355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Нейл Мэтью » Основы программирования в Linux » Текст книги (страница 11)
Основы программирования в Linux
  • Текст добавлен: 21 сентября 2016, 17:59

Текст книги "Основы программирования в Linux"


Автор книги: Нейл Мэтью


Соавторы: Ричард Стоунс
сообщить о нарушении

Текущая страница: 11 (всего у книги 67 страниц)

read

Системный вызов read считывает до nbytes байтов данных из файла, ассоциированного с дескриптором файла fildes, и помещает их в область данных buf. Он возвращает количество действительно прочитанных байтов, которое может быть меньше требуемого количества. Если вызов read возвращает 0, ему нечего считывать; он достиг конца файла. Ошибка при вызове заставляет его вернуть -1.

#include

size_t read(int fildes, void *buf, size_t nbytes);

Программа simple_read.c копирует первые 128 байтов стандартного ввода в стандартный вывод. Она копирует все вводимые данные, если их меньше 128 байтов.

#include

#include

int main() {

 char buffer[128];

 int nread;

 nread = read(0, buffer, 128);

 if (nread == -1)

  write(2, «A read error has occurredn», 26);

 if ((write(1, buffer, nread)) != nread)

  write(2, "A write error has occurredn", 27);

 exit(0);

}

Если вы выполните программу, то получите следующий результат:

$ echo hello there | ./simple_read

hello there

$ ./simple_read < draft1.txt

Files

In this chapter we will be looking at files and directories and how to

manipulate them. We will learn how to create files, $

Первое выполнение программы с помощью команды echo формирует некоторый ввод программы, который по каналу передается в вашу программу. Во втором выполнении вы перенаправляете ввод из файла draft1.txt. В этом случае вы видите первую часть указанного файла, появляющуюся в стандартном выводе.

Примечание

Обратите внимание на то, что знак подсказки или приглашения командной оболочки появляется в конце последней строки вывода, поскольку в этом примере 128 байтов не формируют целое число строк.

open

Для создания дескриптора нового файла вы должны применить системный вызов open.

#include

#include

#include

int open(const char *path, int oflags);

int open(const char *path, int oflags, mode_t mode);

Примечание

Строго говоря, для использования вызова open вы не должны включать файлы sys/types.h и sys/stat.h в системах, удовлетворяющих стандартам POSIX, но они могут понадобиться в некоторых системах UNIX.

Не вдаваясь в подробности, скажем, что вызов open устанавливает путь к файлу или устройству. Если установка прошла успешно, он возвращает дескриптор файла, который может применяться в системных вызовах read, write и др. Дескриптор файла уникален и не используется совместно другими процессами, которые могут в данный момент выполняться. Если файл открыт одновременно в двух программах, они поддерживают отдельные дескрипторы файла. Если они обе пишут в файл, то продолжат запись с того места, где остановились. Их данные не чередуются, но данные одной программы могут быть записаны поверх данных другой. У каждой программы свое представление о том, какая порция файла (каково смещение текущей позиции в файле) прочитана или записана. Вы можете помешать нежелательным накладкам такого сорта с помощью блокировки файла, которая будет обсуждаться в главе 7.

Имя открываемого файла или устройства передается как параметр path; параметр oflags применяется для указания действий, предпринимаемых при открытии файла.

Параметр oflags задается как комбинация обязательного режима доступа к файлу и других необязательных режимов. Системный вызов open должен задавать один из режимов доступа к файлу, указанных в табл. 3.1.

Таблица 3.1


О_RDONLY Открытие только для чтения
О_WRONLY Открытие только для записи
O_RDWR Открытие для чтения и записи

Вызов может также включать в параметр oflags комбинацию (с помощью побитовой операции OR) следующих необязательных режимов:

O_APPEND – помещает записываемые данные в конец файла;

O_TRUNC – задает нулевую длину файла, отбрасывая существующее содержимое;

O_CREAT – при необходимости создает файл с правами доступа, заданными в параметре mode;

O_EXCL – применяется с режимом O_CREAT, который гарантирует, что вызывающая программа создаст файл. Вызов open атомарный, т.е. он выполняется только одним вызовом функции. Это предотвращает одновременное создание файла двумя программами. Если файл уже существует, open завершится неудачно.

Другие возможные значения параметра oflags описаны на странице интерактивного справочного руководства, посвященной open; ее можно найти в разделе 2 руководства (примените команду man 2 open).

