355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Нурбей Гулиа » В поисках «энергетической капсулы» » Текст книги (страница 9)
В поисках «энергетической капсулы»
  • Текст добавлен: 26 сентября 2016, 19:03

Текст книги "В поисках «энергетической капсулы»"


Автор книги: Нурбей Гулиа



сообщить о нарушении

Текущая страница: 9 (всего у книги 10 страниц)

Дело в том, что маховики и супермаховики обладают свойством «безреактивности», то есть при вращении они не оказывают реактивного воздействия на корпус и другие части устройства. Маховик связан с корпусом только подшипниками, которые, свободно проворачиваясь, не передают вращательных усилий.

Изготовленная мною маховичная дрель успешно сверлила любые доски, на которые я ее ставил. При этом она прекрасно выдерживала вертикальное направление благодаря еще одному свойству маховика, о котором уже упоминалось, – сохранять положение своей оси в пространстве.

Чтобы прочувствовать это свойство самому, лучше всего снять велосипедное колесо с вилки, взяться за концы оси и, держа колесо на вытянутых руках, попросить товарища раскрутить его. Если колесо раскручено как следует, никакие попытки повернуть ось ни к чему не приведут, несмотря даже на большие усилия. Колесо будет сопротивляться совсем как живое, стараясь вырваться из рук. Суть происходящего состоит в том, что ось вращающего маховика всякий раз стремится повернуться не туда, куда мы хотим, а под прямым углом к этому направлению.

Существует много способов узнать, куда будет поворачиваться ось маховика, но все они трудны и рассчитаны на специалистов. Поэтому я придумал для себя способ попроще, который назвал правилом колеса. Запомнить его ничего не стоит, достаточно иметь в кармане хотя бы одну монетку или колесико. Пустим монетку катиться по столу. Скоро она начнет падать набок, но что для нас особенно важно – она и сворачивать будет в ту же сторону. Теперь представим себе, что монетка – это вращающийся маховик. Допустим, мы пытаемся повернуть ось маховика в ту сторону, куда падает монета. Направление поворота монеты позволит нам определить, куда на самом деле будет сворачивать ось маховика. Вот и все правило.

Если никто не воздействует на ось маховика, то она безупречно сохраняет свое положение в пространстве. И это делает маховик незаменимым в навигационных приборах, которые сейчас устанавливают на всех кораблях, самолетах, ракетах. Называют такие приборы гироскопическими. Об этих интереснейших приборах написано много книжек, и я не буду подробно останавливаться здесь на них. А вот об автомобиле, в котором был применен как раз гироскопический эффект вращающегося маховика, думаю, сказать надо. Построил этот «гирокар» в 1914 году русский инженер П. Шиловский. Гирокар демонстрировался в Лондоне, где вызвал огромный интерес. Еще бы, машина Шиловского имела всего два колеса, как велосипед, однако она поддерживалась без каких-либо упоров в устойчивом состоянии, если даже все пассажиры садились на один ее бок. «Держал» машину раскрученный маховик благодаря гироскопическому эффекту.

Такие автомобили строились и позже. Возможно, что будущий махомобиль с супермаховичной «энергетической капсулой» спроектируют тоже двухколесным, чтобы использовать сразу оба замечательных свойства супермаховика – накапливать энергию и стабилизировать свое положение в пространстве.

«Капсула» разрастается...

Помните, мы говорили, что ученые разрабатывают проекты гигантских накопителей энергии на основе сверхпроводящих катушек – четверть километра диаметром и 50...70 метров высотой. И накапливать они должны десятки миллионов мегаджоулей энергии. Такие накопители нужны для аккумулирования энергии в период ночных недогрузок электростанций и для выделения ее при перегрузках в часы «пик». Наиболее чувствительны к недогрузкам и перегрузкам атомные электростанции, на долю которых с каждым годом будет приходиться все большая и большая часть электроэнергии, вырабатываемой как у нас в стране, так и во всем мире.

