Текст книги "В поисках «энергетической капсулы»"
Автор книги: Нурбей Гулиа
сообщить о нарушении
Текущая страница: 2 (всего у книги 10 страниц)
Метровый резиновый жгут такого сечения имеет массу чуть больше ста граммов, а накопит при полном растяжении около 3 килоджоулей энергии. Стало быть, плотность энергии резины как аккумулятора, достигающая 30 килоджоулей на килограмм, превышает почти в сто раз этот показатель у пружин! Вот, оказывается, почему модели с резиномоторами летают, а с пружинным мотором еще ни одна модель не взлетела в воздух. Этим объясняется и мой конфуз с пружинной «сверхрогаткой».
Какова же будет масса резинового аккумулятора, пригодного для автомобиля? Необходимые 25 мегаджоулей энергии наберут всего около 900 килограммов резины. Это уже не 50 тонн! Над таким аккумулятором можно и поработать.
Основная трудность, с которой пришлось столкнуться, – это как преобразовать вытяжку резины во вращательное движение вала. Ведь в конечном итоге накопленная энергия должна вращать вал. Если вращения не нужно, то все гораздо проще. Вот в подводном ружье или в той же рогатке резина тоже аккумулирует энергию. Но все обходится ее растяжением, и это очень облегчает задачу. В резиномоторах для моделей жгут из тонких резиновых нитей закручивают. Кто изготовлял такие резиномоторы, знает, как перекручивается жгут при заводке мотора, как трутся петли резины друг о друга. Их даже смазывают касторкой, чтобы уменьшить трение. В результате – много потерь энергии, быстрый износ. Для модели это не так уж важно, а для настоящих машин, где огромное значение имеют коэффициент полезного действия – КПД и долговечность, совершенно неприемлимо.
Итак, резину нужно только растягивать. Первой мыслью, конечно, было привязать к концу резинового жгута веревку и наматывать ее на вал, который должен вращаться.
Я так и сделал. Превратить «безменовоз» в «резиновоз» было делом получаса. Под днищем тележки я закрепил конец резинового жгута, ко второму концу привязал шнурок, а шнурок намотал на ось колеса – и нехитрый привод был готов. Стоило прокрутить колеса тележки в обратную сторону, как резина растягивалась, накапливая энергию, которая затем двигала «резиновоз», когда я ставил его на пол. Я убедился, что как транспортная машина он гораздо лучше «безменовоза»: и проходит большее расстояние, и движется плавнее.
Но для реальной машины это не подходит. Если даже изготовить толстенный резиновый жгут сечением в квадратный дециметр, то для накопления нужной энергии он должен быть длиной не менее 100 метров! Растянется же этот жгут почти на целый километр. Это не то что на автомобиль, на поезд не поместится.
Если перекидывать жгут через блоки, как трос в подъемных кранах, то, хотя мы и сократим его длину, почти всю накопленную энергию «съедят» потери в блоках. Ведь резина – не стальной трос, она сильно растягивается, и при огибании блока жгут будет так тереться об его поверхность, что потери энергии, как и износ резины, неминуемы.
И еще. Сам по себе жгут сечением в квадратный дециметр, растягиваясь, может развивать силу в несколько тонн. Перекинув жгут через блоки, мы как бы складываем его раз в сто (чтобы сократить километровую длину хотя бы до пригодных для автомобиля десяти метров), при этом усилие растяжения достигнет сотен тонн. Этакая сила запросто «сложит» автомобиль, совсем как трубу телескопа. Подобные аварии машин так и называются – «телескопирование».
Да, неразрешимая проблема. Всем хороша резина, но слишком уж неудобна в обращении...
