355 500 произведений, 25 200 авторов.

Электронная библиотека книг » П. Бакулин » Курс общей астрономии » Текст книги (страница 15)
Курс общей астрономии
  • Текст добавлен: 9 октября 2016, 19:04

Текст книги "Курс общей астрономии"


Автор книги: П. Бакулин


Соавторы: В. Мороз,Э. Кононович
сообщить о нарушении

Текущая страница: 15 (всего у книги 17 страниц)

§ 37. Объяснение конфигураций и видимых движений планет

При своем движении по орбитам планеты могут занимать различные положения относительно Солнца и Земли. Пусть в некоторый момент (рис. 24) Земля Т занимает на своей орбите некоторое положение относительно Солнца С. Нижняя или верхняя планета может находиться в этот момент в любой точке своей орбиты. Если нижняя планета V находится в одной из четырех указанных на чертеже точек V1 , V2 , V3 или V4 , то она видна с Земли в нижнем (V1 ) или в верхнем (V3 ) соединении с Солнцем, в наибольшей западной (V2 ) или в наибольшей восточной (V4 ) элонгации. Если верхняя планета М находится в точках М1 , М2 , М3 или М4 своей орбиты, то она видна с Земли в противостоянии (М1 ) , в соединении (M3 ) , в западной (М2 ) или в восточной (М4 ) квадратуре. Нижняя планета находится ближе всего к Земле в момент нижнего соединения и дальше всего – в момент верхнего соединения. Верхняя планета приближается к Земле на наименьшее расстояние в момент противостояния и удаляется от нее на максимальнее расстояние в момент соединения. Так объясняются конфигурации планет.

Суть объяснения прямых и попятных движений планет заключается в сопоставлении орбитальных линейных скоростей планеты и Земли. Когда верхняя планета (рис. 25) находится около соединения (M3 ) , то ее скорость направлена в сторону, противоположную скорости Земли (Т3 ). С Земли планета будет казаться движущейся прямым движением, т.е. в сторону ее действительного движения, справа налево. При этом скорость ее будет казаться увеличенной. Когда верхняя планета находится около противостояния (M1 ) , то ее скорость и скорость Земли направлены в одну сторону. Но линейная скорость Земли больше линейной скорости верхней планеты, и поэтому с Земли планета будет казаться движущейся в обратную сторону, т.е. попятным движением, слева направо.

Подобные же рассуждения объясняют, почему нижние планеты (Меркурий и Венера) около нижнего соединения (V1 ) движутся среди звезд попятным движением, а около верхнего соединения (V3 ) – прямым движением (рис. 26).

§ 38. Синодические и сидерические периоды обращения планет

Синодическим периодом обращения (S) планеты называется промежуток времени между ее двумя последовательными одноименными конфигурациями. Сидерическим или звездным периодом обращения (Т) планеты называется промежуток времени, в течение которого планета совершает один полный оборот вокруг Солнца по своей орбите. Сидерический период обращения Земли называется звездным годом (ТД ) . Между этими тремя периодами можно установить простую математическую зависимость из следующих рассуждений. Угловое перемещение по орбите за сутки у планеты равно , а у Земли . Разность суточных угловых перемещений планеты и Земли (или Земли и планеты) есть видимое смещение планеты за сутки, т.е. . Отсюда для нижних планет (2.1)

для верхних планет (2.2)

Эти равенства называются уравнениями синодического движения. Непосредственно из наблюдений могут быть определены только синодические периоды

обращений планет S и сидерический период обращения Земли, т.е. звездный год ТД. Сидерические же периоды обращений планет Т вычисляются по соответствующему уравнению синодического движения. Продолжительность звездного года равна 365,26… средних солнечных суток. Продолжительность синодических и сидерических периодов обращения планет см. в приложениях.

