Текст книги "Поведение: эволюционный подход"
Автор книги: Николай Курчанов
Жанр:
Биология
сообщить о нарушении
Текущая страница: 3 (всего у книги 27 страниц) [доступный отрывок для чтения: 7 страниц]
2.2. Альтернативные теории эволюции
Многообразие альтернативных концепций эволюции обычно группируют в три ветви: ламаркизм, теории направленной эволюции и сальтационизм. Каждая ветвь имеет свою богатую историю. В настоящее время эти названия представляют скорее исторический интерес, поскольку все современные теории исповедуют синтетический подход. Мы рассмотрим этапы формирования каждой ветви.
В основе всех вариаций ламаркизма лежит принцип наследования приобретенных признаков. Большинство из этих вариаций сейчас являются достоянием истории. Из первых теорий широкую известность получила теория «психоламаркизма» американского палеонтолога Э. Копа (1840–1897), хотя на самом деле ее трудно отнести к ламаркизму, поскольку она содержит положения разных направлений. Э. Коп активно критиковал теорию естественного отбора, поддерживая как наследование приобретенных признаков, так и направленность эволюции. Он первый выдвинул версию несводимости механизмов микро– и макроэволюции. В области палеонтологии Э. Коп считался крупнейшим специалистом, открывшим ряд фундаментальных закономерностей.
Утверждение «центральной догмы» генетики как методологической основы биологии, казалось, навсегда покончило с проблемой наследования приобретенных признаков, но прогресс иммунологии и становление эпигенетики вновь вернули ее в сферу научного диспута, возродив интерес к идеям многократно похороненного ламаркизма.
Теории направленной эволюции исходят из признания у организмов предрасположенности к изменению в определенном направлении. Такие подходы начали появляться почти одновременно с теорией Ч. Дарвина, но они всегда представляли собой множество отдельных, очень разнообразных течений.
У истоков этого направления стояли такие известные ученые, как немецкий ботаник К. Нэгели (1817–1891), американский палеонтолог Г. Ф. Осборн (1857–1935), немецкий зоолог Т. Эймер (1843–1898). Т. Эймер является основателем влиятельного учения, названного им ортогенезом, в рамках которого он развивал идею изначальной целесообразности в природе, отрицая как положения ламаркизма, так и естественный отбор дарвинизма в роли ведущих факторов эволюции. Многие сторонники ортогенеза стояли на виталистических позициях.
Из концепций направленной эволюции наиболее разработанной представляется теория номогенеза российского ихтиолога Л. С. Берга (1876–1950). Даже принципиальные противники высоко оценили эрудицию автора, глубину его аргументации, гармоничность системы (Dobzhansky Th., 1975). В настоящее время термин «номогенез» стал определяющим для всего направления.
Естественному отбору Л. С. Берг придавал второстепенное значение «сортировщика вариаций». Главную роль он отдавал другому фактору – направленной динамике эволюционных изменений (Берг Л. С., 1977). Эта динамика представляет собой реализацию закономерностей, имманентных живой природе. Таким образом, номогенез отрицает случайность эволюционных изменений и постулирует ход эволюции в определенном направлении. Такая направленность особенно наглядно, по мнению Л. С. Берга, проявляется в явлении конвергенции.
Теоретические взгляды Л. С. Берга разделял А. А. Любищев (1890–1972) – один из последних российских «биологов-энциклопедистов». Близка им и теория биогенеза российского палеонтолога Д. Н. Соболева (1872–1949). Д. Н. Соболев стремился построить таблицу, отображающую эволюционные ряды живых существ. Другой вариант подобной таблицы пытался создать палеоботаник С. В. Мейен (1935–1987). За свои попытки совместить СТЭ и номогенез он «удостоился» критики и с той, и с другой стороны.
Сальтационизм постулирует «скачкообразное» возникновение новых форм путем редких единичных мутаций. Основателем этого направления можно считать выдающегося немецкого эмбриолога Р. Гольдшмидта (1878–1958). Его классический труд «Материальные основы эволюции» занимает почетное место среди основополагающих научных трудов эволюционной биологии (Goldschmidt R., 1940).
