355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Курчанов » Поведение: эволюционный подход » Текст книги (страница 2)
Поведение: эволюционный подход
  • Текст добавлен: 6 октября 2016, 19:10

Текст книги "Поведение: эволюционный подход"


Автор книги: Николай Курчанов


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 2 (всего у книги 27 страниц) [доступный отрывок для чтения: 7 страниц]

1.4. Эпигенетика – новый взгляд на природу наследственности

Эпигенетика в настоящее время «поставляет» наиболее интересные факты для «строительства» новой парадигмы современной генетики. Термин «эпигенетика» был предложен известным английским генетиком К. Уодингтоном (1905–1975) еще в 1942 г. для обозначения процессов формирования конкретного фенотипа на основе определенного генотипа. Первоначально под такими процессами подразумевались обратимые модификации в ходе онтогенеза.

В настоящее время особое внимание уделяется наследственным изменениям генной экспрессии, происходящим без изменения нуклеотидного состава ДНК. Фундаментальным положением эпигенетики является то, что один и тот же генотип может проявляться разными фенотипами, которые опосредуются разными состояниями генных локусов. Для выражения этих состояний, обусловленных различными эпигенетическими механизмами, появился особый термин – эпигеном (Паткин Е. Л., 2008). Выделяют несколько эпигенетических механизмов.

Метилирование ДНК – наиболее распространенный и изученный вариант включения и выключения генной экспрессии при помощи метильной группы, связанной с азотистым основанием (обычно цитозином). Метилирование осуществляется целым семейством ферментов метилтрансфераз. Особенно велика его роль на ранних этапах развития, когда протекают процессы дифференцировки.

Изменение структуры хроматина в ходе онтогенеза имеет не меньшее значение. Основной способ такой регуляции – разнообразные модификации гистоновых белков нуклеосом. С этими модификациями связана активация или выключение специфичных генов. Модификации гистонов играют ключевую роль в формировании гетерохроматина (конденсированного нефункционирующего хроматина). Кроме гистонов, в хроматине содержится большое количество других белков, получивших собирательное название негистоновых. Модификации таких белков также влияют на активность генов.

Воздействие малых РНК оказалось сопоставимо по своей значимости для регуляции генной экспрессии с активностью регуляторных генов. Многие малые РНК происходят из межгенных участков и интронов матричной РНК, вырезаемых в процессе сплайсинга. Их многообразие обусловливает наличие различных классификаций малых РНК.

РНК-зависимый механизм регуляции экспрессии генов, открытый только в 1995 г., получил название РНК-интерференции. В основном он запускается при помощи двунитевых малых РНК (Смирнов А. Ф., 2009). Это открытие радикально изменило наши представления о регуляции генной экспрессии в ходе онтогенеза.

Влиянием малых РНК, может быть, объясняется загадочное явление парамутации, при котором аллель «запоминает» свое состояние в предыдущем поколении. Это явление противоречит законам Менделя, согласно которым гены гетерозигот расходятся в половые клетки неизменные. Было предложено несколько моделей, объясняющих возникновение парамутаций, но все они не более чем гипотезы. Возможно, новому поколению при оплодотворении передаются молекулы малых РНК. Вероятно, парамутации широко распространены в природе, обусловливая явления пенетрантности и экспрессивности (Паткин Е. Л., 2008).

Наиболее ярким эпигенетическим феноменом является геномный импринтинг, открытый в 1984 г. Он проявляется у млекопитающих и цветковых растений. Геномный импринтинг представляет собой обусловленность экспрессии генов в зависимости от отцовского или материнского происхождения. Зигота, а затем и клетки организма как бы «запоминают» происхождение гена. Несмотря на интенсивное изучение в последние годы, механизм геномного импринтинга во многом остается непонятным. Вероятно, он обусловлен различием в метилировании хромосом.

Предположительно, 0,1 % генов млекопитающих подвергаются импринтингу (Смирнов А. Ф., 2009). Хотя число импринтированных генов относительно невелико, все они играют важную роль, особенно в регуляции поведения. Именно из-за наличия импринтированных генов необходимо наличие отцовского и материнского геномов для нормального развития зародыша.

В исследованиях генетиков рассматриваются и другие эпигенетические механизмы регуляции генной экспрессии. Они, безусловно, играют свою роль в развитии большинства полигенных болезней человека (Cook G., Hill A., 2001). Относительно недавно показана важная роль влияния внутриутробного развития на организм и его последующее поведение. Так, сходство разнояйцовых близнецов значительно больше, чем сходство обычных братьев и сестер, хотя степень генетической общности в обоих случаях одинакова (Scarr S., 1992).

