстрое развитие хвоста кометы начинается при сближении ее с Солнцем, примерно до 1 а.е. В это время обычно хвост растет с огромной скоростью, около 106 км в сутки, пока не достигнет величины около 108 км. Силы, отталкивающие кометный хвост от Солнца, – это световое давление и корпускулярные потоки. Корпускулярные потоки несут с собой магнитное поле, и так как ионы не могут двигаться поперек силовых линий, то через это поле передают давление на ионизованный газ в кометных хвостах. Скорость движения вещества в хвостах может быть измерена в тех случаях, когда в них заметны какие-либо конденсации в виде узелков или небольших облачков. В некоторых случаях эти скорости очень велики и отталкивающие силы в 103 раз превосходят действие солнечной гравитации. Однако чаще всего различие не превосходит нескольких раз. Согласно Ф.А. Бредихину, принято различать три типа кометных хвостов (рис. 185): хвосты I типа, в которых отталкивающие силы в 10-100 раз больше сил притяжения и которые поэтому направлены почти точно от Солнца; хвосты II типа, заметно изогнутые, в которых отталкивающие силы несколько больше сил притяжения, и хвосты III типа, сильно изогнутые, в которых отталкивающие силы несколько меньше сил притяжения.
Массы комет точно не известны. Они оказались слишком малыми, чтобы даже при очень близком прохождении повлиять на движение планет, и можно лишь указать верхний предел массы комет. У больших комет он составляет примерно 10-4 массы Земли, но на самом деле масса может быть на несколько порядков меньше. Понятно, что средняя плотность кометного вещества тоже должна быть весьма низкой. Кома представляет собой очень разреженную газовую среду с концентрацией молекул 105-1010 см –3. Истинное, практически невидимое ядро, окруженное этой атмосферой, по современным представлениям является твердым телом диаметром от 1 до 30 км. Ядро состоит главным образом из летучих веществ, находящихся в твердом состоянии («льдов»), таких, как СН4 , NН3 , Н2О, СО2 . В основную ледяную массу вкраплены молекулы нелетучих веществ и более или менее крупные их частицы. Приближение к Солнцу вызывает сублимацию (возгонку) льдов, и в результате выделяется газообразный материал, образующий хвост кометы. Под действием ультрафиолетового излучения выделяющиеся молекулы диссоциируются и ионизуются, и в спектрах кометных хвостов наблюдаются линии излучения ионов (СО+ СO2+, СН+ N2+). В области комы концентрация газа больше, ионизующее ультрафиолетовое излучение Солнца уже заметно поглощается и наблюдается свечение нейтральных молекул. Среди молекул, обнаруженных в спектрах комет, много радикалов (СН, ОН, СН2 , NH2), которые в лабораторных условиях обычно не наблюдаются вследствие большой химической активности. В кометах. они появляются в результате диссоциации более сложных молекул и могут долго сохраняться благодаря низкой плотности. На очень близких расстояниях от Солнца в спектре ядра наблюдаются линии металлов. Это и доказывает, что, кроме летучих веществ, в ядрах комет присутствуют и тугоплавкие. Если бы Земля столкнулась с кометой, то это не привело бы к каким-либо катастрофическим последствиям. При прохождении Земли сквозь кометный хвост лишь немного увеличилась. бы яркость неба, а столкновение с головой привело бы к сильному метеорному дождю. В 1908 г. в Сибири наблюдался огромный болид, который взорвался вблизи реки Подкаменной Тунгуски. К сожалению, только через 20 лет в эти места была направлена экспедиция, но и тогда последствия этой катастрофы были вполне ощутимы: в радиусе 30 км воздушной волной были повалены все деревья. Метеорное тело найдено не было и возникла гипотеза, что оно было целиком разрушено, не достигнув Земли. Возможно, это тело было ядром небольшой кометы. Вопрос о происхождении комет изучен недостаточно. Согласно гипотезе голландского ученого Оорта, Солнечная система окружена гигантским облаком кометных ядер, простирающимся на расстояние до 1 пс. Под действием звездных возмущений орбиты некоторых ядер изменяются, и в результате вблизи Солнца появляются кометы.