И тут совершенно неожиданно мне в голову пришла удачная мысль: если навить резиновый жгут на очень скользкий цилиндр (представим себе, что мы имеем такой идеально скользкий цилиндр), как на катушку, по спирали, то можно сильно сократить длину устройства. К тому же все усилие растяжения резины «перейдет» во вращение вала, не понадобится никаких дополнительных механизмов и нечего бояться, что автомобиль «телескопирует». Допустим, диаметр цилиндра будет всего полметра, тогда на каждый метр его длины ляжет не менее 30 слоев жгута, который сильно сузится при растяжении. Это уже составит около 50 метров растянутой резины. Километр уляжется на 20 метрах цилиндра, сделав при этом 600 оборотов.
Лучше и предложить трудно, но пока нет гипотетического идеально скользкого цилиндра. А собственно говоря, для чего он нужен? Для того, чтобы каждый слой резины на цилиндре мог повернуться относительно предыдущего без трения... Стоп! Ведь такой же результат мы получим, если разрежем цилиндр, как колбасу, на отдельные слои и насадим их свободно на общую ось! Слои эти можно изготовить из легкой пластмассы, даже из дерева.
Я приглядел дома толстую, добротную скалку, которой бабушка раскатывала тесто, и, воспользовавшись удобным случаем, распилил ее на множество тонких дисков. Выкрасил их сразу же раствором марганцовки, чтобы не узнали в моем «изобретении» бывшей скалки. Затем, проделав центральные отверстия, насадил диски на гладкий стальной стержень, на котором они могли свободно вращаться. Кроме этого, я просверлил диски в разных местах, чтобы максимально облегчить их. В самые крайние диски аккуратно, стараясь не расколоть, вбил короткие толстые гвозди, перекинул через них зигзагами резиновый жгут, концы которого связал между собой. Чтобы диски не терлись торцами, переложил их шайбами.
Теперь, вращая крайние диски в разные стороны, я мог растягивать резиновый жгут, накапливая в нем изрядное количество энергии.
Установил я свой «резиноаккумулятор» на оси колеса детской коляски. Крайние диски закрепил неподвижно – один на оси колеса, другой на раме коляски. Закрутив колесо в обратную движению сторону до полного натяжения резины, оборотов на пятьдесят, я затем опускал его на дорогу. Коляска рвалась вперед, как норовистый конь, и резво выносила меня прямо на середину двора на зависть младшим ребятишкам.
Потом я соединил вместе десять таких «резиноаккумуляторов», расположив их под днищем коляски, с приводом на одно заднее колесо. Второе посадил на ось свободно. Передние колеса я сделал рулевыми и ездил на своем «резиновозе» уже метров по триста, вызывая удивление у прохожих. Еще бы! Детская коляска с длинноногим «малюткой» сама собой катилась по улице, причем довольно быстро и бесшумно – совсем как печка с Емелей из сказки!
Моим «резиноаккумулятором» заинтересовались специалисты, тоже из числа прохожих. Один из них, работавший на заводе, посоветовал мне подать письмо-заявку в Комитет по изобретениям, описав в ней мой «резиноаккумулятор». Он и помог составить эту заявку, так как это оказалось непросто, особенно если делаешь в первый раз.
Какова же была моя радость, когда я получил официальное письмо, где говорилось, что мой «резиноаккумулятор» признан изобретением. А затем, почти через год, мне торжественно вручили государственный документ – авторское свидетельство на изобретение. Это был красивый диплом с красной печатью и зеленой лентой, с номером моего изобретения и чертежом «резиноаккумулятора». Тот, кто получает такое авторское свидетельство, уже считается изобретателем. Я очень гордился этим документом и повесил его на стенку.
Надо сказать, что «резиноаккумулятор» действительно вышел неплохой. Правда, он запасал не 30, как я ожидал, а всего 3 килоджоуля на килограмм своей массы, но и это было в десятки раз больше, чем может накопить пружина.
Конечно, я понимал, что это не совсем тот аккумулятор, о котором мечталось. И энергии не мешало бы накапливать побольше, и потерь ее в резине многовато. Да и материал – резина – недолговечный по сравнению с металлом, например. Что ж, значит, все еще впереди.
Энергия... в воздухе!