Дальнейшее изучение эпигенетических механизмов должно раскрыть такое явление, как структурная наследственность, под которой понимается функционирование в качестве матриц трехмерных структур, образующих себе подобных. Самым известным примером являются белки прионы (Шаталкин А. И., 2009).

Более пристальное внимание к эпигенетическим механизмам раскрыло возможность внешнего воздействия на наследственность. Даже такие внешние факторы, как питание, материнская забота, способ оплодотворения, влияют на эпигеном (Паткин Е. Л., 2008). Это влияние может осуществляться путем биохимической модификации ДНК и гистонов, что изменяет генную экспрессию. Если такие модификации затрагивают линии первичных половых клеток (ППК), то происходит наследование фенотипа. Показана возможность передачи по наследству «рисунка метилирования» генов, что изменяет фенотипические свойства.

Таким образом, некоторые эпигенетические феномены бросают вызов традиционной генетической парадигме. Вековая проблема «наследования приобретенных признаков» возвращается в генетику в новом качестве.

Автономность генов оказалась значительно меньшей, чем предполагалось на заре генетики. Именно поэтому так трудно дать четкое определение гена. Гены генома интегрированы в транскрипционные сети, которые можно рассматривать как самостоятельные структуры генетического аппарата. Их взаимосвязь открывает возможности моделировать и передавать по наследству специфическую активность генома.

А. И. Шаталкин приводит интересное сравнение деятельности организма и современного производства. При этом генотип можно сравнить с технической документацией, а фенотип – с конечным продуктом. Но на производстве нельзя не учитывать роль рабочего коллектива, который реализует технический проект. А в организме? Возможно, эту роль выполняют процессы самоорганизации (Шаталкин А. И., 2009).

Впервые термин «самоорганизующаяся система» был использован одним из основателей кибернетики У. Р. Эшби (1915–1985) еще в 1947 г. (Ashby R., 1956). В настоящее время вопросы самоорганизации активно разрабатываются в рамках синергетики, чье влияние на биологию все более ощутимо. Такой синтез заставляет ученых по-новому понимать явления наследственности и изменчивости, служит веским фактором разработки новой парадигмы.

Другим весомым фактором послужили открытия, опровергающие наши представления о стабильности генома.

1.5. Лабильный геном

Традиционные представления о стабильности геномов, сложившиеся в рамках классической генетики, сильно пошатнулись после открытия мобильных (мигрирующих) генетических элементов (МГЭ). МГЭ – это структуры, которые могут перемещаться в пределах генома или переходить из генома в геном. Они могут встраиваться в различные области генетического аппарата эукариот и прокариот. Процесс перемещения МГЭ получил название транспозиции.

МГЭ были открыты Б. Мак-Клинток (1902–1992) у кукурузы (Zea mays) еще в 1940-е гг., однако ее сообщение было встречено генетиками с большим недоверием. Развитие молекулярной генетики подтвердило наличие подобных структур сначала у прокариот, а затем и у эукариотических организмов. Только в 1983 г. Б. Мак-Клинток была удостоена Нобелевской премии за свое выдающееся открытие.

В настоящее время ко всем МГЭ обычно применяют термин транспозоны.

Транспозоны были обнаружены у бактерий, дрожжей, кукурузы, дрозофилы и других эукариотических организмов. Типичные признаки транспозонов – инвертированные повторы на концах и дупликация сайт-мишени (места внедрения). Развитие методов молекулярной генетики показало широкое распространение транспозонов в геномах высших животных, в том числе и у человека. Их доля в геномах оказалась значительно выше, чем предполагалось ранее. Так, в геноме человека транспозоны составляют до 45 % генетического материала (Смирнов А. Ф., 2009).

В своем большинстве транспозоны являются эволюционным наследием и обусловлены внедрением вирусного или бактериального генома в клетки эукариот миллионы лет назад. Особый интерес представляют ретровирусы, которые реализуют путь, альтернативный «центральной догме». Это феномен обратной транскрипции – способность строить на своей РНК комплементарную ДНК. Такая ДНК-копия, встраиваемая в чужой геном, получила название провируса.

Подавляющее большинство провирусов не функционируют (не экспрессируются), но при определенных воздействиях некоторые из них способны активироваться, что может представлять собой опасность для макроорганизма. Однако некоторые процессы развития, например развитие нейронов, закономерно сопровождаются повышенной активностью транспозонов. Вероятно, явление ретротранспозиции сыграло важную роль в эволюции эукариот. У человека ретротранспозоны составляют более 90 % мобильной части генома (Попов В. В., 2008).

