355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Нейл Мэтью » Основы программирования в Linux » Текст книги (страница 14)
Основы программирования в Linux
  • Текст добавлен: 21 сентября 2016, 17:59

Текст книги "Основы программирования в Linux"


Автор книги: Нейл Мэтью


Соавторы: Ричард Стоунс
сообщить о нарушении

Текущая страница: 14 (всего у книги 67 страниц)

perror

Функция perror также превращает текущую ошибку в виде, представленном в переменной errno, в строку и выводит ее в стандартный поток ошибок. Ей предшествует сообщение, заданное в строке s (если указатель не равен NULL), за которым следуют двоеточие и пробел.

Далее приведена синтаксическая запись функции:

#include

void perror(const char *s);

Например, вызов

perror(«program»);

может дать следующий результат в стандартном потоке ошибок:

program: Too many open files

Файловая система procfs

Ранее в этой главе мы уже писали о том, что ОС Linux обрабатывает многие вещи как файлы, и в файловой системе есть ряд элементов для аппаратных устройств. Эти файлы /dev применяются для доступа к оборудованию особыми методами с помощью низкоуровневых системных вызовов.

Программные драйверы, управляющие оборудованием, часто могут настраиваться определенными способами или сообщать информацию. Например, контроллер жесткого диска может настраиваться на применение определенного режима DMA. Сетевая карта может обладать функциональными возможностями для оповещения об установке высокоскоростного дуплексного соединения.

В прошлом для связи с драйверами устройств применялись утилиты общего назначения. Например, hdparm использовалась для настройки некоторых параметров диска, a ifconfig могла сообщить сетевую статистику. В недавнем прошлом появилась тенденция, направленная на обеспечение более подходящего способа доступа к информации драйвера и, как расширение, включающая взаимодействие с различными элементами ядра Linux.

ОС Linux предоставляет специальную файловую систему procfs, которая обычно доступна в виде каталога /proc. Она содержит много специальных файлов, обеспечивающих высокоуровневый доступ к информации драйвера и ядра. Приложения, выполняющиеся с корректными правами доступа, могут читать эти файлы для получения информации и записывать в них устанавливаемые параметры.

Набор файлов в каталоге /proc меняется от системы к системе, и с каждым новым выпуском Linux появляются новые файлы, дополнительные драйверы и средства поддержки файловой системы procfs. В этом разделе мы рассмотрим некоторые из самых широко распространенных файлов и кратко обсудим их применение.

В перечень каталога /proc на компьютере, использовавшемся для написания этой главы, включены следующие элементы:

1/     10514/ 20254/ 6/    9057/ 9623/     ide/       mtrr

10359/ 10524/ 29/    698/  9089/ 9638/     interrupts net/

10360/ 10530/ 983/   699/  9118/ acpi/     iomem      partitions

10381/ 10539/ 3/     710/  9119/ asound/   ioports    scsi/

10438/ 10541/ 30/    711/  9120/ buddyinfo irq/       self@

10441/ 10555/ 3069/  742/  9138/ bus/      kallsyms   slabinfo

10442/ 10688/ 3098/  7808/ 9151/ cmdline   kcore      splash

10478/ 10689/ 3099/  7813/ 92/   config.gz keys       stat

10479/ 10784/ 31/    8357/ 9288/ cpuinfo   key-users  swaps

10482/ 113/   3170/  8371/ 93/   crypto    kmsg       sys/

10484/ 115/   3171/  840/  9355/ devices   loadavg    sysrq-trigger

10486/ 116/   3177/  8505/ 9407/ diskstats locks      sysvipc/

10495/ 1167/  32288/ 8543/ 9457/ dma       mdstat     tty/

10497/ 1168/  3241/  8547/ 9479/ driver/   meminfo    uptime

Во многих случаях файлы могут только читаться и дают информацию о состоянии. Например, /proc/cpuinfo предоставляет сведения о доступных процессорах:

$ cat /proc/cpuinfo

processor    : 0

vendor_id     : GenuineIntel

cpu family    : 15

model         : 2

model name    : Intel(R) Pentium(R) 4 CPU 2.66GHz

stepping      : 8

cpu MHz       : 2665.923

cache size    : 512 KB

fdiv_bug      : no

hlt_bug       : no

f00f_bug      : no

coma_bug      : no

fpu           : yes

fpu_exception : yes

cpuid level   : 2

wp            : yes

flags         : fpu vme de pse tsc msr рае mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush dts acpi mmx fxsr sse sse2 ss up

bogomips      : 5413.47

clflush size  : 64

Файлы /proc/meminfo и /рroc/version предоставляют данные об использовании оперативной памяти и версии ядра соответственно:

$ cat /proc/meminfo

MemTotal:     776156 kB

MemFree:       28528 kB

Buffers:      191764 kB

Cached:       369520 kB

SwapCached:       20 kB

Active:       406912 kB

Inactive:     274320 kB

HighTotal:         0 kB

HighFree:          0 kB

LowTotal:     776156 kB

LowFree:       28528 kB

SwapTotal:   1164672 kB

SwapFree:    1164652 kB

Dirty:            68 kB

Writeback:         0 kB

AnonPages:     95348 kB

Mapped:        49044 kB

Slab:          57848 kB

SReclaimable:  48008 kB

SUnreclaim:     9840 kB

PageTables:     1500 kB

NFS_Unstable:      0 kB

Bounce:            0 kB

CommitLimit: 1552748 kB

Committed_AS: 189680 kB

VmallocTotal: 245752 kB

VmallocUsed:   10572 kB

VmallocChunk: 234556 kB

HugePages_Total:   0

HugePages_Free:    0

HugePages_Rsvd:    0

Hugepagesize:   4096 kB

$ cat /proc/version

Linux version 2.6.20.2-2-default (geeko@buildhost) (gcc version 4.1.3 20070218 (prerelease) (SUSE Linux)) #1 SMP Fri Mar 9 21:54:10 UTC 2007

Информация, выводимая этими файлами, генерируется при каждом чтении файла. Поэтому повторное чтение файла meminfo в более поздний момент времени даст результаты с точностью до секунд.

Получить дополнительную информацию от специальных функций ядра можно в подкаталогах каталога /proc. Например, статистику использования сетевых сокетов вы можете узнать из /proc/net/sockstat:

$ cat /proc/net/sockstat

sockets: used 285

TCP: inuse 4 orphan 0 tw 0 alloc 7 mem 1

UDP: inuse 3

UDPLITE: inuse 0

RAW: inuse 0

FRAG: inuse 0 memory 0

В некоторые элементы каталога /proc можно производить запись, а не только читать их. Например, общее количество файлов, которые могут быть открыты одновременно всеми выполняющимися программами, – это параметр ядра Linux. Текущее значение можно прочитать из /proc/sys/fs/file-max:

$ cat /proc/sys/fs/file-max

76593

В данном случае задана величина 76593. Если вам нужно увеличить это значение, вы можете сделать это, записав его в тот же файл. Это действие может потребоваться при выполнении специального комплекса программ, например, системы управления базой данных, которая использует много таблиц, что потребует одновременного открытия большого числа файлов.

Примечание

Для записи в файлы /proc требуются права доступа суперпользователя. При записи в эти файлы нужно быть предельно внимательным; при записи неподходящих данных возможно возникновение серьезных проблем, включая крах системы и потерю данных.

Для увеличения предельного значения одновременно обрабатываемых в системе файлов до 80000 вы можете просто записать новое предельное значение в файл file-max.

# echo 80000 >/proc/sys/fs/file-max

Теперь, повторно прочитав файл, вы увидите новое значение:

$ cat /proc/sys/fs/file-max

80000

Подкаталоги каталога /proc с числовыми именами применяются для обеспечения доступа к информации о выполняющихся программах. В главе 11 вы узнаете больше о том, что программы выполняются как процессы.