«Бесполезно было бы пытаться набрать в резине энергии больше, чем она в состоянии накопить», – успокаивал я себя, когда мой взгляд останавливался на предмете моей гордости – авторском свидетельстве на изобретение «резиноаккумулятора». Мне удавалось растягивать жгут лишь до известных пределов, в конце концов резина не выдерживала и лопалась. При этом вся накопленная энергия «вылетала» из нее, как пробка из бутылки шампанского.
А кстати, почему вылетает пробка из бутылки с шампанским? Потому, почему и пуля из пневматического ружья. Сжатый газ способен совершать работу благодаря накопленной в нем энергии. Той самой потенциальной энергии, что запасалась в устройствах, которые я мастерил раньше. Воздух, вообще всякие газы тоже обладают упругостью. Более того, воздух, например, можно сжимать гораздо сильнее, в большее количество раз, чем растягивать пружину или резину. Хорошо, если пружину удается сжать вдвое; резину иногда растягивают раз в пять-шесть. А воздух сжимай хоть в пятьсот раз – ничего ему не сделается.
То есть в сжатом воздухе, если рассуждать теоретически, можно накопить огромную энергию. Но газ нельзя сжимать сам по себе, нужен сосуд – баллон, в котором этот газ будет находиться. Баллон должен быть очень прочным, иначе его разорвет давление.
А прочные вещи всегда бывают тяжелыми. И поэтому сам баллон, как правило, намного тяжелее, чем газ внутри его. Правда, и газ, сжатый, например, в 500 раз, нелегок – по плотности он уже приближается к жидкости...
Но все-таки сколько энергии сумеет накопить сжатый воздух? Может ли он претендовать на звание «энергетической капсулы»? Я, наверное, первый раз в жизни листал свой школьный учебник физики с таким нетерпением и наконец нашел то, что искал.
Чтобы узнать, сколько энергии накоплено в газе, нужно умножить его давление на объем. Кубометр воздуха весит чуть больше килограмма. Допустим, мы сожмем воздух в 500 раз, его давление будет – 500 атмосфер, или около 50 мегапаскалей (МПа). Тогда весь кубометр уместится в сосуде емкостью два литра. Если предположить, что баллон весит примерно столько же, сколько воздух (а это должен быть очень хороший, крепкий баллон!), значит, на каждый килограмм баллона придется только около литра сжатого воздуха. Но этот литр, одна тысячная кубометра, умноженная на 50 мегапаскалей давления, даст в результате 50 килоджоулей энергии!
Совсем неплохой показатель – 50 килоджоулей на килограмм массы аккумулятора! Плотность энергии почти вдвое выше, чем у лучшей резины. И долговечность такого аккумулятора очень высока – воздух не резина, он не изнашивается. Масса воздушного аккумулятора для автомобиля будет всего 500 килограммов. Его уже вполне можно установить на автомобиле в качестве двигателя.
Окрыленный этим открытием, я поспешил поделиться радостью со своим приятелем. Но тот в ответ лишь ухмыльнулся и сунул мне под нос только что полученный журнал, где говорилось, что не так давно итальянцы построили автомобиль-воздуховоз, проходящий с одной заправки воздухом более ста километров.
Вскоре выяснилось, что и это далеко не новость. Еще в прошлом веке во французском городе Нанте ходил трамвай, работавший от баллонов со сжатым воздухом. Десяти баллонов воздуха, сжатого всего до 3 мегапаскалей, при общем объеме 2800 литров, трамваю хватало, чтобы пройти на накопленной в воздухе энергии путь в 10...12 километров.
Все равно я решил построить модель такого воздуховоза, чтобы самому убедиться в преимуществах и недостатках воздушного аккумулятора. Как мне представлялось, модель автомобиля-воздуховоза сделать несложно. По моим расчетам, для этого нужен был углекислотный огнетушитель, например автомобильный, который выбрасывает струю газа, а не пены, и тяговый пневмодвигатель, скажем от воздушной дрели или гайковерта.