Сальтационизм хорошо объясняет главную трудность дарвинизма – почти полное отсутствие промежуточных форм. В его пользу были интерпретированы открытия в области молекулярной биологии, особенно работы, показывающие роль регуляторных генов (Britten R., Davidson E., 1969). Мутации регуляторных генов действительно способны вызвать быстрые и значительные изменения (King M.-C., Wilson A., 1975).
Описанные группировки альтернативных концепций характерны для первой половины XX в. Во второй половине XX в. попытки распределить конкретных авторов по данным направлениям всегда были искусственными, поскольку в своих теоретических построениях ученые обычно использовали самые разные идеи эволюционизма.
После непродолжительного периода безраздельного господства СТЭ, с 1970-х гг. начинается новый раунд конфронтации под знаком идей синтеза. Все чаще начинают звучать утверждения, что последние открытия в области генетики, цитологии, палеонтологии не вписываются в теоретические построения СТЭ. Острой критике подверглись «редукционистские» положения СТЭ об эволюции как изменении частот аллелей в популяции, универсальной роли естественного отбора, абсолютизации адаптивности, а также игнорирование структурных и функциональных ограничений в эволюции.
Возникновение теории прерывистого равновесия, предложенной в 1972 г. американскими палеонтологами С. Гулдом (1941–2002) и Н. Элдриджем (Gould S., Eldredge N., 1977; Gould S., 1982), спровоцировало новый виток дискуссии. Теория имела успех и нашла многочисленных приверженцев.
Согласно модели прерывистого равновесия, эволюция представляет собой чередование резких коротких скачков, когда и происходит видообразование, с долгими периодами стабильного состояния – стазиса. Важную роль сторонники нового направления отводили разграничению механизмов микро– и макроэволюции, в очередной раз подчеркивая, что внутрипопуляционная изменчивость не ведет к видообразованию. Авторы справедливо указывали на слабый обмен генами между популяциями вида. Ключевое значение в процессе видообразования они придавали изменениям в регуляторных генах. Последующие исследования генетиков подтвердили обоснованность этого положения. В рамках теории прерывистого равновесия было разработано понятие видового отбора как одного из основных факторов макроэволюции, который характеризует баланс образующихся и вымирающих видов (Stanley S., 1979).
Почти одновременно возникают концепции «недарвиновской» эволюции, предложенные молекулярными генетиками (Оно C., 1973; Кимура М., 1985). Правда, их авторы не отвергали дарвинизм, а рассматривали свои теории как его развитие и анализ на молекулярном уровне. Теория нейтральности М. Кимуры (1924–1994) постулирует нейтральный характер большинства мутаций. Только некоторые мутации полезны или вредны, а значит, подвержены действию естественного отбора. Споры вокруг «удельного веса» нейтральных мутаций не прекращаются до сих пор.
Еще раньше английским эволюционистом В. Винн-Эдвардсом (1906–1997) была выдвинута теория группового отбора, согласно которой объектом отбора является группа (Wynne-Edwards V., 1962). В СТЭ таким объектом является отдельная особь. Рождение теории сопровождалось бурными дискуссиями, но она не встретила поддержки большинства эволюционистов. Интересным примером сторонников концепции группового отбора является адаптивная ценность для группы процесса старения, поскольку он ограничивает численность группы и «очищает» ее от изношенных особей.
Исходя из теории группового отбора, тем же В. Винн-Эдвардсом была предложена концепция саморегуляции – способности группы регулировать свою численность на оптимальном уровне (Wynne-Edwards V., 1965). Эта концепция была подхвачена противниками СТЭ как опровергающая базовый постулат дарвинизма о тенденции к безграничному размножению и борьбе за существование. Особый резонанс имела экстраполяция концепции на человеческое общество. Была проведена аналогия между нашей цивилизацией и перенаселенной колонией бактерий, в которой включаются механизмы программированной гибели отдельных особей в интересах выживания остальных (Олескин А. В., 2001).
Однако наиболее радикальные изменения взглядов в эволюционной биологии произошли в конце XX в., после открытия эпигенетических закономерностей и распространенности в природе горизонтального переноса. Организация и функционирование генетического аппарата разных организмов оказались значительно более разнообразными и сложными, чем предполагалось ранее (Голубовский М. Д., 2000). Новую остроту приобрели старые «трудные» вопросы эволюционной теории. Это проблемы направленности эволюции, роли естественного отбора, природы адаптации, причин неравномерности темпов эволюции, неполноты палеонтологической летописи, вымирания крупных таксонов на границе геологических эпох и многие другие. Все эти проблемы вытекают из фундаментальных вопросов относительно механизмов макроэволюции, вызывающих острые разногласия. Не меньше споров вызывают механизмы видообразования и само понятие вида.