А пригодны ли супермаховики для накопления столь огромных количеств энергии и что они будут представлять собой в этом случае?

Применение маховичных накопителей на электростанциях тесно связано с именем известного русского изобретателя-самоучки А.Г. Уфимцева, которого Горький назвал «поэтом техники». Изобретения Уфимцева были необычайно широкого диапазона – от керосиновых ламп до самолетов. Тщательно проанализировав различные способы накопления энергии для ветроэлектростанций, в том числе «водородное» и тепловое аккумулирование, он пришел к выводу, что маховичный накопитель подходит для этих целей лучше других.

Первый маховичный аккумулятор был построен Уфимцевым в 1920 году из паровозного буфера. Маховик имел массу всего 30 килограммов и вращался в вакуумной камере с давлением около 5 гектопаскалей, делая 12 тысяч оборотов в минуту. Вывод мощности из камеры осуществлялся электрическим путем с помощью мотор-генератора.

Более крупную модель накопителя с маховиком массой 320 килограммов Уфимцев создал в 1924 году. После зарядки маховик обеспечивал равномерное горение нескольких электроламп по 1000 свечей в течение часа. Этот накопитель Уфимцев применил на ветроэлектростанции, которая существует в городе Курске и сейчас. Все куряне знают «ветряк Уфимцева» и гордятся им.

Маховик Уфимцева, как и сверхпроводящие накопители, аккумулировал электроэнергию в периоды ее избытка, во время порывов ветра, а затем равномерно распределял ее даже при полном отсутствии ветра. Крутиться он мог без подзарядки около 14 часов, однако, по словам старожилов, еще не было такого случая, чтобы ветер за это время ни разу не подул.

Идеи одаренного русского самоучки воплощены сегодня в любом маховичном накопителе для электростанций. Например, американский изобретатель Аллан Милнер разработал супермаховичный накопитель для солнечной электростанции. Известно, что солнечный свет, преобразованный в электроэнергию, может питать потребителей только днем, да и то в безоблачную погоду. А для того, чтобы использовать эту энергию ночью и в пасмурные дни, ее необходимо предварительно накапливать, и по возможности с минимальными потерями.

Накопитель Милнера состоит из супермаховика диаметром около метра, массой 2 тонны, вращающегося со скоростью 15 000 оборотов в минуту. Супермаховик подвешен на шести магнитных подшипниках, причем подвеска подстрахована обычными шарикоподшипниками. Разгон супермаховика и отбор энергии от него осуществляются мотор-генератором с постоянными магнитами, наиболее экономичным из известных машин подобного типа. Накопитель аккумулирует почти 150 мегаджоулей энергии, при этом потери составляют всего около 12 процентов. Плотность энергии такого накопителя в полтора раза превышает этот показатель у свинцово-кислотных аккумуляторов, а долговечность – во много раз.

Живут идеи Уфимцева и в проекте американского ученого Стивена Поста, предложившего для крупной электростанции гигантский супермаховик массой 200 тонн, диаметром 5 метров, вращающийся со скоростью 3500 оборотов в минуту. Такой супермаховик может накопить уже свыше 70 тысяч мегаджоулей энергии.

Супермаховик предполагается собрать из концентрических колец, навитых из кремниевого волокна и насаженных одно на другое с небольшим зазором, заполненным эластичным веществом, например резиной. Затем его заключат в герметичный корпус и соединят с валом мощного мотор-генератора. Сильная магнитная подвеска разгрузит подшипники от громадной тяжести супермаховика.

При внезапном разрыве этого супермаховика может выделиться энергия, равная взрыву тысячи тонн тола, но в момент разрыва корпусу передастся не более 1...2 процентов этой энергии. Остальная энергия будет выделяться достаточно медленно, вызывая лишь нагревание. На всякий случай супермаховик все же намечено установить под землей на безопасной глубине.