§ 39. Революционность учения Коперника

Значение учения Коперника для развития науки безмерно велико: оно произвело настоящую революцию не только в астрономии, но и во всем человеческом мировоззрении. Действительно, со взглядом на строение Солнечной системы неразрывно связан вопрос о положении Земли, а с ней и человека во Вселенной. Следовательно, астрономия входит как существенный элемент в миропонимание, обнимающее как философские, так и религиозные вопросы. До Коперника, почти в течение 15 веков, Земля считалась единственным неподвижным телом Вселенной, центральной и важнейшей частью мироздания; все религии считали, что небесные светила созданы для Земли и человечества. Согласно же учению Коперника Земля – рядовая планета, движущаяся вокруг Солнца вместе с другими, ей подобными, телами. Господствовавшее представление о

различии “земного” и “небесного” оказалось несостоятельным. Учение Коперника заставило пересмотреть и другие отрасли естествознания, в частности, физику, и освободить науку от устаревших и схоластических традиций, тормозивших ее развитие. После Коперника исследование природы, по существу, освободилось от религии и развитие науки пошло гигантскими шагами. Но новое научное мировоззрение завоевывало свои права в ожесточенной борьбе со старым мировоззрением, ярыми приверженцами которого были религиозные фанатики и реакционные ученые. Вначале все они отнеслись терпимо к учению Коперника, считая его систему мира лишь простой геометрической схемой, более удобной, чем система Птолемея, для вычисления положений светил на небе. Но уже к началу XVII в. религиозные круги хорошо поняли всю опасность для них учения Коперника и предприняли против него ожесточенное гонение. Так, в 1600 г. в Риме был всенародно сожжен Джордано Бруно, первый последователь и пламенный пропагандист нового учения, пришедший на его основе к выводу о множественности обитаемых миров. В 1633 г. Галилео Галилей был привлечен к суду инквизиции и вынужден был

признать свои сочинения “ересью” и отречься от них, так как в своих книгах он отстаивал справедливость системы Коперника. Но никакие преследования не могли остановить начавшегося бурного развития науки, и в то время, когда инквизиция преследовала коперниканцев, Иоганн Кеплер (1572-1630) развил учение Коперника, открыв законы движений планет, а спустя 44 года после процесса Галилея Ньютон (1643-1727) опубликовал открытый им закон всемирного тяготения и тем самым установил причину, по которой планеты движутся вокруг Солнца.

§ 40. Законы Кеплера

Кеплер был сторонником учения Коперника и поставил перед собой задачу усовершенствовать его систему по наблюдениям Марса, которые на протяжении двадцати лет производил датский астроном Тихо Браге (1546-1601) и в течение нескольких лет – сам Кеплер. Вначале Кеплер разделял традиционное убеждение, что небесные тела могут двигаться только по кругам, и поэтому он потратил много времени на то, чтобы подобрать для Марса круговую орбиту. После многолетних и очень трудоемких вычислений, отказавшись от общего заблуждения о кругообразности движений, Кеплер открыл три закона планетных движений, которые в настоящее время формулируются следующим образом: 1. Все планеты движутся по эллипсам, в одном из фокусов которых (общем для всех планет) находится Солнце. 2. Радиус-вектор планеты в равные промежутки времени описывает равновеликие площади. 3. Квадраты сидерических периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит. Как известно, у эллипса сумма расстояний от какой-либо его точки до двух неподвижных точек f1 и f2, лежащих на его оси АП и называемых фокусами, есть величина постоянная, равная большой оси АП (рис. 27). Расстояние ПО (или ОA), где О – центр эллипса, называется большой полуосью а, а отношение – эксцентриситетом эллипса. Последний характеризует отклонение эллипса от окружности, у которой е = 0. Орбиты планет мало отличаются от окружностей, т.е. их эксцентриситеты невелики. Наименьший эксцентриситет имеет орбита Венеры (е = 0,007), наибольший – орбита Плутона (е = 0,247). Эксцентриситет земной орбиты е = 0,017. Согласно первому закону Кеплера Солнце находится в одном из фокусов эллиптической орбиты планеты. Пусть на рис. 27, а это будет фокус f1 (С – Солнце). Тогда наиболее близкая к Солнцу точка орбиты П называется перигелием, а наиболее удаленная от Солнца точка A – афелием. Большая ось орбиты АП называется линией апсид, а линия f2P, соединяющая Солнце и планету Р на ее орбите, – радиусом-вектором планеты. Расстояние планеты от Солнца в перигелии q = а (1 – е),(2.3)