Кратко рассмотрим некоторые положения этих разделов эволюционной теории.
2.3. Вопросы макроэволюции и видообразования
Поскольку приспособительные изменения популяций (микроэволюция) разительно отличаются от картины разнообразия органического мира (макроэволюция), постоянно идет спор о наличии в макроэволюционных процессах особых факторов, не обнаруживаемых на микроэволюционном уровне. Именно взгляды на макроэволюцию изначально разграничивали конфликтующие стороны в эволюционной биологии. Среди эволюционистов, разделяющих положения СТЭ, преобладают взгляды о единстве механизмов микро– и макроэволюции. В лагере сторонников особых механизмов макроэволюции находятся практически все приверженцы альтернативных концепций. Однако ни одному направлению не удалось создать общепринятую теорию, связав воедино широкий круг вопросов.
Наиболее долгую историю среди вопросов макроэволюции имеет проблема взаимоотношения онтогенеза (индивидуального развития) и филогенеза.
Филогенез – историческое преобразование организмов (точнее, линия развития данного типа организации). О филогенезе таксона приходится судить на основании реконструкций изменений отдельных признаков. Поскольку филогенез крупных таксонов занимает десятки миллионов лет, экстраполяции столь продолжительных этапов неизбежно сопряжены с погрешностью.
Взаимоотношение филогенеза и онтогенеза было предметом самого пристального изучения в истории биологии. Можно отметить закон «лестницы существ» Ш. Боне (1720–1793), «теорию параллелизма» И. Меккеля (1781–1833), «закон зародышевого сходства» К. Бэра (1792–1876). Современные исследования в области генетики показали, что фенотип в ходе онтогенеза не строго детерминирован генетической программой развития. Почти в любом онтогенезе можно наблюдать возможность выбора путей. Сами морфогенетические пути представляют собой каскады индукционных взаимодействий. Хотя они исключительно устойчивы, изменения возможны на любой стадии развития. Чем на более ранней стадии онтогенеза возникают какие-либо изменения, тем больший фенотипический эффект мы наблюдаем. Конечно, при этом возрастает вероятность того, что такие изменения вызовут нарушения онтогенеза и образование нежизнеспособных зародышей. Зато в тех случаях, когда потомство оказывается жизнеспособным, возможны макроэволюционные события (Рэфф Р., Кофмен Т., 1986). Это положение имеет особое значение для формирования современных представлений об эволюционном процессе, и мы к нему еще вернемся.
Основной путь эволюционных преобразований в онтогенезе основан на явлении гетерохронии. Гетерохрония – это изменение относительных сроков развития. Все явления гетерохронии связаны с диссоциацией между скоростями развития соматических признаков и гонад. На этих принципах можно выделить два главных эволюционных следствия гетерохронии.
В первом случае у взрослых особей сохраняются признаки ранних стадий развития предков. Это явления педоморфоза и неотении.
Во втором случае признак взрослой предковой формы становится ювенильным признаком потомков. Это явления акселерации и гиперморфоза.
Разновидности внутри направлений выделяют исходя из основной области изменения скорости. Возможны как изменение скорости развития соматического признака при неизменной скорости развития гонад, так и, наоборот, изменение скорости развития гонад при неизменной скорости развития соматического признака. Часто эти разновидности понимают как синонимы, поскольку разграничить их трудно.
Гиперморфоз – обычный механизм увеличения размеров в эволюционном ряду. Общеизвестными примерами служат гигантские динозавры, третичные млекопитающие, современные киты, растение секвойя. Гиперморфозом объясняется и переразвитие отдельных органов, вроде клыков саблезубых тигров и бивней мамонта. Это явление нам придется вспомнить при анализе эволюции психики человека.
Классическим примером неотении служит излюбленный объект лабораторных исследований – аксолотль. Неотения и педоморфоз – это магистральные пути эволюции многих групп, в том числе и высокоорганизованных: травянистых растений, насекомых и человека.