Большие перспективы сулят так называемые кольцевые супермаховики, о которых упоминалось выше. Единственной подвижной частью такого супермаховика является кольцо, навитое из высокопрочного волокна и помещенное в вакуумную камеру в форме бублика – тора. Поскольку кольцевой супермаховик лишен центра, в нем наиболее полно реализуются прочностные свойства волокон. Кольцо-супермаховик удерживается в камере в подвешенном состоянии с помощью магнитных опор, размещенных в нескольких местах по окружности. Само кольцо служит ротором мотор-генератора, а те места, в которых стоят обмотки магнитов, – статором. Это упрощает отбор энергии и зарядку супермаховика.

Если сравнивать кольцевой супермаховик со стальным маховиком из самой прочной стали, то выявится следующее. Плотность энергии кольцевого супермаховика в 2...3 раза больше и достигает 0,5 мегаджоуля на килограмм массы. Потери на вращение у него в 50...100 раз меньше, чем у стального, в связи с чем его свободное вращение достигает 750, а в перспективе – 12 тысяч часов. То есть такой супермаховик будет вращаться без остановки 500 суток, или полтора года!

Конструкция кольцевого накопителя привела меня с соавторами к идее «сверхнакопителя» энергии, который тоже был признан изобретением. Мы решили «переложить» с маховика на землю огромные разрывные напряжения, возникающие во вращающемся кольце, что позволит во много раз повысить плотность энергии накопителя. Но практически осуществить это будет возможно только в накопителях гигантских размеров.

В общих чертах идея «сверхнакопителя» такова. Кольцевой маховик в корпусе зарыт в землю горизонтально. На внешней поверхности кольца-супермаховика и на обращенной к ней внутренней поверхности корпуса одноименными полюсами друг к другу уложены сильные постоянные магниты. Взаимодействуя, они сжимают кольцо-супермаховик и растягивают корпус. От корпуса это растяжение передается фундаменту, в котором уложен корпус, а в результате и земле. Так как земля все равно существует и нам создавать ее заново не придется, то почему бы не использовать ее как гигантский и очень прочный корпус?

Может возникнуть вопрос: хватит ли сил у магнитов, чтобы противостоять колоссальному стремлению частей супермаховика удалиться от центра, а если и хватит, то не будет ли супермаховик «раздавлен» этими силами при остановке?

Все дело здесь, оказывается, в размерах, точнее, в диаметре супермаховика. Чем он больше, тем меньше магнитные силы. По мере разгона магниты супермаховика вследствие его растяжения все теснее поджимаются к соответствующим магнитам на корпусе, зазор между ними делается все меньше, а сила отталкивания – все больше. При остановке происходит обратное явление – магниты маховика отходят от корпуса, зазор увеличивается, и сила отталкивания падает. Поэтому маховик и не «раздавливается» в состоянии покоя.

У хороших постоянных магнитов при малых зазорах сила отталкивания может стократно превышать силу тяжести подвешиваемой массы. Постоянные магниты применяют для вывешивания над магнитными «рельсами» вагонов-магнитопланов. Подобные магнитопланы уже в недалеком будущем будут курсировать между городами со скоростями, доступными сейчас лишь самолетам.

Наш супермаховик-кольцо можно представить в виде как бы непрерывной кольцевой сцепки из таких «вагончиков», только гораздо меньших и состоящих почти из одних магнитов. Крутиться это «гибкое» кольцо будет в вакуумированной трубе, уложенной вокруг электростанции, завода или даже города. Если радиус кольца достигает, например, 16 километров (приблизительно столько же у кольцевой автострады вокруг Москвы), то с применением упомянутых постоянных магнитов скорость кольца-супермаховика составит 4 километра в секунду!