Но, увы, первое же испытание воздуховоза разочаровало меня. Я направил сжатый углекислый газ из огнетушителя в пневмодвигатель, а тот, чуть-чуть поработав... замерз. Да, да, покрылся инеем и остановился!
Объяснение этому поразительному явлению я нашел в том же учебнике физики.
В принципе любой сжатый газ при резком расширении сильно охлаждается. Когда я, ничего не подозревая, крутанул вентиль баллона сразу до отказа и газ под большим давлением вырвался из отверстия, расширение оказалось столь интенсивным, что газ стал превращаться в снег. Не обычный, а утлекислотный, с очень низкой температурой. Такой снег, только спрессованный, часто называют «сухой лед», потому что он переходит в газ, минуя жидкую фазу. Мне не раз приходилось видеть «сухой лед», когда я покупал мороженое. Но главное – охлаждение значительно снизило запас энергии в сжатом газе. Ведь давление газа при охлаждении стремительно падает, а значит, уменьшается и количество выделяемой энергии. Это и было основной причиной остановки пневмодвигателя.
Можно, конечно, нагревать охлажденный газ, чтобы вернуть ему прежнюю температуру. Но ведь нагрев – затрата энергии. Газ когда-то сжимали, закачивая в баллон. Тут-то он и нагревался: газы, как известно, при сжатии нагреваются. Вот если бы горячий газ сразу же пустить в работу, то он охладился бы всего до исходной температуры. А при хранении баллон с горячим газом в конце концов остывает, принимает температуру окружающего воздуха. Отсюда и столь сильное охлаждение газа при выходе его из баллона, при расширении, отсюда и «сухой лед».
Как ни горько было мне читать об этом в учебнике, но это было правдой, подтвержденной моим собственным опытом по «замораживанию» пневмодвигателя. Вроде бы и учился я неплохо, по физике имел только «хорошо» и «отлично», однако почему-то начисто забыл о тех явлениях, которые на уроках в школе казались мне такими простыми и понятными.
Тем не менее с воздушным аккумулятором надо было что-то предпринимать.
В помощь воздуху – масло
Прослеживая мысленно все этапы работы аккумулятора, я вдруг понял, что под впечатлением моей неудачи с воздуховозом упустил из виду очень существенный момент. Действительно, решив бороться с расширением и охлаждением газа после выхода его из баллона, я совсем не подумал о том, что почти то же самое происходит в это время и внутри баллона. С каждым мгновением газа в нем остается все меньше и меньше, он все больше расширяется, давление его падает, а соответственно снижается и количество выделяемой энергии. И если сначала мы получаем с одного литра сжатого газа огромную энергию, то, когда давление его приближается к атмосферному, в аккумуляторе уже не энергия, а «пшик».
Хорошо бы не давать газу расширяться так сильно, подумал я. Допустим, довести давление этак с 50 мегапаскалей до 20 и на этом остановиться. Не так уж и трудно это сделать, если, например, взять цилиндрический баллон и перемещать внутри его поршень. И охлаждение было бы значительно меньше, и газ можно было бы не выпускать в атмосферу, оставляя его все в том же герметичном баллоне-цилиндре, просто увеличивая его объем. А это в свою очередь позволило бы использовать не только воздух, но и более подходящий для сжатия газ, поинертнее, скажем азот или гелий. Дело в том, что воздух под большим давлением окисляет смазку, которая присутствует везде и всюду, а азот и гелий – нет.
Кстати говоря, чисто воздушный аккумулятор чем-то напоминает резиновый – и там и здесь упругое тело (воздух, резина) само взаимодействует с рабочим органом, непосредственно совершает работу. А вот резина со шнурком разделяют обязанности – резина энергию накапливает, а шнурок совершает работу. Шнурок нерастяжим, и поэтому ему легче взаимодействовать с рабочим органом, например осью колеса. Будь тут одна резина, было бы много потерь энергии из-за трения. Недаром когда-то догадались помещать в рогатке кусок кожи в месте контакта с камнем – так сказать, рабочим телом. Без этой кожи рогатка стреляла бы гораздо хуже.