В новом свете в современной биологии развития представляется старая проблема определенных «планов строения» в пределах систематических групп на протяжении эволюции. Их стабильность все больше привлекает внимание исследователей и начинает получать строго научные обоснования на базе генетических закономерностей.
Общность планов строения обусловливает явление гомологии – фундаментального понятия современной биологии. Это понятие было введено английским палеонтологом Р. Оуэном (1804–1892). Гомологичные органы – это органы, развивающиеся из сходных зачатков, другими словами, «занимающие одинаковые места у видов, с одинаковым планом строения» (Белоусов Л. В., 2005). Хотя рука обезьяны и крыло летучей мыши не похожи друг на друга, они являются органами гомологичными (рис. 2.1).
Рис. 2.1. Примеры гомологичных органов: а – рука обезьяны; б – крыло летучей мыши
Рис. 2.2. Примеры конвергенции: а – форма тела акулы; б – форма тела дельфина
Возникновение в процессе эволюции сходных черт организации у неродственных групп организмов получило название конвергенции или параллелизма. В СТЭ конвергенция объясняется тем, что в одних и тех же условиях среды отбор вырабатывает сходные приспособления (рис. 2.2). Примеры конвергенции можно найти практически во всех эволюционных рядах, в том числе и в эволюции человека. Это явление оказалось важным аспектом дискуссий эволюционистов.
Одним из самых веских аргументов приверженцев направленной эволюции служило явление преадаптации. Преадаптация – это изменения, адаптивно реализуемые не у того организма, в котором они возникли, а у его потомков (иногда весьма отдаленных). Автором теории преадаптации был французский генетик Л. Кено (1866–1951) – убежденный сторонник направленной эволюции. Он проводил резкую границу между явлениями микро– и макроэволюции. Проблему преадаптации мы рассмотрим чуть ниже.
Неразрывно связаны с вопросами макроэволюции проблемы определения вида и механизмов видообразования, которые и сейчас представляют собой сложнейшую проблему. Невозможно изучать видообразование, не имея определения вида и критериев его выделения. Однако общепринятого определения вида нет, хотя существуют десятки концепций. Представления о том, что такое вид, менялись в истории биологии неоднократно.
Первым сформулировал представление о виде как особой категории английский естествоиспытатель Д. Рэй (1627–1705) еще в далеком 1683 г., и с тех пор споры по этой проблеме не утихают. Ж.-Б. Ламарк поставил перед биологией знаменитую дилемму: «либо виды без эволюции, либо эволюция без видов…». Аналогичные мысли высказывал и сам Ч. Дарвин: «Термин „вид“ я считаю совершенно произвольным, надуманным…».
В последующем развитии эволюционной биологии понятие вида становится одним из фундаментальных, хотя споры вокруг него не прекращаются по сей день. В СТЭ наибольшее признание получила концепция американского эволюциониста Э. Майра (1904–2005). Он дает определение вида как «группы скрещивающихся популяций, репродуктивно изолированных от других групп» (Майр Э., 1968). Под репродуктивной изоляцией подразумевается нескрещиваемость именно в природе – в экспериментальных условиях иногда возможна межвидовая и даже межродовая гибридизация. Поэтому решающим критерием служит не принципиальная невозможность межвидового скрещивания, а наличие природных изолирующих условий, исключающих (или резко уменьшающих) эту возможность. Изоляция служит решающей предпосылкой для процесса видообразования (Майр Э., 1974). Поскольку существует несколько видов изолирующих механизмов, в СТЭ выделяют несколько способов видообразования.
Разработанная в СТЭ совокупность критериев вида не всегда применима на практике, поэтому в каждом конкретном случае приходится пользоваться только доступными критериями. Кроме того, формирование генетической изоляции как итога видообразования является долгим процессом, который сопровождается прогрессивным уменьшением обмена генов между популяциями. Неясно, насколько малым может быть этот обмен генами, чтобы говорить о наличии генетической изоляции, какие популяции уже можно считать отдельными видами, а какие – еще входящими в один вид. Все это открывает широкие возможности для субъективизма. Неудивительно, что стали столь популярны поиски особых механизмов видообразования в разных теоретических подходах, отделение этих механизмов от внутрипопуляционных процессов, интерес к версии сальтационизма.