Плотность энергии нашего кольцевого гиганта должна быть 8 мегаджоулей на килограмм, что при сечении супермаховика всего 0,5 м2 даст полный запас энергии в накопителе – 2·1015 джоулей, или в 200 раз больше, чем в огромном сверхпроводящем накопителе, спроектированном французскими учеными. Этой энергии вполне хватило бы на освещение всех городов мира в течение вечера. А ведь объем французского накопителя вдвое превосходит объем нашего кольца.

Советские ученые из Свердловска разработали магниты, сила которых превышает в тысячу раз их силу тяжести. Если такие магниты поставить на наш сверхнакопитель, то скорость кольца супермаховика достигнет 12,6 километра в секунду и превысит даже вторую космическую скорость. Плотность энергии тогда будет 80 мегаджоулей на килограмм, а вся энергия накопителя составит 2·1016 джоулей. Это значительно больше избыточной или нереализуемой энергии электростанций всего мира. То есть использовать подобный накопитель полностью пока не удастся.

Можно пойти по пути уменьшения размеров накопителя и ограничиться запасом энергии в 1011 джоулей. Получится все-таки достаточно емкий накопитель, могущий обеспечить равномерную работу большой электростанции. При радиусе накопителя 0,5 километра сечение его подвижных магнитов будет всего 5x5 сантиметров. Такой накопитель в виде тонкой кольцевой трубки нетрудно расположить вокруг любой электростанции со всем ее хозяйством.

На позициях сотрудничества

Накопители энергии издавна помогают друг другу в работе. Если паровой и, скажем, дизельный двигатели ни к чему ставить на автомобиль одновременно, то аккумуляторы разных типов, наоборот целесообразно объединять.

Я уже говорил о том, как тепловые аккумуляторы помогают газовым отдавать больше энергии, – рассказывал про трамвай, который «заправлялся» и сжатым воздухом и кипятком, про свой микромобиль, где газовый аккумулятор – баллон с углекислотой работал вместе с тепловым аккумулятором – кастрюлей с расплавленной солью. А могут ли столь же успешно «сотрудничать» маховичные накопители, ну, хотя бы с электроаккумуляторами?

Оказывается, это сотрудничество одно из самых перспективных. Помните недостатки электромобиля? Он медленно разгоняется, не идет в гору, не может использовать кинетическую энергию, выделяемую при торможении. И всему виной невысокая плотность мощности электроаккумуляторов. По той же причине сами электроаккумуляторы не выносят быстрой зарядки. Они либо портятся, как, например, свинцово-кислотные, либо просто тратят «лишнюю» мощность на нагрев, как щелочные. Обыкновенные же маховики, не говоря об «энергетических капсулах» – супермаховиках, развивают какие угодно мощности, лишь бы выдержал привод, и, кроме того, позволяют сохранять кинетическую энергию транспорта. Соединив эти два накопителя на одном электромобиле, получаем большой выигрыш.

Электроаккумуляторы движут такой электромобиль только по ровным дорогам без уклонов, где не требуется торможений и разгонов, – иными словами, они обеспечивают ему крейсерскую скорость. А там, где нужны разгоны, обгоны, торможения, подъемы в гору, берется за дело супермаховик. По сравнению с обычным электромобилем здесь значительно повышается максимальная скорость, вдвое и больше сокращается время разгона, путь пробега увеличивается почти в два раза.

Так, у последней модели американского «гибридного» электромобиля с супермаховиком длина пробега без подзарядки составляет 112 километров против 63 километров у обычного электромобиля. Масса супермаховика с приводом для полуторатонного электромобиля – всего 75 килограммов. Выпуск этих электромобилей «второго поколения», оснащенных супермаховиками, предполагается начать примерно с 1985 года.

Неплохой «гибрид» получается из электроаккумуляторов и гидрогазовых накопителей. Последние также помогают использовать кинетическую энергию машины, значительно повышают путь пробега, скорость электромобилей, сокращают время их разгона.