Надо бы придумать что-нибудь подобное и для воздушного аккумулятора, решил я. И поиски привели меня к уже давно известному устройству, принцип работы которого заключался в следующем.
Заливаем в баллон со сжатым газом машинное масло и разделяем их поршнем или резиновой диафрагмой. Сжатый газ давит на поршень, тот на масло, а оно уже поступает под давлением в гидромашину, которая очень похожа на пневмодвигатель или даже на паровую машину – те же цилиндры, поршни, золотники. Только вместо газа или пара гидромашину приводит в действие масло. Масло не сжимается, поэтому потерь энергии в такой машине во много раз меньше, чем в воздушной – пневмодвигателе. Да и смазки не нужно – машинное масло само прекрасно смазывает трущиеся детали. Несжимаемое масло здесь как раз играет роль нерастяжимого шнурка.
Это был тоже аккумулятор – гидрогазовый, то есть состоящий из жидкости – масла – и газа. Но наряду с преимуществами перед чисто воздушным он имел и свои недостатки.
Главный недостаток – требовалось много масла. Чем более емкий аккумулятор мы захотим сделать, тем больше в нем должно быть сжатого воздуха. Масла, естественно, понадобится столько же, сколько и воздуха, не меньше. И еще – пройдя через гидромашину, масло свободно стекает в бак, тяжелый, громоздкий, тем большего размера, чем больше масла. Если учесть, что здесь используется не один, а сразу несколько баллонов со сжатым воздухом и маслом, то можно себе представить, как это все увеличит размеры и массу аккумулятора!
Нет, размышлял я, так дело не пойдет. Куда мне такая громадина? Один только бак чего стоит... А нельзя ли обойтись совсем без него?
Половину баллона сначала занимает сжатый газ, вторую половину – масло. Попробуем сузить баллон посередине, между жидкостью и газом, и поставить там запорный клапан. Таким образом изменим все баллоны аккумулятора. Теперь сделаем вот что. Пусть масло находится в нижней половине первого баллона, в верхней – сжатый газ. В остальных баллонах оставим только сжатый газ в верхних половинах – нижние пусты, и запорные клапаны перекрыты.
Итак, весь газ сжат, энергия в нем накоплена – все готово к совершению работы. Сможет ли аккумулятор работать без бака?
Открываем запорный клапан первого баллона и выпускаем масло под давлением в гидромашину. Но после гидромашины направляем масло уже не в бак, его ведь нет, а в пустую нижнюю половину следующего баллона. Когда он заполнится, открываем запорный клапан этого баллона, и масло, отработав в гидромашине, поступает в третий баллон. И так далее, при любом количестве баллонов, при любой емкости аккумулятора. Все в порядке, энергия выделяется!
Зарядка аккумулятора должна происходить в обратной последовательности. Мы крутим гидромашину, и масло своим давлением сжимает газ поочередно в баллонах, переходя из одного в другой, используя предыдущий баллон в качестве бака. Аккумулятор заряжен!
Это была уже действительно победа! Использовать в аккумуляторе огромной емкости постоянный небольшой объем масла и обойтись совсем без бака – раньше это казалось мне просто фантастичным.
Чтобы проверить правильность своих расчетов, я обратился к специалистам-гидравликам. И тут я по-настоящему оценил народную поговорку «ум хорошо, а два лучше». Специалисты многое поправили в моей схеме, нашли такие «тонкости», о которых я и не подозревал. Разработанные нами впоследствии устройства были признаны изобретениями.
И все же полного удовлетворения у меня не было. Изучая пристально воздушный аккумулятор, я убедился, что при сильном сжатии многие газы просто-напросто сжижаются и дальнейшее сжатие, если оно даже возможно, уже не дает ожидаемого эффекта.
Оказалось также, что нельзя держать сжатый до очень большого давления газ в одном цельном баллоне – не выдержит, разрушится стенка баллона, даже если ее сделать очень толстой. Надо помещать один в другой несколько баллонов, постепенно повышая давление от внешних к внутренним. Однако полноценным аккумулятором станет только внутренний, самый малый баллон, где наиболее высокое давление. Остальные будут практически балластом.