Сейчас только отметьте, что у каждого процесса есть уникальный идентификатор: число в диапазоне от 1 до почти 32 000. Команда ps предоставляет список выполняющихся в данный момент процессов. Например, когда писалась эта глава:

neil@susel03:~/BLP4e/chapter03> ps -а

  PID TTY       TIME CMD

 9118 pts/1 00:00:00 ftp

 9230 pts/1 00:00:00 ps

10689 pts/1 00:00:01

bash neil@susel03:~/BLP4e/chapter03>

Вы видите несколько сеансов терминалов, запустивших командную оболочку bash и сеанс передачи файла, выполняющий программу ftp. Просмотрев каталог /proc, вы получите более подробную информацию о сеансе ftp.

В данном случае для ftp задан идентификатор процесса 9118, поэтому вы должны заглянуть в каталог /proc/9118 для получения подробной информации о нем:

$ ls -l /proc/9118

total 0

0 dr-xr-xr-x 2 neil users 0 2007-05-20 07:43 attr

0 -r– 1 neil users 0 2007-05-20 07:43 auxv

0 -r–r–r– 1 neil users 0 2007-05-20 07:35 cmdline

0 -r–r–r– 1 neil users 0 2007-05-20 07:43 cpuset

0 lrvxrwxrwx 1 neil users 0 2007-05-20 07:43 cwd -> /home/neil/BLP4e/chapter03

0 -r– 1 neil users 0 2007-05-20 07:43 environ

0 lrwxrwxrwx 1 neil users 0 2007-05-20 07:43 exe -> /usr/bin/pftp

0 dr-x– 2 neil users 0 2007-05-20 07:19 fd

0 -rw-r–r– 1 neil users 0 2007-05-20 07:43 loginuid

0 -r–r–r– 1 neil users 0 2007-05-20 07:43 maps

0 -rw– 1 neil users 0 2007-05-20 07:43 mem

0 -r–r–r– 1 neil users 0 2007-05-20 07:43 mounts

0 -r– 1 neil users 0 2007-05-20 07:43 mountstats

0 -rw-r–r– 1 neil users 0 2007-05-20 07:43 oom_adj

0 -r–r–r– 1 neil users 0 2007-05-20 07:43 oom_score

0 lrwxrwxrwx 1 neil users 0 2007-05-20 07:43 root -> /

0 -rw– 1 neil users 0 2007-05-20 07:43 seccomp

0 -r–r–r– 1 neil users 0 2007-05-20 07:43 smaps

0 -r–r–r– 1 neil users 0 2007-05-20 07:33 stat

0 -r–r–r– 1 neil users 0 2007-05-20 07:43 statm

0 -r–r–r– 1 neil users 0 2007-05-20 07:33 status

0 dr-xr-xr-x 3 neil users 0 2007-05-20 07:43 task

0 -r–r–r– 1 neil users 0 2007-05-20 07:43 wchan

В данном перечне вы видите разные специальные файлы, способные сообщить вам, что происходит с процессом.

Можно сказать, что выполняется программа /usr/bin/pftp, и ее текущий рабочий каталог – home/neil/BLP4e/chapter03. Есть возможность прочитать другие файлы из этого каталога, чтобы увидеть командную строку, применяемую для запуска программы, а также ее окружение. Файлы cmdline и environ предоставляют эту информацию в виде последовательности нуль-терминированных строк, поэтому вам следует соблюдать осторожность при их просмотре. Более подробно окружение ОС Linux мы обсудим в главе 4.

$ od -с /proc/9118/cmdline

0000000 f  t  p  1  9  2  .  1  6  8  .  0  .  1  2

0000020

0000021

Из полученного вывода видно, что ftp была запущена из командной строки ftp 192.163.0.12.

Подкаталог fd предоставляет информацию об открытых дескрипторах файлов, используемых процессом. Эти данные могут быть полезны при определении количества файлов, одновременно открытых программой. На каждый открытый дескриптор приходится один элемент; имя его соответствует номеру дескриптора. В нашем случае, как мы и ожидали, у программы ftp есть открытые дескрипторы 0, 1, 2 и 3. Они включают стандартные дескрипторы ввода, вывода и потока ошибок плюс подключение к удаленному серверу.