На маленьких электромобилях эффективны даже резиновые накопители. Они просты и вполне применимы для накопления небольшой энергии. Я совсем было собрался поставить на самодельный электромобиль для накопления энергии торможения свой накопитель от резиномобиля. Но когда узнал, что подобное уже сделали английские инженеры, раздумал – не хотелось повторять чужой эксперимент.

Можно соединять вместе и аккумуляторы одного вида. В Японии, например, на электромобиле установили два типа электроаккумуляторов – стартерные и тяговые батареи. Первые, хорошо переносящие большие токи и мощности, работают на разгонах и обгонах, а вторые, имеющие более высокие КПД и плотность энергии, – на крейсерской скорости, питая электромобиль на ровной дороге без подъемов и разгонов. Конечно, стартерные электроаккумуляторы по плотности мощности не идут ни в какое сравнение с маховичными или гидрогазовыми накопителями, но и эта «гибридизация» в чем-то полезна.

Очень широко распространены «гибриды» статических и динамических накопителей одного и того же вида энергии. Всем известный маятник, в том числе и балансир с пружинкой в наручных часах, – «гибрид» статического аккумулятора механической энергии в виде поднятого груза или скрученной пружины и динамического аккумулятора той же энергии – маховика. «Перетекание» энергии из статического аккумулятора в динамический и обратно носит колебательный характер. Эти колебания необычайно точны по частоте, что и обусловило их применение в самых разнообразных часах.

Совершенно такой же эффект получаем, объединив статический и динамический электрические аккумуляторы – конденсатор и катушку индуктивности. Вместе они образуют так называемый колебательный контур. Электрический колебательный контур – аналог механического маятника, законы колебаний и того и другого одинаковы. Потери энергии в обоих случаях приводят к одному и тому же – колебания затухают, накопленная энергия переходит при этом в тепло.

И все-таки электрический и механический «маятники», несмотря на общность законов их колебаний, не могут заменить друг друга в технике. Представьте себе, что было бы, если бы в подвеске автомобиля вместо рессор ставили конденсаторы, в телевизоре вместо конденсаторов – рессоры, а катушки заменили маховиками!

Успешно сотрудничают не только накопители разных типов. «Союз» с накопителями очень полезен и для тепловых двигателей. Любой двигатель хорошо работает на какой-то одной скорости, в каком-то одном режиме. Тогда у него и расход горючего наименьший и выхлоп менее вредный. Изменение режима всегда ухудшает работу двигателя.

К сожалению, постоянные скорость и мощность двигателя чаще всего не нужны машине, на которой он установлен. Автомобилю, например, для разгона и подъема в гору требуется наибольшая мощность, при движении по ровной дороге без уклона на невысокой скорости – совсем небольшая, а на спусках и при торможении мощность им не только не потребляется, но даже выделяется. Сейчас эта мощность безвозвратно теряется, впустую нагревая тормоза и изнашивая их, хотя накопители энергии, в первую очередь маховичные и гидрогазовые, отлично могли бы сохранять ее и отдавать при разгонах машины.

Поэтому специалисты если и видят будущее тепловых двигателей на автомобилях, то непременно в союзе с накопителями. Двигателю предоставят возможность работать в наилучшем для него режиме, выдавать среднюю мощность, «подпитывая» накопитель. А остальное – дело накопителя. Он будет или расходовать энергию на разгонах, подъемах, обгонах, или накапливать ее при торможениях и на спусках. Такой режим работы позволит чуть ли не вдвое снизить расход горючего, во много раз уменьшить вредность выхлопа, получить немало всяких других преимуществ.

Предвижу твой вопрос, читатель: «Почему же сегодня, несмотря на очевидные выгоды, причем выгоды огромные, мы еще не встречаем «энергетические капсулы» повсюду?»