в афелии Q = a (l + e).(2.4)

За среднее расстояние планеты от Солнца принимается большая полуось орбиты Согласно второму закону Кеплера площадь СР1Р2 , описанная радиусом-вектором планеты за время Dt вблизи перигелия, равна площади СР3Р4 , описанной им за то же время Dt вблизи афелия (рис. 27, б). Так как дуга Р1Р2 больше дуги Р3Р4 , то, следовательно, планета вблизи перигелия имеет скорость большую, чем вблизи афелия. Иными словами, ее движение вокруг Солнца неравномерно. Скорость движения планеты в перигелии

(2.5)

в афелии

(2.6)

где vc – средняя или круговая скорость планеты при r = а. Круговая скорость Земли равна 29,78 км/сек « 29,8 км/сек.

Первый и второй законы Кеплера показывают, что третье и четвертое утверждения Коперника (см. § 36) неверны. Третий закон Кеплера записывается так:

(2.7)

где Т1 и T2 – сидерические периоды обращений планет, а1 и a2 – большие полуоси их орбит. Если большие полуоси орбит планет выражать в единицах среднего расстояния Земли от Солнца (в астрономических единицах), а периоды обращений планет – в годах, то для Земли а =1 и Т = 1 и период обращения вокруг Солнца любой планеты (2.8)

Третий закон Кеплера устанавливает зависимость между расстояниями планет от Солнца и периодами их обращения.

§ 41. Элементы орбит планет. Основные задачи теоретической астрономии

Движение планеты будет вполне определено, если известны плоскость, в которой лежит ее орбита, размеры и форма этой орбиты, ее ориентировка в плоскости и, наконец, момент времени, в который планета находится в определенной точке орбиты. Величины, определяющие орбиты планеты, называются элементами ее орбиты. За основную плоскость, относительно которой определяется положение орбиты, принимается плоскость эклиптики. Две точки, в которых орбита планеты пересекается с плоскостью эклиптики, называются узлами – восходящим и нисходящим. Восходящий узел тот, в котором планета пересекает эклиптику, удаляясь от ее южного полюса. Эллиптическую орбиту планеты определяют следующие 6 элементов (рис. 28): 1. Наклонение i плоскости орбиты к плоскости эклиптики. Наклонение может иметь любые значения между 0 и 180°. Если 0 Ј i

0, но не превосходит некоторого предела vc , то точка т будет двигаться по эллипсу, в одном из фокусов которого будет находиться точка С (рис. 30). Плоскость эллипса будет проходить через точки С, т и направление скорости v0 . Форма и размеры эллипса будут различны, смотря по величине скорости v0 . При малых v0 эллипс будет сильно сжатым, его большая ось будет лишь немного больше, чем Cm, и точка С будет находиться в фокусе, далеком от m. Если скорость v0 будет близка к скорости vc , но меньше ее, то эксцентриситет эллипса будет мал, его большая полуось будет лишь немного меньше, чем Cm, точка С приблизится к центру эллипса, но останется в фокусе, далеком от т. Если начальная скорость v0 = vc и будет направлена перпендикулярно к линии Cm, то точка m будет двигаться по кругу радиуса Сm. Если v0> vc , но не превосходит некоторого предела vп = vc , то точка т будет двигаться по эллипсу, но точка С при этом будет находиться в фокусе, близком к m, а большая ось эллипса будет тем больше, чем ближе v0 к vп . Если v0 = vп = vc , то точка т будет двигаться по параболе, обе ветви которой уходят в бесконечность, приближаясь к направлению, параллельному оси Ст. По мере того как точка т будет удаляться от тела М, ее скорость будет стремиться к нулю. Если v0> vп , то точка т будет двигаться по гиперболе, ветви которой уходят в бесконечность и, при очень большой начальной скорости, приближаются к направлению, перпендикулярному к оси Ст. По мере того как точка т будет удаляться по гиперболе, ее скорость будет стремиться к некоторой постоянной величине.