Таким образом, к концу XX в. эволюционная биология вновь оказалась захвачена борьбой мнений. Хотя необходимо напомнить, что эволюционизм никогда не был однородным течением. Иногда казалось, что дискуссии по данному вопросу закончились, но вот в каком-либо разделе биологии появлялись неожиданные результаты, и «побежденная» теория вновь возрождалась. Как писал известный российский антрополог В. П. Алексеев, «…вряд ли где еще сталкиваются столь противоречивые мнения, и столкновения бывают столь остры» (Алексеев В. П., 1984).
Что ждет эволюционную биологию дальше?
2.4. Конфронтация или новый синтез?
Наиболее оправданной позицией многим эволюционистам уже давно представлялся синтез положений СТЭ с концепциями направленной эволюции и сальтационизма на основе достижений генетики. Разные авторы говорили, что пора переходить от противостояния к синтезу идей, что разные подходы не отрицают, а взаимно дополняют друг друга (Алексеев В. П., 1984). Однако перспективы «нового синтеза» к началу XXI в. были весьма неоднозначными.
Многие сторонники СТЭ категорично заявляют, что эта теория уже давно доказала свою жизнеспособность, а последние открытия генетики можно аккумулировать без радикальных теоретических изменений. И добавляют, что сложные моменты не являются для теории непреодолимыми, а просто целенаправленно раздуваются в прессе ее противниками. Американский эволюционист Д. Деннет писал: «Идеи Ч. Дарвина наглядно доказали свою мощь» (Dennett D., 1995).
Сторонники альтернативных теорий, наоборот, непрерывно констатировали как свершившийся факт «смерть дарвинизма». Стало модным принижать роль Ч. Дарвина как ученого, доказывать, что он тенденциозно «подбирал факты» под свою «кабинетную» теорию, преподносить его как заурядную личность. Успех дарвинизма в XIX в. стали объяснять «удачным моментом», падением уровня религиозности в обществе. Наглядный пример сказанному мы находим в работах Ю. В. Чайковского: «Научное сообщество переходит к новому видению явлений не тогда, когда публикуется решающий факт, а тогда, когда оно готово принять объясняющую его теорию… В истории науки в качестве первопроходцев запоминаются не те, кто сказал нечто новое, а те, кто был впервые услышан обществом» (Чайковский Ю. В., 2006). Приверженцам СТЭ ставится в упрек игнорирование «неудобных» фактов, догматизация своих постулатов.
В таких условиях говорить о скором синтезе было весьма сложно. Если принятие идей сальтационизма все-таки ощущалось у многих сторонников СТЭ, рассматривающих «сальтации» как крайние случаи единого спектра, то диспуты вокруг проблемы направленной эволюции проходили более болезненно. Характерно высказывание одного из крупнейших российских биологов, убежденного дарвиниста Ю. И. Полянского (1904–1993): «Неоднократно приходится слышать призывы к „синтезу“ финалистических концепций эволюции с классическим дарвинизмом. Такой синтез никогда не может быть осуществлен, ибо в основе этих двух концепций лежат противоположные мировоззрения. Вся история науки и философии учит, что из эклектического объединения взаимоисключающих концепций ничего ценного получиться не может» (Полянский Ю. И., 1988). Автор даже взял слово «синтез» в кавычки.
Более «мягкую» позицию занял один из «отцов-основателей» СТЭ Дж. Симпсон (1902–1984). Он попытался подойти к антидарвинистским теориям в поисках «рационального зерна», рассмотрев с позиций СТЭ проблему преадаптации (которая была «козырной картой» сторонников направленной эволюции). Под преадаптацией Дж. Симпсон предлагал понимать нейтральные признаки предковой формы, которые, возникнув случайно, оказались полезными в новой адаптивной зоне. Свою версию, которая получила поддержку у многих эволюционистов, Дж. Симпсон назвал квантовой эволюцией (Симпсон Дж., 1948). Эта же теория стала ответом СТЭ сальтационизму, рассматривая «скачки» в палеонтологической летописи как феномен быстрой эволюции, обусловленной интенсивностью отбора.
Теория квантовой эволюции в рамках СТЭ активно разрабатывалась другими эволюционистами, которые выдвигали разнообразные ее варианты: квантовое видообразование (В. Грант), генетическая революция (Э. Майр), катастрофический отбор (Г. Льюис). Излюбленным примером такого подхода служит преобразование передней конечности в крыло у летучих мышей. Хотя Дж. Симпсон выступал против признания принципиальных различий механизмов микро– и макроэволюции, его теорию квантовой эволюции многие дарвинисты рассматривали как поддержку этих различий.