Прежде всего потому, что супермаховик – изобретение молодое: ему нет и 20 лет. А первые серьезные опыты, показавшие преимущества супермаховиков над другими накопителями, проведены только несколько лет назад. К слову сказать, преимущества дизеля над бензиновым двигателем или щелочного аккумулятора над кислотным доказаны уже около 100 лет назад, но до сих пор ни те ни другие не вытеснили своих менее перспективных собратьев.

Кроме того, супермаховичная «энергетическая капсула» – устройство весьма непростое. Для изготовления полномасштабного супермаховика для реально работающей машины необходимо сложное и дорогое оборудование. Пока это могут позволить себе лишь крупные авиационные и аэрокосмические предприятия. Но постепенно такие устройства, как говорится, «спускаются на землю» и начинают служить, может быть, на менее экзотичных, но гораздо более распространенных машинах. Над созданием супермаховиков сейчас усиленно работают научные и инженерные коллективы многих высокоразвитых государств мира, включая нашу страну.

Уже получены успешно работающие опытные образцы автомобилей, электромобилей, метропоездов, солнечных и ветровых электростанций, различных приборов и многих других устройств, использующих супермаховики. Но и при разработке этих опытных образцов встречается много трудностей, порой непредвиденных.

Мне с товарищами по работе довелось строить и испытывать автобусы как с гидрогазовыми, так и с маховичными накопителями в соединении с тепловым двигателем. Поскольку накопители здесь могли сохранять, или, иначе говоря, рекуперировать, кинетическую энергию машины, мы их называли просто рекуператорами.

Признаться, строя свой, первый у нас в стране маховичный рекуператор, мы изрядно намучились. Виноваты были где-то и мы сами, где-то производственники, сказывалось и полное отсутствие опыта в этом новом деле. Все перипетии нашей работы я описал в шуточном рассказе, опубликованном лет десять назад в одном популярном журнале. Вот этот рассказ.

Как мы делали рекуператор

(шуточный рассказ)

На стадии проектирования почти каждую ночь меня озаряли новые идеи, а утром конструктор с ужасом узнавал, что чертежи опять надо переделывать. Наконец документация была готова, ее размножили и отдали на завод, директор которого после долгих уговоров согласился изготовить «этакую маленькую модельку». Начальник производства, увидев чертежи, наотрез отказался от работы, заявив, что это не «моделька», а адская машина и что она «не пойдет», то есть не будет работать. С полчаса мы препирались, пока я не спросил, а почему, собственно, «не пойдет»?

– Был у нас тут один доцент, – ответил начальник производства, – мы ему сделали тоже инерционный, но не рекуператор, а грохот. Грохот не работал. Стало быть, и ваш не будет.

Я столь же убедительно возразил, что то был доцент, а я профессор и наша конструкция будет работать.

Короче говоря, машину все таки запустили в производство. И тут началось...

Прежде всего корпус, в котором должен был вращаться маховик, изготовили меньшего диаметра, чем сам маховик. Пробовали затолкнуть его туда прессом, но я категорически запротестовал. Тогда решили расточить корпус и обточить маховик. Обрабатывая корпус, начисто срезали ему один бок, а взявшись за маховик, сбили ему центровку – появилась статическая неуравновешенность. На корпус наварили длинную латку, после чего его ужасно искривило, и подшипники не полезли в гнезда. Маховик переточили и к статической добавили динамическую неуравновешенность. Я было совершенно потерял голову, но заводчане, воспользовавшись моей вынужденной командировкой, затолкнули все таки маховик в корпус на стотонном прессе и, выкрасив агрегат в голубой цвет, торжественно передали нам. Пришлось принять, хотя я и заметил им, что можно было не трудиться и не красить, во всяком случае, поверхности трения. Но радушные заводчане ответили, что для хороших людей им ничего не жалко, и отгрузили рекуператор.