$ ls /proc/9118/fd

0 1 2 3

Более сложные приемы: fcntl и mmap

Теперь мы коснемся приемов, которые вы можете пропустить, поскольку они редко используются. Признавая это, мы помещаем их в книгу просто для вашего сведения, потому что применение описываемых средств может предоставить простые решения для замысловатых проблем.

fcntl

Системный вызов fcntl предоставляет дополнительные методы обработки низкоуровневых дескрипторов файлов:

#include

int fcntl(int fildes, int cmd);

int fcntl(int fildes, int cmd, long arg);

С помощью системного вызова fcntl вы можете выполнить несколько разнородных операций над открытыми дескрипторами файлов, включая их дублирование, получение и установку флагов дескрипторов файлов, получение и установку флагов состояния файла и управление блокировкой файла (advisory file locking).

Различные операции выбираются разными значениями параметра команды cmd, как определено в файле fcntl.h. В зависимости от выбранной команды системному вызову может потребоваться третий параметр arg.

fcntl(fildes, F_DUPFD, newfd) – этот вызов возвращает новый дескриптор файла с числовым значением, равным или большим целочисленного параметра newfd. Новый дескриптор – копия дескриптора fildes. В зависимости от числа открытых файлов и значения newfd этот вызов может быть практически таким же, как вызов dup(fildes).

fcntl(fildes, F_GETFD) – этот вызов возвращает флаги дескриптора файла, как определено в файле fcntl.h. К ним относится FD_CLOEXEC, определяющий, закрыт ли дескриптор файла после успешного вызова одного из системных вызовов семейства exec.

fcntl(fildes, F_SETFD, flags) – этот вызов применяется для установки флагов дескриптора файла, как правило, только FD_CLOEXEC.

fcntl(fildes, F_GETFL) и fcntl(fildes, F_SETFL, flags) – эти вызовы применяются, соответственно, для получения и установки флагов состояния файла и режимов доступа. Вы можете извлечь режимы доступа к файлу с помощью маски O_ACCMODE, определенной в файле fcntl.h. Остальные флаги включают передаваемые значения в третьем аргументе вызову open с использованием O_CREAT. Учтите, что вы не можете задать все флаги. В частности, нельзя задать права доступа к файлу с помощью вызова fcntl.

Вызов fcntl также позволяет реализовать блокировку файла. См. более подробную информацию в разделе 2 интерактивного справочного руководства или главу 7, в которой мы обсуждаем блокировку файлов.

mmap

Система UNIX предоставляет полезное средство, позволяющее программам совместно использовать память, и, к счастью, оно включено в версию 2.0 и более поздние версии ядра Linux. Функция mmap (для отображения памяти) задает сегмент памяти, который может читаться двумя или несколькими программами и в который они могут записывать данные. Изменения, сделанные одной программой, видны всем остальным.

Вы можете применить то же самое средство для работы с файлами, заставив все содержимое файла на диске выглядеть как массив в памяти. Если файл состоит из записей, которые могут быть описаны структурами на языке С, вы сможете обновлять файл с помощью методов доступа к массиву структур.

Это становится возможным благодаря применению сегментов виртуальной памяти с набором особых прав доступа. Чтение из сегмента и запись в него заставляет операционную систему читать соответствующую часть файла на диске и писать данные в нее.

Функция mmap создает указатель на область памяти, ассоциированную с содержимым файла, доступ к которому осуществляется через открытый дескриптор файла.

#include

void *mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off);

Изменить начальную позицию порции данных файла, к которым выполняется обращение через совместно используемый сегмент, можно, передавая параметр off. Открытый дескриптор файла задается в параметре fildes. Объем данных, к которым возможен доступ (т. е. размер сегмента памяти), указывается в параметре len.