Феномен транспозиции представляет большой теоретический интерес, независимо от конкретной функции МГЭ. Их важная роль в эволюции уже не подлежит сомнению: показана близость сайтов внедрения МГЭ и хромосомных перестроек. Поскольку МГЭ могут создавать диффузные области гомологии, их копии в разных местах генома обеспечивают возможность реципрокной сайт-специфичной рекомбинации. Такие обмены могут приводить к различным хромосомным перестройкам (делециям, инверсиям, транслокациям), могут изменять систему регуляции генов. Стимулируя хромосомные перестройки, транспозоны могли изменять экспрессию соседних генов. Такая реорганизация играет существенную роль в эволюции геномов.

Показан резкий рост числа транспозиций в популяциях дрозофилы при стрессовых воздействиях, что можно рассматривать как модель быстрой регуляции активности генома при изменении условий существования (Ратнер В. А., 2002).

В настоящее время наметилась тенденция оставить понятие «мутация» только для генных мутаций, а хромосомные и геномные мутации рассматривать как варианты естественной генетической рекомбинации. Терминологическая проблема возникла из-за традиционного понимания мутации как отклонения от нормы. Однако дупликации, инверсии, транслокации, центрические слияния, полиплоидия неразрывно связаны с эволюцией геномов. С эволюционной точки зрения, хромосома – это непостоянная структура, а лабильность – естественное состояние генома (Хесин Р. Б., 1984).

Все вирусы представляют собой «мобильные гены». Вирусы, плазмиды (мелкие кольцевые ДНК у бактерий), транспозоны можно рассматривать в русле единого явления в эволюции генетической системы. Все эти структуры не только сами способны перемещаться по геному или из генома в геном, но и могут «перетаскивать» соседние участки генома клетки-хозяина. Такое явление получило название трансдукции. Его открытие сыграло решающую роль в рождении генной инженерии.

Многообразие мобильных генетических структур послужило основой для формирования гипотезы горизонтального переноса генов в эволюции. Этим термином стали называть обмен генетической информацией между неродственными организмами неполовым путем. Хотя участие транспозонов в процессе эволюции не отрицает никто, их значение до сих пор вызывает бурные споры. Одни генетики, допуская возможность горизонтального переноса в природе, не считают, что он играл заметную роль в эволюции. Другие, наоборот, придают ему решающее значение.

Мы не можем пока адекватно оценить эволюционные масштабы горизонтального переноса, но генетические исследования все чаще показывают его распространенность в природе. Уже сейчас ясно, что роль горизонтального переноса важнее, чем предполагалось ранее. Особенно значимо это было на первых этапах эволюции, когда происходило формирование основных групп живых существ.

У высокоорганизованных организмов генетическую рекомбинацию обеспечивает половой процесс, что дает необходимую им стабильность. Но нельзя игнорировать роль горизонтального переноса и для высших организмов. Так, многие важные явления, связанные с иммунитетом зародышей млекопитающих, вероятно, находятся под контролем генов, полученных от вирусного генома путем трансдукции. Выдают свое происхождение от транспозонов и многие регуляторные последовательности геномов позвоночных (Марков А., 2010).

Возможно, генотипы всех организмов представляют собой «генофонд мира» как единую структуру (Попов В. В., 2008). Этот взгляд не лишен оснований, что заставляет нас с осторожностью относиться к филогенетическим построениям с помощью геносистематики, по-новому посмотреть на многие положения эволюционной теории, с которой мы познакомимся в следующей главе.



Глава 2. Эволюция

Путь от амебы к человеку казался философам очевидным прогрессом. Хотя неизвестно, согласилась бы с этим мнением амеба.

Б. Рассел (1872–1970), английский философ, лауреат Нобелевской премии 1950 г.

Теория эволюции – это не только общебиологическая теория, но и мировоззренческая система, уровень разработанности которой имеет решающее значение для развития естествознания. Без анализа эволюционных истоков нельзя адекватно понимать любой аспект поведения. Тема эволюции поведения и психики неотделима от общетеоретических вопросов эволюционной теории.

2.1. Становление и основные положения синтетической теории эволюции

Эволюционизм возник как альтернатива учению о неизменности видов. Вопросы, связанные с возникновением и развитием жизни, прошли через всю интеллектуальную историю человечества. Количество литературы, посвященной истории эволюционных учений, огромно (Завадский К. М., Колчинский Э. И., 1977; Колчинский Э. И., 2002).