Для стендовых испытаний рекуператора институт выделил нам подвал в только что выстроенном здании. Стояла холодная зима, а в подвале было тепло, и это нас радовало. Мы целыми днями разбирали рекуператор на детальки и исправляли заводские дефекты. Убедились, что стотонный пресс на заводе работает хорошо: маховик выпрессовать мы так и не смогли. Пришлось заливать в корпус азотную кислоту и таким неслыханным способом выпрессовывать, а заодно и балансировать маховик. Помогали нам энтузиазм и сноровка, мешали пары азотной кислоты и темнота в наглухо закупоренном подвале.

Основные дефекты мы ликвидировали, оставалось только собрать рекуператор. Детальки были аккуратно разложены на полу, завернуты в бумажки и пронумерованы, на потолке горела недавно установленная лампочка, а в просверленную в потолке щелку проникало дыхание наступающей весны. Я спокойно уехал в командировку отчитываться о проделанной работе, поручив лаборанту сборку рекуператора, которую нужно было провести не торопясь, тщательно, а самое главное, соблюдая чистоту деталей и смазки.

Ох уж эта весна! Какую злую шутку сыграла она с нами! Вернувшись из командировки в радужном настроении, я заглянул в наш подвал и... обомлел. При тусклом свете лампы невозмутимый лаборант с сигаретой в зубах стоял в болотных сапогах чуть не по пояс в грязной воде. В руках он держал шланг, по которому мощная помпа гнала глинистый раствор наружу, через спасительную щелку в потолке. Подвал не был гидроизолирован, и в него прорвались талые воды. Две недели откапывали мы ржавые детали, узлы и, отчаявшись очистить их от грязи и ржавчины, собирали рекуператор как попало.

Настало время посылать агрегат на завод для установки его на автобусе. Наученный горьким опытом, я тщательно гидроизолировал ящик для рекуператора и только после этого отправил на товарную станцию. Но и этой предосторожности оказалось недостаточно. По дороге крышку ящика повредили, и на завод он пришел полный воды. Рекуператор плавал в ней, как огурец в рассоле.

Установив наш агрегат на автобусе и убедившись, что он не работает, завод возвратил его нам обратно вместе с автобусом. Опять грязегидравлические испытания, теперь по ноябрьским дорогам. Пробуем пустить машину сами – передача летит в куски. В чем дело? Ого! Приваривая ушко для крепления, заводской сварщик прожег корпус и накрепко приварил к нему маховик.

Наконец выкатили автобус во двор. Машиной управлял лаборант, а рекуператором с заднего сиденья – я. Договорились сигнализировать друг другу свистками: один долгий – тормоза отпустить, два коротких – нажать. Предстартовая нервозность сыграла свою роль, и я, запуская рекуператор, вместо одного длинного свистка дал два коротких. От обломков передачи пришлось спасаться бегством.

Я заметил, что каждый новый ремонт рекуператора занимал у нас все меньше времени. Мы привыкли к постоянному ремонту и не вылезали из-под автобуса. Нас даже прозвали «Карлсонами, которые живут под автобусом». Оттуда я консультировал студентов, там же выслушивал институтские новости и подписывал бумаги. Зимой мы примерзали спиной к асфальту. Нас вытаскивали из-под автобуса заботливые студенты.

Опять наступила весна. Мы вывели автобус бережно, как норовистого коня. Выбрали тихую улочку, разогнались, и я уверенно включил рекуператор. Но это я лишь решил, что включил его. На самом деле я перепутал тумблеры, которые были заменены только накануне, и вместо «пуска» включил «аварийную остановку». Полетела прочнейшая стальная лента, связывающая маховик с колесами машины. Тут же склеили ее клеем №88. Попробовали катить автобус – катится. Остановили – что-то с глухим стуком упало на асфальт. Глянули под автобус – батюшки, кардан! Поставили кардан, поехали. Снова включили рекуператор – не работает. Остановились, выбежали, осмотрели – ничего непонятно. Я в сердцах стукнул по нему кулаком, и автобус пошел – сам! – плавно набирая скорость. Едва догнали его. Теперь работает, и еще как!