Наконец, в предельных случаях, когда v0 = Ґ, точка т будет двигаться по прямой тb, а когда v0 = 0, то по прямой тС. Скорость v точки т на любом расстоянии r от точки С получается из формулы

(2.18)

где а – большая полуось эллипса. Эта формула называется интегралом энергии. Если точка m движется по кругу, т.е. r = а, то из уравнения (2.18) следует

(2.19)

а если точка m движется по параболе, то а = Ґ и (2.20)

Скорость vc называется круговой скоростью, а vп – параболической скоростью. Скорость эллиптического движения vэ заключена в пределах 0

vп . Гиперболическая орбита определяется теми же

шестью элементами, что и эллиптическая (см. § 41), только вместо большой полуоси

а = Ґ дается перигельное расстояние q. Параболическая орбита определяется пятью элементами: i,

wT . Разность

ускорений wB ѕ wT по величине примерно такая же и направлена также от центра Земли, поскольку wB

150 км). Круговая скорость на высоте h меньше первой космической скорости v1к и определяется из уравнения (2.27) или по формуле . Элементы орбиты ИСЗ зависят от места и времени его запуска, от величины и направления начальной скорости. Связь между большой полуосью а орбиты спутника и его начальной скоростью v0 , согласно интегралу энергии (2.18), определяется формулой где r0 – расстояние точки выхода ИСЗ на орбиту от центра Земли. Обычно запуск ИСЗ производится горизонтально, точнее, перпендикулярно к радиальному направлению. Эксцентриситет орбиты е при горизонтальном запуске равен где q – расстояние перигея (ближайшей точки орбиты от центра Земли). В случае эллиптической орбиты (рис. 35) q = а (1 – е) = R + hП , где hП – линейная высота перигея над поверхностью Земли. Расстояние апогея (наиболее удаленной точки орбиты от центра Земли) Q = a (l + e) = R + hA , где hA – высота апогея над земной поверхностью. Если запуск произведен в перигее (чего может и не быть), то r0 = q = R + hП .

Зависимость формы орбиты ИСЗ от начальной скорости, с которой он выведен на орбиту, показана на рис. 36. Если в точке К спутнику сообщена горизонтальная скорость, равная круговой для этого расстояния от центра Земли, то он будет двигаться по круговой орбите (I). Если начальная скорость. в точке К меньше соответствующей круговой, то спутник будет двигаться по эллипсу (II), а при очень малой скорости по эллипсу (III), сильно вытянутому и пересекающему поверхность Земли; в этом случае запущенный спутник упадет на поверхность Земли, не совершив и одного оборота. Если скорость в точке К больше соответствующей круговой, но меньше соответствующей параболической, то спутник будет двигаться по эллипсу (IV). Примерное расположение эллиптической орбиты спутника в пространстве показано на рис. 37. Здесь i – наклонение орбиты спутника к экватору Земли,

– нисходящий узел, П – перигей орбиты, А – апогей орбиты, ^ – проекция точки весеннего равноденствия на земном экваторе, W – прямое восхождение восходящего узла, w – угловое расстояние перигея от восходящего узла.