Дж. Симпсон также не отказывался от резких выпадов в адрес противников. Так, рассматривая случаи, свидетельствующие в пользу направленной эволюции, он говорил, что эта направленность объясняется адаптивно направленным отбором и «прямолинейностью ума ученых», а не тенденцией природы.
Проблема направленности эволюции столь важна для разработки эволюционной теории, что на ней необходимо остановиться подробнее.
СТЭ исходит из представлений о случайности мутаций – это один из важнейших ее постулатов. Однако многие факты говорят об обратном. Более того, в настоящее время некоторые авторы считают, что именно постулат случайности является самым слабым местом СТЭ.
Закономерный характер эволюционных преобразований демонстрирует принцип параллелизма. Он гласит, что функционально-аналогичные структуры (даже разных источников разных животных) часто эволюционируют в одном направлении. Классическими примерами служат проявления параллельных рядов форм разных групп млекопитающих на изолированных континентах, закон гомологичных рядов наследственной изменчивости растений Н. И. Вавилова (1887–1943), примеры эволюционной гистологии.
Можно даже заметить, что чем более радикальный ароморфоз мы наблюдаем, тем более широким веером групп он «апробируется» эволюцией, хотя в конце часто остается только один вариант. Это относится и к таким событиям, как возникновение амфибий, птиц, млекопитающих (Марков А., 2010). Безусловно, не является исключением и направление, ведущее к «носителям разума», которое мы рассмотрим в дальнейшем. Такие случаи сложно интерпретировать классическим объяснением СТЭ как схожесть отбора в сходной среде. С явлением параллелизма мы будем еще неоднократно встречаться на последующих страницах.
Для эволюционной биологии принципиальное значение имеет тот факт, что бесконечные генетические вариации реализуются только в пределах устоявшегося в ходе эволюции плана строения (Белоусов Л. В., 2005). Поэтому, сколь ни велик элемент случайности в эволюции, результаты эволюционного процесса достаточно закономерны. Направленный характер эволюционных изменений может быть обусловлен (без призыва на помощь витализма) сложностью взаимосвязи огромного числа составляющих, формирующих организм. Организм – целостная система, поэтому любые изменения обычно затрагивают все ее составляющие. Подавляющее большинство изменений для организма неприемлемо и сразу отсекается отбором. Причем чем более специализирован вид, тем меньше у него возможностей для эволюционных изменений. Такая ограниченность и придает эволюции определенную направленность.
Этот аспект эволюции в очередной раз демонстрирует взаимосвязь механизмов филогенеза и онтогенеза. Известно, что хотя в онтогенезе имеется выбор различных путей развития, число возможных направлений онтогенеза ограничено. Такую направленность онтогенеза известный английский эмбриолог К. Уоддингтон (1905–1975) назвал канализацией развития (Уоддингтон К., 1964). С точки зрения современной генетики, направленность развития определяется относительно небольшим числом регуляторных генов, выполняющих функции «переключателей». Такие гены контролируют срок тех или иных событий онтогенеза либо делают выбор возможных путей развития. Особенно наглядным примером этого положения могут служить различные касты общественных насекомых, имеющих одинаковый геном, но резко различающихся по своей морфологии.
Чем более раннюю стадию онтогенеза контролирует регуляторный ген, тем больший «каскад» взаимосвязанных процессов следует за ним, тем больший фенотипический эффект можно ожидать при его мутации. В случае появления жизнеспособного потомства возможны резкие филогенетические изменения в духе сальтационизма. Регуляторные гены прежних функций весьма консервативны, поэтому они могут долго сохраняться в геноме. В результате мутаций возможно восстановление старого типа развития, что подтвердили эксперименты по реактивации генов образования зубов у курицы (Рэфф Р., Кофмен Т., 1986). Оказалось, что геномы птиц до сих пор содержат генетическую информацию, необходимую для морфогенеза зубов, несмотря на то что последние зубатые птицы вымерли более 60 млн лет назад.