Значит, повышать давление более 400...500 атмосфер для аккумулирования энергии в сжатом газе невыгодно. То есть энергетический «потолок» здесь невысок. И хотя такие аккумуляторы, в общем-то, нужны и полезны, моей «капсулы» тут не найти.
Время шло, а «энергетическая капсула» продолжала пока быть мечтой.
«Капсула» разогревается
Глава вторая, в которой капсула начинает теплеть, но с появлением загадочного «демона Максвелла» автор всерьез стал сомневаться, туда ли он в своих поисках забрел...
Тепловой «банк»
Несмотря на то, что с газовыми аккумуляторами и было решено покончить, забыть я их никак не мог. Не давало покоя тепло – энергия, пропадающая при остывании горячего после закачки воздуха баллона. Вернее, не пропадающая, а переходящая в окружающий воздух, но от этого не легче.
Хорошо, размышлял я, пусть газ при сжатии сильно нагревается, однако неужели нельзя спасти это тепло, не дать ему рассеяться? Тогда энергию сжатого газа можно было бы использовать не тотчас же после сжатия, а когда угодно после.
Есть, конечно, целый ряд способов, как уберечь тепло от рассеивания. Еще наши предки, когда хотели, чтобы заварочный чайник на самоваре подольше оставался горячим, накрывали его ватной «бабой». Кастрюлю с кашей с той же целью клали под подушку. Да и мало ли мы знаем примеров «укутывания» для сохранения тепла?
Но лучший способ сберечь тепло – это воспользоваться термосом. Я всегда удивлялся способности этого прибора долго, целый день, удерживать чай почти кипящим. Пробовал разобраться, как устроен термос, что у него внутри.
Однажды, сняв крышку, я вынул из корпуса сверкающую зеркальную бутылочку с торчащим хвостиком внизу. Так как больше ничего особенного я не обнаружил и загадка термоса не была разгадана, я с замиранием сердца обломил кончик хвостика, надеясь заглянуть внутрь, под зеркальный слой. Послышался резкий свист воздуха, и все стихло. Посмотрев в крошечное отверстие в бутылочке, я понял, что обманулся – ничего там не было.
Я поспешно вставил испорченный сосуд обратно в корпус и завинтил крышку. Внешне термос остался тем же, а тепла, увы, уже не удерживал. Кипяток в нем, правда, остывал не так скоро, как, например, в чайнике, но и не так медленно, как раньше. Термос посчитали негодным и выбросили.
А я, заглянув в энциклопедию, нашел там статью про термос и выяснил его устройство. Оказывается, зеркальная бутылочка была не цельная, а состояла из двух стеклянных колб, вставленных одна в другую и позеркаленных особым способом. Вставив колбы друг в друга, в пространство между ними заливают специальный раствор, содержащий соли серебра, и колбы нагревают. Стенки колб при этом покрываются тончайшей серебряной пленкой. Затем раствор выливают, воздух из этого пространства выкачивают и отверстие запаивают. Вот и остается после него тоненький стеклянный хвостик, который я обломил...
Для чего же все это делается? Если мы нальем в термос горячую жидкость и заткнем его пробкой, то куда денется тепло? Окружающий воздух не нагреется – тепло не пройдет через безвоздушную прослойку между колбами. Излучиться в пространство, как излучается оно Солнцем или раскаленным металлом, тепло тоже не может – зеркальный слой отражает тепловые лучи, как свет, снова внутрь колбы. А внешняя колба позеркалена для того, чтобы тепловые и солнечные лучи снаружи не попали внутрь и не нагрели содержимого, на случай, если в термосе находится холодная вода или мороженое. Поэтому термос одинаково хорошо сохраняет первоначальную температуру как холодных, так и горячих тел. Говорят, что он теплоизолирует их от окружающей среды. Тепло может «утечь» или «притечь» только через тоненькую «шейку», соединяющую обе колбы, или через пробку. А пробка очень плохо передает тепло.