Период обращения ИСЗ определяется по третьему закону Кеплера (2.23). Он равен или, если иметь в виду (2.25), Если а выражать в километрах, то при R = 6370 км и g = 981 см/сек2 период обращения спутника получится в минутах из следующей формулы: Основных причин, изменяющих орбиту ИСЗ, две: действие экваториального утолщения Земли и влияние сопротивления атмосферы Земли. Первая причина вызывает вековые возмущения восходящего узла DW и перигея Dw, которые легко учитываются по формулам небесной механики. Вторая причина вызывает уменьшение большой полуоси а, т.е. высоты h, и изменение формы орбиты. Поскольку плотность атмосферы быстро падает с высотой, основное сопротивление и уменьшение скорости спутник испытывает вблизи перигея. Вследствие этого высота апогея орбиты спутника с каждым оборотом заметно уменьшается (высота перигея уменьшается гораздо медленнее). В результате уменьшается большая полуось и эксцентриситет орбиты; орбита спутника постепенно округляется. Когда высота апогея становится сравнимой с высотой перигея, спутник испытывает торможение и теряет свою скорость вдоль почти всей орбиты, уменьшение высоты апогея и перигея происходит еще быстрее, и спутник, приближаясь по спирали к поверхности Земли, входит в плотные слои атмосферы и сгорает. Так как спутник с каждым оборотом снижается, то его потенциальная энергия уменьшается, часть ее переходит в кинетическую энергию. Это приращение кинетической энергии с избытком покрывает энергию движения, которая теряется при торможении. Поэтому скорость спутника не уменьшается, а наоборот, увеличивается, в то время как орбита уменьшается. Следовательно, по мере снижения спутника его период обращения вокруг Земли сокращается. Описанное возмущенное движение спутника дано в первом приближении. В действительности элементы орбиты спутника испытывают более сложные и разнообразные возмущения. Сжатие Земли, отличие гравитационного поля от поля сферически-симметричной притягивающей массы, вызывают не только вековые возмущения долготы восходящего узла

1), но те же возмущения могут возвратить кометы на эллиптические орбиты. Расстояние в афелии у некоторых комет достигает 50 000-100 000 а.е., а период обращения – нескольких миллионов лет. У немногих короткопериодических комет орбиты почти круговые. Наклонения орбит комет также разнообразны и часто превышают 90°, т.е. кометы движутся вокруг Солнца как в прямом, так и в обратном направлении. Движение отдельных метеорных тел очень сложное, но многие из них образуют метеорные потоки, движущиеся по орбитам, подобным орбитам комет. Более детально характеристики тел Солнечной системы будут рассмотрены в гл. X.

§ 69. Движение Земли вокруг Солнца

Так как наблюдатель вместе с Землей движется в пространстве вокруг Солнца почти по окружности, то направление с Земли на близкую звезду должно меняться и близкая звезда должна казаться описывающей на небе в течение года некоторый эллипс. Этот эллипс, называемый параллактическим, будет тем более сжатым, чем ближе звезда к эклиптике и тем меньшего размера, чем дальше звезда от Земли. У звезды, находящейся в полюсе эклиптики, эллипс превратится в малый круг, а у звезды, лежащей на эклиптике, – в отрезок дуги большого круга, который земному наблюдателю кажется отрезком прямой (рис. 45). Большие полуоси параллактических эллипсов равны годичным параллаксам звезд.

Следовательно, наличие годичных параллаксов у звезд является доказательством движения Земли вокруг Солнца. Первые определения годичных параллаксов звезд были сделаны в 1835-1840 гг. Струве, Бесселем и Гендерсоном. Хотя эти определения были не очень точными, однако они не только дали объективное доказательство движения Земли вокруг Солнца, но и внесли ясное представление об огромных расстояниях, на которых находятся небесные тела во Вселенной. Вторым доказательством движения Земли вокруг Солнца является годичное аберрационное смещение звезд, открытое еще в 1728 г. английским астрономом Брадлеем при попытке определить годичный параллакс звезды у Дракона. Аберрацией вообще называется явление, состоящее в том, что движущийся наблюдатель видит светило не в том направлении, в котором он видел бы его в тот же момент, если бы находился в покое. Аберрацией называется также и сам угол между наблюдаемым (видимым) и истинным направлениями на светило. Различие этих направлений есть следствие сочетания скорости света и скорости наблюдателя. Пусть в точке К (рис. 46) находится наблюдатель и крест нитей окуляра инструмента, а в точке О – объектив инструмента. Наблюдатель движется по направлению КА со скоростью v.