Если хочешь быть счастливым...

Заключение, в котором автор говорит о том, как стать счастливым, и подкрепляет это конкретными советами, как житейскими, так и чисто техническими, не забывая, конечно, и об «энергетической капсуле»

В своих афоризмах небезызвестный Козьма Прутков сказал: «Если хочешь быть счастливым – будь им!» Что ж, ему не откажешь ни в остроумии, ни в глубокомыслии. Но совет уж больно расплывчатый, неконкретный. Нисколько не посягая на лавры Козьмы Пруткова, я расшифрую это изречение так, как понял его сам: «Если хочешь быть счастливым – будь изобретателем!» Ибо нет, пожалуй, людей счастливее, чем изобретатели.

Однако на этом пути, юный читатель, немало «подводных камней», как впрочем, и в любом другом серьезном деле. Попытаюсь уберечь тебя от наиболее опасных из них, а заодно дам несколько советов.

Никогда не берись изобретать то, о чем мало знаешь; удачи здесь почти никогда не бывает, зато прослывешь «горе-изобретателем».

Постарайся изучить как можно больше в той области, в которой хочешь изобретать, особенно те изобретения, что были сделаны раньше; отнесись к ним с уважением и вниманием – их делали неглупые люди.

Вместе с тем не попадай под гнет авторитетов, не ищи традиционных решений – толкового изобретения таким путем не сделаешь.

Думай постоянно о своем изобретении, не забывай вспоминать о нем и перед самым сном – не исключено, что во сне ты увидишь решение мучающей тебя задачи.

Будь дружен с наукой, всегда обращайся к ней в трудных случаях, не иди с ней вразрез – и ты никогда не станешь изобретать «вечные двигатели», «инерцоиды» и прочие химеры, которые превращают изобретателя из самого счастливого человека в самого несчастного...

Я рассказал тебе в этой книжке о моем поиске, который, к счастью для меня, был удачным – я все-таки нашел свою мечту, свою «энергетическую капсулу». Если ты будешь честно и добросовестно вести свой поиск, не пожалеешь для него времени, – тебя обязательно ждет удача. По-другому просто не бывает – это подтверждается многовековой историей человеческого поиска, это закон.

Интересных и увлекательных задач, решению которых можно посвятить себя, бесконечно много. Но мне очень хотелось бы, чтобы ты, так же как и я, отправился на поиски «энергетической капсулы». Иначе я не стал бы писать для тебя эту книжку.

Не подумай вдруг, будто все самое основное в поиске «энергетической капсулы» уже сделано и тебе остались лишь крохи. Сейчас трудно даже представить себе, какой в действительности окажется «энергетическая капсула» будущего, которую, возможно, построишь ты. Я надеюсь, что это будет супермаховик, моему коллеге электрику, видимо, больше по душе конденсатор или сверхпроводник, а химику, конечно, электрохимическая батарея! Решение же, вероятнее всего, где-то посередине, на «стыке» двух или нескольких направлений.

Я чувствую, что ты хочешь подтверждающего примера. Пожалуйста.

Возьмем палку с двумя грузами на концах и раскрутим ее на стенде, как стержневой супермаховик из куска троса – вокруг поперечной оси. Что мешает крутить быстрее? Да все та же малая прочность – грузы, стремясь двигаться по прямой, разорвут палку и разлетятся. Это ахиллесова пята всех маховиков – рано или поздно разрывается даже лучший из супермаховиков.

Обратимся за помощью к электричеству. Силы притяжения электростатических зарядов, оказывается, могут быть очень велики. Если поставить двух людей на расстоянии метра друг от друга и передать одному из них всего 1 процент электронов, взятых у другого, то сила притяжения этих людей будет равна... силе тяжести всего земного шара! Не знаю, поверишь ли ты мне, но это так.


    Ваша оценка произведения:

Популярные книги за неделю