§ 142. Метеоры
Метеоры (рис. 186) наблюдаются в виде кратковременных вспышек, которые проносятся по небу и исчезают, иногда оставляя на несколько секунд узкий светящийся след. Часто в обиходе их называют падающими звездами. Долгое время астрономы совсем не интересовались метеорами, считая их атмосферным явлением типа молнии. Только в самом конце XVIII в. в
Рис. 186. Фотография метеора. В левой части видно звездной скопление Плеяды.
результате наблюдений одних и тех же метеоров из разных пунктов, были определены впервые их высоты и скорости Оказалось, что метеоры – это космические тела, которые приходят в земную атмосферу извне со скоростями от нескольких км/сек до нескольких десятков км/сек и сгорают в ней на высоте около 80 км. Серьезное исследование метеоров началось только в нашем столетии. Частота появления метеоров и их распределение по небу не всегда являются равномерными. Систематически наблюдаются метеорные потоки, метеоры которых на протяжении определенного промежутка времени (несколько ночей) появляются примерно в одной и той же области неба. Если их следы продолжить назад, то они пересекутся вблизи одной точки, называемой радиантом метеорного потока. Многие метеорные потоки являются периодическими, повторяются из года в год и именуются по названиям созвездий, в которых лежат их радианты. Так, метеорный поток, действующий ежегодно примерно с 20 июля по 20 августа, назван Персеидами, поскольку его радиант лежит в созвездии Персея. От созвездий Лиры и Льва получили соответственно свое название метеорные потоки Лирид (середина апреля) и Леонид (середина ноября). Активность метеорных потоков в разные годы различна. Бывают годы, в которые число метеоров, принадлежащих потоку, очень мало, а в иные годы (повторяющиеся, как правило, с определенным периодом) настолько обильно, что само явление получило название звездного дождя. Последние звездные дожди наблюдались в августе 1961 г. (Персеиды) и в ноябре 1966 г. (Леониды). Меняющаяся активность метеорных потоков объясняется тем, что метеорные частицы в потоках неравномерно разбросаны вдоль эллиптической орбиты, пересекающей земную. Метеоры, не принадлежащие к потокам, называются спорадическими. Статистическое распределение орбит спорадических метеоров точно не исследовано, однако есть основания полагать, что оно похоже на распределение орбит периодических комет. Что же касается метеорных потоков, то у многих из них орбиты близки к орбитам известных комет. Известны случаи, когда комета исчезала, а связанный с ней метеорный поток оставался (комета Биэлы). Все это заставляет думать, что метеорные потоки возникают в результате разрушения комет. За сутки в атмосфере Земли вспыхивает примерно 108 метеоров ярче 5m. Метеоров, имеющих звездную величину m, примерно в 2,5 раза больше, чем (m – 1)-й звездной величины. Яркие метеоры наблюдаются реже, слабые – чаще. Очень яркие метеоры, – болиды, могут наблюдаться и днем. Болиды сопровождаются иногда выпадением
метеоритов (см. § 143). Появление болида может сопровождаться более или менее сильной ударной волной, звуковыми явлениями и образованием дымового хвоста. По происхождению и физическому строению большие тела, наблюдаемые как болиды, по-видимому, сильно отличаются от частиц, вызывающих метеорные явления. Мы вернемся к этому вопросу, когда будем рассматривать метеориты. Как уже указывалось, скорость метеоров вблизи Земли достигает нескольких десятков км/сек. Очень трудно точно оценить, какие величины истинной, гелиоцентрической скорости являются наиболее типичными. Дело в том, что блеск метеора очень сильно зависит от скорости, и поэтому быстрые метеоры могут наблюдаться чаще, чем медленные, хотя их количество и меньше. По-видимому, большинство метеоров движется по орбитам в прямом направлении, с гелиоцентрическими скоростями, не очень сильно отличающимися от скорости Земли. Сейчас для наблюдений метеоров широко применяются фотографическая патрульная служба и радиолокаторы. При фотографическом патрулировании в двух пунктах, разделенных расстоянием в несколько десятков километров, устанавливается достаточное количество широкоугольных фотографических камер так, чтобы они перекрывали значительную часть неба. Камеры периодически открываются и закрываются специальными затворами, например, с помощью вращающегося обтюратора (диск с лопастями), и в результате след метеора выглядит как ряд черточек, по длине которых с хорошей точностью можно определить скорость. Радиолокаторы, работающие на волнах 3-10 м, позволяют получить отраженный радиоимпульс от столба ионизованного воздуха, который остается за метеором после его полета. Наряду с ионизацией в этом столбе происходит возбуждение молекул, свечение которых приводит к образованию следа.