Луч света от звезды М встречает объектив инструмента в точке О и, распространяясь со скоростью с, за время t пройдет расстояние ОK = сt и попадет в точку K. Но изображение звезды на крест нитей не попадет, так как за это же время t наблюдатель и крест нитей переместятся на величину KK1 = vt и окажутся в точке K1. Для того чтобы изображение звезды попало на крест нитей окуляра, надо инструмент установить не по истинному направлению на звезду КМ, а по направлению К0О и так, чтобы крест нитей находился в точке К0 отрезка К0К = К1К = vt . Следовательно, видимое направление на звезду К0М' должно составить с истинным направлением КМ угол s , который и называется аберрационным смещением светила. Из треугольника КО К0 следует:

или, по малости угла а, (4.1)

где q – угловое расстояние видимого направления на звезду от точки неба, в которую направлена скорость наблюдателя. Эта точка называется апексом движения наблюдателя. Наблюдатель, находящийся на поверхности Земли, участвует в двух ее основных движениях: в суточном вращении вокруг оси и в годичном движении Земли вокруг Солнца. Поэтому различают суточную и годичную аберрации. Суточная аберрация есть следствие сочетания скорости света со скоростью суточного вращения наблюдателя, а годичная – со скоростью его годичного движения. Так как скорость годичного движения наблюдателя есть скорость движения Земли по орбите v = 29,78 км/сек, то, принимая с = 299 792 км/сек, согласно формуле (4.1), будем иметь s = 20”,496 sin q « 20”,50 sin q. Число k0 = 20”,496 « 20»,50 называется постоянной аберрации. Так как апекс годичного движения наблюдателя находится в плоскости эклиптики и перемещается за год на 360°, то видимое положение звезды, находящейся в полюсе эклиптики (q = b = 90°), описывает в течение года около своего истинного положения малый круг с радиусом 20”,50. Видимые положения остальных звезд

описывают аберрационные эллипсы с полуосями 20»,50 и 20”,50 sin b , где b – эклиптическая широта звезды. У звезд, находящихся в плоскости эклиптики (b =

0), эллипс превращается в отрезок дуги длиной 20”,50 Ч 2 = 41”,00, точнее, 40»,99. Таким образом, самый факт существования годичного аберрационного смещения у звезд является доказательством движения Земли вокруг Солнца. Различие между параллактическим и аберрационным смещением заключается в том, что первое зависит от расстояния до звезды, второе только от скорости движения Земли по орбите. Большие полуоси параллактических эллипсов различны для звезд, находящихся на разных расстояниях от Солнца, и не превосходят 0»,76, тогда как большие полуоси аберрационных эллипсов для всех звезд, независимо от расстояния, одинаковы и равны 20”,50. Кроме того, параллактическое смещение звезды происходит в сторону видимого положения Солнца, аберрационное же смещение направлено не к Солнцу, а к точке, лежащей на эклиптике, на 90° западнее Солнца.

§ 70. Смена времен года на Земле

Наблюдения показывают, что полюсы мира в течение года не меняют заметным образом своего положения среди звезд. Отсюда следует, что ось вращения Земли при движении ее вокруг Солнца остается параллельной сама себе. Кроме того, изменение склонения Солнца в течение года в пределах от + 23° 27' (в момент летнего солнцестояния) до – 23° 27' (в момент зимнего солнцестояния) свидетельствует о том, что ось вращения Земли не перпендикулярна к плоскости орбиты Земли, а наклонена к ней на угол в 66° 33' = 90° – 23° 27’. Следствием движения Земли вокруг Солнца, наклона оси вращения Земли к плоскости орбиты и постоянства этого наклона является регулярная смена времен года на Земле. Расположение Земли и ее оси вращения по отношению к направлению солнечных лучей в дни равноденствий и в дни солнцестояний показано на рис. 47. Угол между направлением солнечных лучей и нормалью к ровной площадке, расположенной горизонтально на поверхности Земли, в положении I равен i1 = j – e, в положении III – i3 = j + e, а в положении II – i2 = j , где e – наклон эклиптики к экватору, а j – географическая широта места.