Термин «эволюция» впервые был предложен швейцарским натуралистом Ш. Боннэ (1720–1793), который рассматривал ее как процесс развертывания возможностей, заложенных в материю Творцом. В Новое время первые, весьма несовершенные, концепции эволюции мы находим у французского натуралиста Ж. Бюффона (1707–1788) и деда Ч. Дарвина – Э. Дарвина (1731–1807).

Большую известность (правда, уже после смерти автора) приобрела теория французского естествоиспытателя Ж. Б. Ламарка (1744–1829). Свое эволюционное учение он изложил в знаменитой книге «Философия зоологии» (1809), где развивал взгляды о постепенном повышении уровня организации живых существ от простейших до человека.

Ж. Б. Ламарк выделил три основных фактора эволюции: упражнение органов, наследование благоприобретенных признаков, внутреннее стремление организмов к прогрессу. Хотя наследование благоприобретенных признаков во времена Ламарка считалось само собой разумеющимся, его теория не получила признания среди современников. Многие обоснования Ж. Б. Ламарка были неубедительны и явно натянуты. Большинство биологов того времени, в том числе и крупнейший авторитет – французский палеонтолог Ж. Кювье (1769–1832), стояли на позициях креационизма и неизменности видов.

Следует заметить, что эволюция не обязательно должна противопоставляться креационизму. Креационизм постулирует только акт творения жизни, но может допускать ее последующую эволюцию, что мы видим уже у Ш. Боннэ.

В трудах последователей Ж. Б. Ламарка его теория получила развитие, став влиятельным течением эволюционизма. Однако адекватному пониманию его идей часто мешал идеологический фактор. Только сейчас мы начинаем постигать их значение. Несмотря на ошибки, объяснимые уровнем развития биологии того времени, мысли Ж. Б. Ламарка оказались исключительно глубоки.

Из других эволюционистов того времени нельзя не отметить работы французского естествоиспытателя Э. Жоффруа Сент-Илера (1772–1844).

Однако крупнейшее событие в науке XIX в. – это эволюционная теория Ч. Дарвина (1809–1882). Суть теории Ч. Дарвин изложил в своей эпохальной книге «Происхождение видов», напечатанной в 1859 г. С этой даты многие историки науки ведут отсчет современной биологии. Книга произвела настоящую революцию и в научном мировоззрении, и в умах людей того времени. Дарвинизм быстро стал господствующим течением эволюционизма.

Основными факторами эволюции Ч. Дарвин выдвинул изменчивость, наследственность и отбор. Главным фактором у него выступает естественный отбор. О механизмах наследственности и изменчивости Ч. Дарвин, как и Ж. Б. Ламарк, имел самые смутные представления. Однако, вне зависимости от механизма, изменчивость у него не была привязана к «желаниям» организма или к «высшим силам». Непрерывный ряд мелких изменений от первоначальной формы и составляет материал эволюции. Ч. Дарвин снял мистический ореол таинственности с эволюционного процесса.

Существенно потеснив креационизм в общественном сознании, дарвинизм не остался единственной эволюционной теорией. Дав мощный толчок эволюционному подходу в науке, он одновременно породил альтернативные версии. Одним из самых известных критиков дарвинизма XIX в. был русский зоолог Н. Я. Данилевский (1822–1895), который провел скрупулезный анализ работ Ч. Дарвина.

Начало XX в. отмечено периодом долгой конфронтации дарвинизма с нарождающейся генетикой. Это породило обилие антидарвиновских концепций, предрекающих «скорую смерть» теории Ч. Дарвина. Наиболее уязвимой стороной дарвинизма в то время считалась природа наследственности. Поэтому рождение синтетической теории эволюции (СТЭ), которая базировалась на синтезе популяционной генетики и дарвинизма, стали рассматривать как вторую революцию в истории эволюционной биологии.

Теоретические положения популяционной генетики были разработаны С. Райтом (1889–1988), Р. Фишером (1890–1962), Дж. Холдейном (1860–1936) в 1930–1931 гг. Они изложены в классических работах «Генетическая теория естественного отбора» (Fisher R., 1930) и «Факторы эволюции» (Haldane J., 1932).