Изобрел этот хитрый сосуд в самом конце прошлого века английский ученый Джеймс Дьюар, и в честь него термос называют еще сосудом Дьюара.
Вот куда надо бы помещать сжатый газ, чтобы он не охлаждался, сохранял свое тепло подольше. Но сосуд Дьюара, рассчитанный на огромные давления аккумулятора, станет очень сложным и дорогим; как говорится, игра здесь просто не будет стоить свеч.
Зачем же вообще помещать туда газ, да еще сжатый? Ведь значительно большее количество энергии можно накопить в заранее нагретых телах помассивнее, чем газ, например в жидкостях, их и сжимать для этого не надо. Тогда давление нам уже не помешает, и сосуд Дьюара будет иметь свой обычный вид.
Килограмм сжатого до 500 атмосфер газа, как я подсчитал раньше, может накопить 50 килоджоулей энергии. А литр воды, имеющий массу тоже килограмм, как известно, при нагревании всего на один градус накопит 1 большую калорию тепла, что соответствует механической энергии в 4,2 килоджоуля. Если же нагреть литр воды с 0 до 100 градусов, то в воде накопится энергии в 8 раз больше, чем при сжатии килограмма газа в 500 раз!
Все это показали несложные расчеты, которые я в свое время на уроках в школе делал, откровенно говоря, довольно неохотно. Но теперь результат буквально ошеломил меня. Вот где надо искать настоящую «энергетическую капсулу»! Даже обыкновенная вода, нагреваемая до столь невысокой температуры, запасает огромное количество энергии. А что могут дать другие, новые материалы, которые, возможно, гораздо лучше воды накапливают тепло?
Мысли о новых теплоемких материалах отныне не покидали меня ни на минуту. Я жил в предвкушении сенсационных открытий.
Секреты плавления
В мечтах уже виделся сияющий кусочек неведомого пока материала, нагретый до чудовищной – в миллионы градусов – температуры. Этот кусочек, вобравший в себя гигантское количество тепловой энергии, помещен в жароупорный «термос». Чтобы не расплавились стенки сосуда, кусочек «подвешен» в магнитном поле внутри «термоса»...
Эту фантастическую картину я рисовал моему школьному товарищу, когда мы до глубокой ночи провожали друг друга по домам. А он жестоко и методично разбивал мои мечты одну за другой.
Во-первых, говорил он, при температуре свыше трех-четырех тысяч градусов почти все вещества превращаются в пар. Пара же в термосе много не уместишь. Во-вторых, столь высокую температуру не выдержит не только сосуд Дьюара, но и любой другой сосуд – он расплавится или сгорит.
Твердые или жидкие тела останутся в прежнем состоянии, если их нагревать до одной – полутора тысяч градусов, не более. Но при такой температуре они уже не подчиняются магниту, в магнитном поле их не «подвесишь». Можно, конечно, «подвешивать» небольшие количества расплавленного металла в высокочастотном электромагнитном поле, где металл поддерживается в расплавленном виде энергией поля. Однако потери электроэнергии на «подвешивание» здесь очень велики, для «энергетической капсулы» это не подходит.
Напомнил мне друг и о том, как мучаются физики-ядерщики, пытаясь хоть на краткий миг «запереть» сверхгорячую материю в магнитном поле, и что из этого пока мало что получается. А у меня, дескать, и подавно ничего не выйдет. Большее, на что я могу рассчитывать, это накалить докрасна камни, как в русской бане, а затем «извлекать» из них энергию, поливая водой. Пар же можно направить и в паровую машину и...
Меня злили доводы друга, хотя я понимал, что он прав. Но где же выход? Мечты об «энергетической капсуле» рассеивались как дым. Я лег спать в раздумьях, и мне снилась русская баня...