Согласно законам физики, величина лучистого потока F, падающего на площадку, пропорциональна косинусу угла между направлением лучей и нормалью к площадке, т.е. F = F0 cos i, где F0 – величина потока, перпендикулярно падающего на площадку (i = 90°). В день летнего солнцестояния (положение I) F1 = F0 cos (j – e). В день зимнего солнцестояния (положение III) F3 = F0 cos (j + e). Наконец, в дни равноденствий (положение II) F2 = F0 cos j . Таким образом, в течение года площадка на поверхности Земли, в зависимости от широты места, получает различное количество лучистой энергии (тепла). Так, например, на широте j = 55° 45' F1 больше F3 в 4,6 раза, а F2 в 1,5 раза меньше F1. Следовательно, северное полушарие Земли в течение весны и лета (с 21 марта по 23 сентября) получает гораздо больше тепла, чем осенью и зимой (с 23 сентября по 21 марта). Южное полушарие, наоборот, больше получает тепла с 23 сентября по 21 марта и меньше – с 21 марта по 23 сентября. Поток лучистой энергии, падающей на Землю, изменяется также и обратно пропорционально квадрату расстояния до Солнца, но это изменение существенной роли в смене времен года на Земле не играет, так как орбита Земли мало отличается от окружности. Действительно, если в афелии Земля получает F солнечного тепла, то в перигелии она получает 1,07 F, т.е. на 7% больше. Этим различием и объясняется несколько менее суровая зима и более прохладное лето в северном полушарии, по сравнению с зимой и летом в южном полушарии Земли. С наклоном оси вращения Земли к плоскости своей орбиты связано также и распределение тепловых поясов на Земле (см. § 16 и 17).

§ 71. Вращение Земли вокруг оси

Вращение Земли вокруг оси проявляется во многих явлениях на ее поверхности. Например, пассаты (постоянные ветры в тропических областях обоих полушарий, дующие к экватору) вследствие вращения Земли с запада на восток дуют с северо-востока в северном полушарии и с юго-востока – в южном полушарии; в северном полушарии подмываются правые берега рек, в южном – левые; при движении циклона с юга на север его путь отклоняется к востоку и т.д.

a) б) Рис 48 Маятник Фуко. А – плоскость качания маятника.

Но наиболее наглядным следствием вращения Земли является опыт с физическим маятником, впервые поставленный физиком Фуко в 1851 г. Опыт Фуко основан на свойстве свободного маятника сохранять неизменным в пространстве направление плоскости своих колебаний, если на него не действует никакая сила, кроме силы тяжести. Пусть маятник Фуко подвешен на северном полюсе Земли и колеблется в какой-то момент в плоскости определенного меридиана l (рис. 48, a). Через некоторое время наблюдателю, связанному с земной поверхностью и не замечающему своего вращения, будет казаться, что плоскость колебаний маятника

непрерывно смещается в направлении с востока на запад, “за Солнцем”, т.е. по ходу часовой стрелки (рис. 48,6). Но так как плоскость качания маятника не может произвольно менять своего направления, то приходится признать, что в действительности поворачивается под ним Земля в направлении с запада к востоку. За одни звездные сутки плоскость колебаний маятника совершит полный оборот относительно поверхности Земли с угловой скоростью w = 15° в звездный час. На южном полюсе Земли маятник совершит за 24 звездных часа также один оборот, но против часовой стрелки.