Спектры метеоров (рис. 187) состоят из эмиссионных линий. Когда метеорная частица тормозится в атмосфере, она нагревается, начинает испаряться, и вокруг нее образуется облако из раскаленных газов. Светятся главным образом линии металлов: очень часто, например, наблюдаются линии Н и К ионизованного кальция и линии железа. По-видимому, химический состав метеорных частиц аналогичен составу каменных и железных метеоритов, но механическая структура метеорных тел должна быть совсем иной. На это указывают скорости торможения метеоров; торможение происходит так, как будто плотность их очень мала, порядка 0,1 г/см3. Это означает, что метеорная частица представляет собой пористое тело, состоящее из более мелких частиц. Вероятно, поры были заполнены когда-то летучими веществами, которые впоследствии испарились. Метеорная частица, порождающая метеор 5-й звездной величины, имеет массу около 3 мг и диаметр около 0,3 мм. Эти данные вычислены для быстрого метеора, имеющего геоцентрическую скорость 50-60 км/сек. Большинство же метеоров, порождаемых частицами такой массы, гораздо слабее. Яркие метеоры и болиды, ионизуя воздух, порождают слабо светящиеся следы, видимые на протяжении от нескольких секунд до нескольких минут. Воздушные течения в атмосфере перемещают следы (дрейф следов) и меняют их форму. Поэтому наблюдения дрейфа следов имеют большое значение для изучения воздушных течений в различных слоях земной атмосферы.
§ 143. Метеориты
Метеориты, «небесные камни», известны человечеству очень давно. По-видимому, появление первых железных орудий, сыгравших огромную роль в эволюции доисторических культур, связано с использованием метеоритного железа. Крупные метеориты служили иногда предметом поклонения у древних народов. Официальная наука признала их небесное происхождение лишь в начале XIX в. За исключением образцов лунных пород, доставленных на Землю, метеориты пока представляют собой единственные космические тела, которые можно исследовать в земных лабораториях. Понятно, что сбору и изучению метеоритов придается большое научное значение. В Академии наук СССР имеется Комитет по метеоритам, который организует эту работу в масштабах страны. Метеориты по химическому составу и структуре разделяются на три большие группы: каменные (аэролиты), железо-каменные (сидеролиты) и железные (сидериты). Вопрос об относительном количестве различных типов метеоритов не вполне ясен, так как железные метеориты легче находить, чем каменные, и, кроме того, каменные метеориты сильнее разрушаются при прохождении сквозь атмосферу. Большинство исследователей полагает, что в космическом пространстве преобладают каменные метеориты (80-90% от общего числа), хотя собрано больше железных метеоритов, чем каменных. Так как болиды (рис. 188) – явление редкое, то орбиты метеоритных тел приходится определять по неточным свидетельствам случайных очевидцев, и поэтому надежных данных об орбитах выпавших метеоритов нет. По радиантам болидов, сопровождавшихся выпадением метеоритов, можно заключить, что большинство их двигалось в прямом направлении, и их орбиты характеризуются малым наклоном. Но здесь большую роль может играть наблюдательная селекция, так как вероятность разрушения метеорита при лобовой встрече с Землей (обратное движение) гораздо больше, чем при вторжении догоняющего тела.
Когда метеоритное тело входит в плотные слои атмосферы, его поверхность настолько нагревается, что вещество поверхностного слоя начинает плавиться и испаряться. Воздушные струи сдувают с поверхности железных метеоритов крупные капли расплавленного вещества, причем следы этого сдувания остаются в виде характерных выемок (рис. 189). Каменные метеориты часто дробятся, и тогда на поверхность Земли низвергается целый дождь обломков самых разнообразных размеров. Железные метеориты прочнее, но и они иногда разрушаются на отдельные куски. Один из крупнейших железных метеоритов, Сихотэ-Алинский, упавший 12 февраля 1947 г., был найден в виде большого количества отдельных осколков (см. рис. 189). Общий вес собранных осколков достиг 23 т, причем, конечно, были найдены не все осколки. Наибольший из известных метеоритов, Гоба (Юго-Западная Африка), представляет собой глыбу весом в 60 т (рис. 190).