А утром произошло следующее. Выйдя на кухню, я увидел в кастрюле на газу плавающие в кипятке какие-то странные предметы – зеленые и все в шипах. Оказалось, это термобигуди, которыми пользуются для укладки волос. Нагретые в кипятке, такие бигуди долго-долго остаются горячими. Да это же почти то, что нужно, – накопитель тепла!
Я выпросил одну «бигудину» и бросил в кипяток вместе с равными ей по массе кусочками дерева, пластмассы и металла. Затем одновременно вынул их и оставил стынуть. Поразительно, но «бигудина» сохраняла тепло в несколько раз дольше своих соседей. Не доверяя пальцам, я проверил это даже небольшим электротермометром, который взял в школьном физическом кабинете.
Проделывая опыт многократно, я заметил, что «бигудина» в отличие от других образцов, остывала весьма необычно. Сначала температура ее падала довольно резко. Потом, дойдя до 50...60 градусов, держалась так очень долго. Затем «бигудина» опять резко остывала до комнатной температуры.
Тут я не удержался и вскрыл «бигудину», чтобы посмотреть, что за механизм у нее внутри. Но там, кроме какой-то пастообразной массы, ничего не оказалось. Это был парафин или стеарин, из которых делают обыкновенные осветительные свечи. Чудеса!
Я купил килограмм парафина, расплавил его и залил в термос. В другой такой же термос я поместил воду, одинаково с парафином нагретую. Результат был прежний. Когда вода уже остыла, парафин в термосе все оставался горячим и жидким. Наконец он затвердел, а после этого остыл быстро, почти как вода. Вода простояла горячей около дня, а парафин – несколько дней.
И вдруг меня осенило. Конечно же, при отвердевании жидкости выделяется «скрытая» энергия, которая была затрачена при плавлении! Когда жидкость остывает, тепло постоянно отбирается от нее, но пока вся она не затвердеет, пока останется хоть капля жидкости, температура ее будет держаться на точке плавления. Для парафина это – 54 градуса.
И наоборот, температура плавящегося тела, например льда, не поднимается ни на градус, пока последний его кусочек не расплавится, не превратится в жидкость. Все это я проходил в школе, обо всем этом написано в учебниках.
Оказывается, чтобы расплавить килограмм льда, нужно затратить 80 килокалорий, алюминия – 92,4, железа – 66, свинца – 6,3, ртути – 2,8 килокалории. А есть материалы – к примеру, гидрид легкого металла лития, – которые требуют для плавления гораздо большего тепла. Так, чтобы килограмм твердого гидрида лития перешел в жидкость при температуре его плавления – 650 градусов, потребуется 650 килокалорий.
Посмотрим теперь с точки зрения аккумулирования тепла. Предположим, что нам нужна температура в аккумуляторе между 700 и 600 градусами, например, чтобы получить из воды пар для питания парового автомобиля. Воспользуемся для этой цели куском металла, железом или медью. При остывании с 700 до 600 градусов каждый килограмм железа или меди выделит около 10 килокалорий. Если то же проделать с гидридом лития, то только при затвердевании на точке 650 градусов он выделит 650 килокалорий. А дополнительно, остывая с 700 до 600 градусов, – еще 30 килокалорий. Итого – 680 килокалорий, или в 68 раз больше, чем может дать неплавящийся металл! Это ли не «капсула»?
Действительно, если подсчитать, какой механической работе это соответствует, мы получим гигантскую цифру – 2,85 мегаджоуля на килограмм массы рабочего вещества. Ведь каждая килокалория – 4,2 килоджоуля энергии. Стало быть, менее десяти килограммов теплового аккумулятора хватило бы для прохождения 100 километров пути! Это равно количеству бензина, необходимого автомобилю для подобной поездки.
Не один гидрид лития обладает таким «магическим» свойством. Для получения рабочих температур теплового аккумулятора около 100 градусов подходят кристаллы фосфорнокислого натрия. Если же нужна температура выше 1000 градусов, то можно взять окислы бериллия, магния, алюминия, кремния, их соединения, а также силициды и бориды некоторых металлов.