Параметр addr можно использовать для запроса конкретного адреса памяти. Если он равен нулю, результирующий указатель формируется автоматически. Последний вариант рекомендуется, потому что в противном случае трудно добиться переносимости; диапазоны доступных адресов в разных системах отличаются.

Параметр prot используется для установки прав доступа к сегменту памяти. Он представляет собой результат поразрядной операции or, примененной к следующим константам:

PROT_READ – сегмент может читаться;

PROT_WRITE – в сегмент можно писать;

PROT_EXEC – сегмент может выполняться;

PROT_NONE – к сегменту нет доступа.

Параметр flags контролирует, как изменения, сделанные программой в сегменте, отражаются в других местах; его возможные значения приведены в табл. 3.7.

Таблица 3.7


MAP_PRIVATE Сегмент частный, изменения локальные
MAP_SHARED Изменения сегмента переносятся в файл
MAP_FIXED Сегмент должен располагаться по заданному адресу addr

Функция msync вызывает запись изменений в части или во всем сегменте памяти обратно а отображенный файл (или считывание из файла).

#include

int msync(void *addr, size_t len, int flags);

Корректируемая часть сегмента задается передачей начального адреса addr и размера len. Параметр flags управляет способом выполнения корректировки с помощью вариантов, приведенных в табл. 3.8.

Таблица 3.8


MS_ASYNC Выполнять запись асинхронно
MS_SYNC Выполнять запись синхронно
MS_INVALIDATE Обновить другие отражения этого файла так, чтобы они содержали изменения, внесенные этим вызовом

Функция munmap освобождает сегмент памяти.

#include

int munmap(void *addr, size_t len);

В программе mmap.с из упражнения 3.5 показан файл из структур, которые будут корректироваться с помощью функции mmap и обращений в стиле массива. Ядро Linux версий, меньших 2.0, не полностью поддерживает применение функции mmap. Программа работает корректно в системе Sun Solaris и других системах.

Упражнение 3.5. Применение функции mmap

1. Начните с определения структуры RECORD и создайте NRECORDS вариантов, в каждый из которых записывается собственный номер. Они будут добавлены в конец файла records.dat.

#include

#include

#include

#include

#include

typedef struct {

 int integer;

 char string[24];

} RECORD;

#define NRECORDS (100)

int main() {

 RECORD record, *mapped;

 int i, f;

 FILE *fp;

 fp = fopen(«records.dat», «w+»);

 for (i=0; i

  record.integer = i;

  sprintf(record.string, «RECORD-%d», i);

  fwrite(&record, sizeof(record), 1, fp);

 }

 fclose(fp);

2. Далее измените целое значение записи с 43 на 143 и запишите его в строку 43-й записи.

 fp = fopen(«records.dat», «r+»);

 fseek(fp, 43*sizeof(record), SEEK_SET);

 fread(&record, sizeof(record), 1, fp);

 record.integer =143;

 sprintf(record.string, «RECORD-%d», record.integer);

 fseek(fp, 43*sizeof(record), SEEK_SET);

 fwrite(&record, sizeof(record), 1, fp);

 fclose(fp);

3. Теперь отобразите записи в память и обратитесь к 43-й записи для того, чтобы изменить целое на 243 (и обновить строку записи), снова используя отображение в память.

 f = open(«records.dat», O_RDWR);

 mapped = (RECORD *)mmap(0, NRECORDS*sizeof(record),

  PROT_READ|PROT_WRITE, MAP_SHARED, f, 0);

 mapped[43].integer = 243;

 sprintf(mapped[43].string, «RECORD-%d», mapped[43].integer);

 msync((void *)mapped, NRECORDS*sizeof(record), MS_ASYNC);

 munmap((void *)mapped, NRECORDS*sizeof(record));

 close(f);

 exit(0);

}

В главе 13 вы встретитесь с еще одним средством совместного использования памяти – разделяемой памятью System V.