Рис 49. К маятнику Фуко

Если маятник подвесить на земном экваторе и ориентировать плоскость его качания в плоскости экватора, т. е. под прямым yглом к меридиану l (рис. 48), то наблюдатель не заметит смещения плоскости его колебаний относительно земных предметов, т.е. она будет казаться неподвижной и оставаться перпендикулярной к меридиану. Результат не изменится, если маятник на экваторе будет колебаться в какой-либо другой плоскости. Обычно говорят, что на экваторе период вращения плоскости колебаний маятника Фуко бесконечно велик. Если маятник Фуко подвесить на широте j , то его колебания будут происходить в плоскости, вертикальной для данного места Земли. Вследствие вращения Земли наблюдатeлю будет казаться, что плоскость колебаний маятника поворачивается вокруг вертикали данного места. Угловая скорость этого поворота wj равна проекции вектора угловой скорости вращения Земли w на вертикаль в данном месте О (рис. 49), т.е. wj = w sin j = 15° sin j . Таким образом, угол видимого поворота плоскости колебаний маятника относительно поверхности Земли пропорционален синусу географической широты. В Ленинграде плоскость колебаний маятника поворачивается в час приблизительно на 13°, в Москве – на 12°,5. Фуко поставил свой опыт, подвесив маятник под куполом Пантеона в Париже. Длина маятника была 67 м, вес чечевицы – 28 кГ. В 1931 г. в Ленинграде в здании Исаакиевского собора был подвешен маятник длиной 93 м и весом 54 кГ. Амплитуда колебаний этого маятника равна 5 м, период – около 20 секунд. Острие его чечевицы при каждом следующем возвращении в одно из крайних положений смещается в сторону на 6 мм. Таким образом, за 1-2 минуты можно убедиться в том, что Земля действительно вращается вокруг своей оси.

Вторым следствием вращения Земли (но менее наглядным) является отклонение падающих тел к востоку. Этот опыт основан на том, что чем дальше находится точка от оси вращения Земли, тем больше ее линейная скорость, с которой она перемещается с запада на восток вследствие вращения Земли. Поэтому вершина высокой башни В перемещается к востоку с большей линейной скоростью, нежели ее основание О (рис. 50). Движение тела, свободно падающего с вершины башни, будет происходить под действием силы притяжения Земли с начальной скоростью вершины башни. Следовательно, прежде чем упасть на Землю, тело будет двигаться по эллипсу, и хотя скорость его движения постепенно увеличивается, упадет оно на поверхность Земли не у основания башни, а несколько обгонит его, т.е. отклонится от основания в сторону вращения Земли, к востоку. В теоретической механике для расчета величины отклонения тела к востоку х получена формула где h – высота падения тела в метрах, j – географическая широта места опыта, а х выражено в миллиметрах. В настоящее время вращение Земли непосредственно наблюдается из космоса.

§ 72. Прецессионное и нутационное движение земной оси

Если бы Земля имела форму шара, однородного или состоящего из сферических слоев равной плотности, и являлась бы абсолютно твердым телом, то согласно законам механики направление оси вращения Земли и период ее вращения оставались бы постоянными на протяжении любого промежутка времени.

Однако Земля не имеет точной сферической формы, а близка к сфероиду (см. § 62). Притяжение же сфероида каким-либо материальным телом L (рис. 51) складывается из притяжения F шара, выделенного внутри сфероида (эта сила приложена к центру сфероида), притяжения F1 ближайшей к телу L половины экваториального выступа и притяжения F2 другой, более далекой, половины экваториального выступа. Сила F1 больше силы F2 и поэтому притяжение тела L стремится повернуть ось вращения сфероида РNРS так, чтобы плоскость экватора сфероида совпала с направлением TL (на рис. 51 против часовой стрелки). Из механики известно, что ось вращения PNPS в этом случае будет перемещаться в направлении, перпендикулярном к плоскости, в которой лежат силы F1 и F2 .


    Ваша оценка произведения:

Популярные книги за неделю