Большие метеориты, ударяясь о Землю, зарываются на значительную глубину. Однако космическая скорость обычно гасится в атмосфере на некоторой высоте и, затормозившись, метеорит падает по законам свободного падения. Что произойдет, если с Землей столкнется еще большая масса, например 105-108 т? Такой гигантский метеорит прошел бы сквозь атмосферу практически беспрепятственно, при его падении возник бы сильнейший взрыв и образовалась бы воронка (кратер). Если такие катастрофические явления когда-либо происходили, то мы должны находить метеоритные кратеры на земной поверхности. Подобные кратеры действительно существуют. Крупнейший из них – Аризонский кратер (рис. 191), воронка которого имеет диаметр 1200 м и глубину около 200 м. Его возраст по приблизительной оценке составляет около 5000 лет. Недавно был открыт еще целый ряд более древних и разрушенных метеоритных кратеров. Химический состав метеоритов хорошо исследован. Железные метеориты содержат в среднем 91% железа, 8,5% никеля и 0,6% кобальта; каменные метеориты – 36% кислорода, 26% железа, 18% кремния и 14% магния. Каменные метеориты по содержанию кислорода и кремния близки к земной коре, но металлов в них гораздо больше. Содержание радиоактивных элементов в метеоритах меньше, чем в земной коре, причем в железных меньше, чем в каменных. Химические соединения, присутствующие в метеоритах, и их кристаллическая структура по-казывают, что метеоритное вещество сформировалось в условиях высоких давлений, и температур. Это означает, что метеориты входили когда-то в состав крупных тел, имевших большие размеры. По относительному содержанию радиоактивных элементов и продуктов их распада можно определить возраст метеоритов. Для разных образцов он получается различным и колеблется обычно в пределах от нескольких сотен миллионов до нескольких миллиардов лет.
§ 144. Зодиакальный свет и противосияние
Весной и осенью, в месяцы, когда в южных широтах Земли эклиптика после захода Солнца или перед его восходом очень высоко поднимается над горизонтом, в безлунную ночь можно наблюдать зодиакальный свет. Он представляет собой светлый треугольник, вытянутый вдоль эклиптики и расширяющийся в сторону Солнца (рис. 192). Яркость его постепенно падает с увеличением расстояния от Солнца (элонгации). При элонгации в 90-100° зодиакальный свет почти невозможно различить, и только при очень темном небе удается иногда заметить зодиакальную полосу – небольшое увеличение яркости неба вдоль эклиптики. При элонгации в 180°, в области неба, противоположной Солнцу («антисолнечная» область), яркость зодиакальной полосы несколько возрастает, и здесь можно заметить небольшое туманное пятно диаметром около десяти градусов. Оно называется противосиянием.
Зодиакальный свет и противосияние представляют собой эффект рассеяния солнечного излучения межпланетной пылевой материей, подавляющее большинство частиц которой имеет размеры в несколько микрон. Возможно, что эти пылевые частицы возникают в результате разрушения астероидов и комет и постепенного дробления их остатков. Межпланетная пыль образует облако, уплощенное к эклиптике. Некоторые исследователи предполагали еще недавно, что в межпланетном пространстве, кроме пылевой материи, имеется ионизованный газ с концентрацией ионов около 103 см –3 . В этом случае зодиакальный свет можно было бы частично объяснить рассеянием на электронах (как в солнечной короне). При рассеянии на электронах должна быть сильная поляризация, и зодиакальный свет действительно поляризован. Однако прямые эксперименты, проведенные с помощью ионных ловушек, установленных на советских космических ракетах, показали, что концентрация ионизованного газа в межпланетном пространстве не может превышать 100 см –3 по крайней мере в отсутствие сильных корпускулярных потоков. По-видимому, в обычных условиях рассеяние на электронах не дает заметного вклада в зодиакальный свет, и наблюдаемая поляризация возникает при рассеянии на межпланетных пылинках. Отмечалось, однако, что яркость зодиакального света иногда увеличивается после сильных солнечных вспышек. Это увеличение может быть связано с рассеянием солнечного излучения на электронах корпускулярных потоков.