Резюме

В этой главе вы увидели, как ОС Linux обеспечивает прямой доступ к файлам и устройствам, как на этих низкоуровневых функциях строятся библиотечные функции, предоставляющие гибкие решения программных проблем. В результате вы смогли написать довольно мощную процедуру просмотра каталога с помощью нескольких строк программного кода.

Вы также узнали об обработке файлов и каталогов достаточно для того, чтобы превратить "сырое" приложение для работы с компакт-дисками, созданное в конце главы 2, в программу на языке С, применяющую более структурированное решение на базе файлов. Но на этом этапе вы не можете расширить функциональные возможности программы, поэтому мы отложим ее переработку до того времени, когда вы научитесь управлять экраном и клавиатурой, которые будут предметами обсуждения следующих двух глав.

Глава 4
Окружение Linux

Когда вы пишете программу для ОС Linux (или UNIX и UNIX-подобных систем), следует принимать во внимание то, что программа будет выполняться в многозадачной среде или многозадачном окружении. Это означает, что много программ будет выполняться одновременно и совместно использовать ресурсы компьютера, такие как память, дисковое пространство и циклы центрального процессора. Может даже существовать несколько экземпляров одной и той же программы, выполняющихся одновременно. Важно, чтобы эти программы не мешали друг другу, знали о своем окружении и могли действовать надлежащим образом, избегая конфликтов, таких как попытка писать в один и тот же файл одновременно с другой программой.

В этой главе рассматривается окружение, в котором действуют программы, как они его используют для получения информации об условиях функционирования и как пользователи программ могут изменять их поведение. В частности, в данной главе рассматриваются следующие темы:

□ передача аргументов в программы;

□ переменные окружения;

□ определение текущего времени;

□ временные файлы;

□ получение информации о пользователе и рабочем компьютере;

□ формирование и настройка регистрируемых сообщений;

□ выявление ограничений, накладываемых системой.

Аргументы программы

Когда в ОС Linux или UNIX выполняется программа на языке С, она начинается с функции main. В таких программах функция main объявляется следующим образом:

int main(int argc, char *argv[])

Здесь argc – это счетчик аргументов программы, a argv – массив символьных строк, представляющих сами аргументы.

Вы можете встретить программы на языке С для ОС Linux, просто объявляющие функцию main как

main()

Этот вариант тоже работает, поскольку по умолчанию возвращаемому функцией значению будет назначен тип int, а формальные параметры, которые в функции не применяются, не нуждаются в объявлении. Параметры argc и argv остаются на своем месте, но если вы не объявляете их, то и не можете их использовать.

Каждый раз, когда операционная система запускает новую программу, параметры argc и argv устанавливаются и передаются функции main. Обычно эти параметры предоставляются другой программой, часто командной оболочкой, которая запросила у операционной системы запуск новой программы. Оболочка принимает заданную командную строку, разбивает её на отдельные слова и использует их для заполнения массива argv. Помните о том, что до установки параметров argc и argv командная оболочка Linux обычно выполняет раскрытие метасимволов в аргументах, содержащих имена файлов, в то время как оболочка MS-DOS рассчитывает на то, что программы примут аргументы с метасимволами и выполнят собственную постановку.

Например, если мы дадим командной оболочке следующую команду:

$ myprog left right 'and center'

программа myprog запустит функцию main с приведенными далее параметрами.

argc: 4

argv: {"myprog", «left», «right», «and center»}

Обратите внимание на то, что аргумент-счётчик содержит имя программы и в массив argv оно включено как первый элемент argv[0]. Поскольку в команде оболочки мы применили кавычки, четвертый аргумент представляет собой строку, содержащую пробелы.

Вам все это знакомо, если вы программировали на языке С стандарта ISO/ANSI, Аргументы функции main соответствуют позиционным параметрам в сценариях командной оболочки: $0, $1 и т.д. Язык ISO/ANSI С заявляет, что функция main должна возвращать значение типа int, спецификация X/Open содержит явное объявление, данное ранее.