Предположение о ведущей роли в морфологической эволюции регуляторных, а не структурных генов было наглядно показано в работах группы А. Вильсона (Wilson A. [et al.], 1977). Но такой взгляд на эволюционный процесс заставляет признать обоснованными некоторые положения теорий «направленной» и «прерывистой» эволюции.
Вот что пишет ведущий российский специалист в области генетики развития Л. И. Корочкин: «Процесс онтогенеза не случаен. Он протекает направленно от стадии к стадии… Отчего же эволюция должна основываться на случайных мутациях и идти неведомо куда?.. Просматривая внимательно различные эволюционные ряды, у представителей которых имеются сходные структурные образования, можно увидеть наличие как бы предопределенного, генетически „запрограммированного“ в самой структуре ДНК филогенеза…» (Корочкин Л. И., 2002, с. 239).
Формирование нового регуляторного эффекта, когда в организме уже есть «заготовки», хорошо объясняет феномен преадаптации. Так, у губок уже есть белки, участвующие в образовании синапса, хотя еще нет нервной системы. Вероятно, эти белки участвуют в простой межклеточной коммуникации, что позволяет эволюции формировать синаптические контакты не на пустом месте. Эволюция создает новое из того, что есть «под рукой» (Марков А., 2010). На работу регуляторных генов, в свою очередь, влияют хромосомные перестройки (инверсии, транслокации) и внедрение транспозонов.
Не менее болезненно проходило в СТЭ рассмотрение положений, традиционно приписываемых ламаркизму. Некоторые из этих положений нашли подтверждения в открытиях иммунологов. Взаимосвязь эволюционных и иммунологических закономерностей впервые рассмотрел французский эмбриолог П. Вентребер (1867–1966), который был убежденным сторонником Ламарка. Интересно, что свой основополагающий труд «Живое – творец эволюции» П. Вентребер подготовил уже в возрасте 95 лет!
Иммунология в последнее время активно заявляет о себе построением новых моделей эволюции. Наука, которая возникла как прикладная область медицинской направленности, приобретает все большее общетеоретическое значение. Некоторые авторы, подчеркивая ее роль, уже поспешили назвать иммунологию новой «королевой» биологических наук (Чайковский Ю. В., 2006). Наиболее известная книга, посвященная взаимоотношению иммунологии и эволюции, называется «Что, если Ламарк прав?». Авторы допускают возможность передачи приобретенной информации половым клеткам при помощи ретротранспозонов (Стил Э. [и др.], 2002). В иммунологии также продемонстрированы убедительные доказательства версии направленной эволюции.
Рождение эпигенетики еще более изменило наши представления о наследственности, что было проанализировано в предыдущей главе. Современный взгляд на модификации показывает их обусловленность параметрами транскрипционных сетей. Сдвиг этих параметров может выражаться в феномене длительных модификаций, которые сохраняются при возвращении организма к исходным условиям внешней среды. Вероятно, транскрипционная сеть представляет собой самовоспроизводящуюся систему при делении клетки, хотя конкретный механизм этого процесса еще непонятен (Шаталкин А. И., 2009).
Споры вокруг проблемы видообразования поставили не менее важный вопрос об уровнях эволюции. Сторонники теории прерывистого равновесия выделяют три уровня эволюции: микроэволюция, видообразование и макроэволюция. Такое положение нашло поддержку и среди некоторых последователей СТЭ (Грант В., 1980; Старобогатов Я. И., 1988). Однако есть и другие взгляды.
Число выделяемых уровней неразрывно связано с другой ключевой проблемой эволюционной биологии – проблемой факторов эволюции. Активное изучение в последнее время горизонтального переноса, экологических закономерностей, эпигенетики, феномена симбиогенеза, широкое внедрение в биологию системного подхода, синергетики вызвали новый виток дискуссий по этой давней проблеме.
Противники СТЭ постоянно отмечали ложность веры во всемогущество естественного отбора как главного и направляющего фактора эволюции. Накапливалось все больше данных, демонстрирующих неадаптивность многих эволюционных изменений. Так, уже давно отмечена эволюционная тенденция к сохранению генетического разнообразия вида даже в ущерб адаптивности. Тема «странностей эволюции» стала излюбленным сюжетом научно-популярных книг. Не преувеличивалась ли роль естественного отбора последователями Ч. Дарвина? Часто особый интерес к одному фактору ведет к тому, что остаются без внимания другие аспекты.