Контуры целостной эволюционной теории впервые были очерчены в работе Ф. Добжанского «Генетика и происхождение видов» (Dobzhansky Th., 1937). Часто называют шесть главных «архитекторов» СТЭ: Т. Добжанский (1900–1975), Э. Майр (1904–2005), Б. Ренш (1900–1990), Н. В. Тимофеев-Ресовский (1900–1981), Дж. Симпсон (1902–1984), Дж. Хаксли (1887–1975). Однако на самом деле в создание нового направления весьма весомый вклад внесли более тридцати биологов разных специальностей, что отмечают в своих работах и сами «отцы-основатели». Можно вспомнить таких известных ученых, как К. Дарлингтон (1903–1981), Англия, Г. Хеберер (1901–1973), Германия, Дж. Стеббинс (1906–2000), США. Достойное место в этом ряду занимает наш соотечественник И. И. Шмальгаузен (1884–1963). Сам термин «синтетическая теория эволюции» вошел в употребление после выхода книги Дж. Хаксли «Эволюция. Современный синтез» (Huxley J., 1942).

С точки зрения СТЭ, эволюция – это процесс постепенного ненаправленного изменения частот и видов аллелей во многих локусах.

Элементарной единицей эволюционного процесса в СТЭ была признана популяция – изолированная группа особей одного вида, связанная общностью территории и происхождения. Этот термин был предложен В. Иоганнсеном в 1908 г. Совокупность аллелей популяции называется генофондом, а процессы, изменяющие генофонд, получили название элементарных эволюционных факторов. По поводу числа факторов среди эволюционистов нет единодушия. Наиболее часто в СТЭ выделяют как эволюционные факторы мутационный процесс, поток генов, дрейф генов и естественный отбор.

Мутационный процесс – процесс образования новых генетических вариантов. Исключительно важным аспектом СТЭ является положение о случайном, ненаправленном характере мутаций. Поскольку мутации – редкое событие, то они изменяют генофонд чрезвычайно медленно.

Поток генов – обмен генами между разными популяциями. Основной источник потока генов – миграции особей, которые способны изменять генофонд значительно быстрее, чем мутации. Диапазон интенсивности миграций различен. Обмен генов между популяциями может вообще отсутствовать. В таком случае мы наблюдаем изоляцию – важнейший фактор видообразования.

Дрейф генов – случайные изменения частот аллелей в популяции. Это понятие в генетику ввел С. Райт (Wright S., 1931). Оно служит предметом долгих дискуссий. Дрейф генов относится к явлениям, во многом обусловленным ошибкой выборки: чем меньше выборка популяции, тем больше будет ошибка выборки.

Естественный отбор – важнейший фактор эволюции в СТЭ. Кратким и удачным определением отбора может служить определение, данное И. Лернером: «отбор – это дифференциальное воспроизведение генотипов» (Lerner I., 1958). Данное определение подразумевает, что шансы передать свои признаки следующему поколению у разных генотипов не одинаковы. Один из основателей цитогенетики, английский генетик С. Дарлингтон (1903–1981) охарактеризовал естественный отбор как процесс переноса «…с химического уровня мутации на биологический уровень адаптации» (Darlington C., 1958). В СТЭ отбор рассматривается как единственный направляющий эволюционный фактор. Роль естественного отбора – это один из ключевых дискуссионных вопросов на всем протяжении истории эволюционизма после Ч. Дарвина.

Другим ключевым вопросом стал вопрос единства механизмов эволюции. В СТЭ принято различать разные уровни эволюционного процесса.

Микроэволюция – процесс адаптивного изменения популяций до возникновения новых видов. Все вышерассмотренные закономерности динамики популяций под действием эволюционных факторов разработаны именно по отношению к микроэволюции.

Макроэволюция – эволюция надвидовых таксонов. Это один из наименее разработанных разделов СТЭ, можно сказать, ее слабое место. Среди сторонников СТЭ преобладают взгляды о единстве механизмов микро– и макроэволюции, что во многом обусловлено представлениями «отцов-основателей» Дж. Симпсона, Б. Ренша, Дж. Хаксли. Это же относится и к пограничному явлению – видообразованию.

Видообразование – процесс образования новых видов. Оно обычно рассматривается как итог микроэволюции, но ряд эволюционистов предлагают считать видообразование самостоятельным разделом.

Таковы (в самом общем виде) основные положения синтетической теории эволюции. Ее становление, можно сказать, проходило триумфально. Середина XX в. знаменуется безраздельным господством идей СТЭ. Хотя и в это время выдвигались альтернативные теории, в целом ведущие эволюционисты проявляли редкое единодушие. Теоретические затруднения рассматривались как естественные аспекты развития науки.

Затем положение изменилось. Новые факты, порождая новые разногласия, поставили эволюционную биологию на порог третьей научной революции. Чтобы понять суть теоретических разногласий, необходимо кратко познакомиться с историей альтернативных концепций. Они возникли, как уже говорилось, почти одновременно с дарвинизмом.


    Ваша оценка произведения:

Популярные книги за неделю