Аргументы командной строки удобны для передачи данных программам. Например, вы можете применить их в приложениях баз данных для передачи имени базы данных, которую хотите использовать, что позволит вам применить одну и ту же программу для работы с несколькими базами данных. Многие утилиты также используют аргументы командной строки для изменения собственного поведения или установки опций. Вы обычно задаете эти так называемые флаги или переключатели с помощью аргументов командной строки, начинающихся со знака «дефис». Например, программа sort принимает переключатель для изменения обычного порядка сортировки на обратный:

$ sort -r файл

Опции командной строки используются очень широко, и согласованное их применение будет реальной помощью тем, кто станет использовать вашу программу. В прошлом у каждой утилиты был свой подход к формированию опций командной строки, что приводило к некоторой путанице. Например, взгляните на то, каким способом приведенные далее команды принимают параметры:

$ tar cvfB /tmp/file.tar 1024

dd if=/dev/fd0 of=/trap/file.dd bs=18k

$ ps ax

$ gcc –help

$ ls -lstr

$ ls -l -s -t -r

Мы рекомендуем в ваших приложениях все переключатели командной строки начинать с дефиса и делать их односимвольными, состоящими из одной буквы или цифры. При необходимости опции, не содержащие последующих аргументов, могут группироваться вместе после общего дефиса. Таким образом, два только что приведенных примера с командой ls соответствуют нашим рекомендациям. За каждой опцией может следовать любое необходимое ей значение как отдельный аргумент. Пример с программой dd нарушает наше правило, поскольку использует многосимвольные опции, которые начинаются совсем не с дефисов (if=/dev/fd0): в примере с программой tar опции полностью оторваны от своих значений! Целесообразно добавлять более длинные и информативные имена переключателей как альтернативу односимвольных вариантов и использовать двойной дефис для их выделения. Таким образом, у нас могут быть два варианта опции получения помощи: -h и –help.

Еще один недостаток некоторых программ – создание опции +x (например) для выполнения функции, противоположной . В главе 2 мы применяли команду set -о xtrace для включения отслеживания действий командной оболочки и команду set +о xtrace для выключения этого режима.

Вы, вероятно, можете сказать, что запомнить порядок и назначение всех этих программных опций достаточно трудно без необходимости освоения вызывающих идиосинкразию форматов. Часто единственный выход – применение опции -h (от англ. help) или страниц интерактивного справочного руководства (man), если программист предоставил одну из этих возможностей. Чуть позже в этой главе мы покажем, что функция getopt предоставляет изящное решение этих проблем. А сейчас, тем не менее, в упражнении 4.1 давайте посмотрим, как передаются аргументы программы.

Упражнение 4.1. Аргументы программы

Далее приведена программа args.c, проверяющая собственные аргументы.

#include

#include

int main(int argc, char *argv[]) {

 int arg;

 for (arg = 0; arg < argc; arg++) {

  if (argv[arg][0] == '-')

printf(«option: %sn», argv[arg]+1);

  else

   printf(«argument %d: %sn», arg, argv[arg]);

 }

 exit(0);

}

Когда вы выполните эту программу, она просто выведет свои аргументы и определит опции. Суть в том, что программа принимает строковый аргумент и необязательный аргумент с именем файла, вводимый опцией -f. Могут быть определены и другие опции.

$ ./args -i -lr 'hi there' -f fred.c

argument 0: ./args

option: i

option: lr

argument 3: hi there option: f

argument 5: fred.с

Как это работает

Программа просто использует аргумент-счетчик argc для задания цикла, просматривающего все аргументы программы. Она находит опции поиском начального дефиса.

В данном примере, если мы предполагаем, что доступны опции -l и -r, то упускаем тот факт, что группа -lr, возможно, должна интерпретироваться так же, как -l и -r.

В стандарте X/Open (который можно найти по адресу http://opengroup.org/) определено стандартное применение опций командной строки (Utility Syntax Guidelines, руководство по синтаксису утилит) и стандартный программный интерфейс для представления переключателей командной строки в программах на языке С: функция getopt.


    Ваша оценка произведения:

Популярные книги за неделю