Вызов open возвращает новый дескриптор файла (всегда неотрицательное целое) в случае успешного завершения или -1 в случае неудачи, в последнем случае open также задает глобальную переменную errno,чтобы показать причину неудачи. Мы рассмотрим errno более подробно в одном из последующих разделов. У нового дескриптора файла всегда наименьший неиспользованный номер дескриптора, свойство, которое может оказаться очень полезным в некоторых обстоятельствах. Например, если программа закрывает свой стандартный вывод, а затем снова вызывает open, будет повторно использован дескриптор файла с номером 1 и стандартный вывод будет успешно перенаправлен в другой файл или на другое устройство.

Существует также системный вызов creat, стандартизованный POSIX, но он применяется не часто. Он не только создает файл, как можно ожидать; но также и открывает его. Такой вызов эквивалентен вызову open с параметром oflags, равным O_CREAT|О_WRONLY|O_TRUNC.

Количество файлов, одновременно открытых в любой выполняющейся программе, ограничено. Предельное значение обычно определяется константой OPEN_MAX в файле limits.h и меняется от системы к системе, но стандарт POSIX требует, чтобы оно было не меньше 16. Это значение само по себе может быть ограничено в соответствии с предельными значениями локальной системы, поскольку программа не сможет всегда иметь возможность держать открытыми такое количество файлов. В ОС Linux это предельное значение можно изменять во время выполнения и поэтому OPEN_MAX уже не константа. Как правило, ее начальное значение равно 256.

Исходные права доступа

Когда вы создаете файл, применяя флаг O_CREAT в системном вызове open, вы должны использовать форму с тремя параметрами. Третий параметр mode формируется из флагов, определенных в заголовочном файле sys/stat.h и соединенных поразрядной операцией OR. К ним относятся:

S_IRUSR – право на чтение, владелец;

S_IWUSR – право на запись, владелец;

S_IXUSR – право на выполнение, владелец;

S_IRGRP – право на чтение, группа;

S_IWGRP – право на запись, группа;

S_IXGRP – право на выполнение, группа;

S_IROTH – право на чтение, остальные;

S_IWOTH – право на запись, остальные;

S_IXOTH – право на выполнение, остальные.

Например, вызов

open(«myfile», O_CREAT, S_IRUSR|S_IXOTH);

в результате приведет к созданию файла с именем myfile с правом на чтение для владельца и правом на выполнение для остальных и только с этими правами доступа.

$ ls -ls myfile

0 -r–х 1 neil software 0 Sep 22 08:11 myfile*

Есть пара факторов, способных повлиять на права доступа к файлу. Во-первых, заданные права применяются, только если файл создается. Во-вторых, на права доступа к созданному файлу оказывает воздействие маска пользователя (заданная командой командной оболочки, umask). Значение параметра mode, заданное в вызове open, на этапе выполнения объединяется с помощью операции AND с инвертированной маской пользователя. Например, если заданы маска пользователя 001 и в параметре mode флаг S_IXOTH, у созданного файла не будет права на выполнение для «остальных», т.к. маска пользователя указывает на то, что это право не должно предоставляться. Флаги в вызовах open и creat являются на самом деле запросами на установку прав доступа. Будут ли предоставлены запрошенные права, зависит от значения umask во время выполнения.

umask

umask – это системная переменная, содержащая маску для прав доступа к файлу, которые будут применяться при создании файла. Вы можете изменить значение переменной, выполнив команду umask, предоставляющую новое значение. Значение этой переменной представляет собой трёхзнаковое восьмеричное число. Каждая цифра – результат объединения с помощью операций OR значений 1, 2 или 4 (табл. 3.2). Отдельные цифры указывают на права доступа «пользователя», «группы» и «остальных» соответственно.

Таблица 3.2


10Никакие права пользователя не отвергнуты
4Право пользователя на чтение отвергается
2Право пользователя на запись отвергается
1Право пользователя на выполнение отвергается
20Никакие права группы не отвергнуты
4Право группы на чтение отвергается
2Право группы на запись отвергается
1Право группы на выполнение отвергается
30Никакие права остальных не отвергнуты
4Право остальных на чтение отвергается
2Право остальных на запись отвергается
1Право остальных на выполнение отвергается

Например, для блокирования права «группы» на запись и выполнение и права «остальных» на запись переменная umask должна была бы быть следующей (табл. 3.3).

Таблица 3.3


10
22
1
32

Значения каждой цифры объединяются операциями OR, поэтому для получения значения второй цифры нужна операция 2 | 1, дающая в результате 3. Результирующее значение umask – 032.

Когда вы создаете файл с помощью системного вызова open или creat, параметр mode сравнивается с текущим значением переменной umask. Любой бит, установленный в параметре mode и одновременно в переменной umask, удаляется. В результате пользователи могут настроить свое окружение, например, потребовав не создавать никаких файлов с правом на запись для остальных, даже если программа, создающая файл, требует предоставить такое право. Это не мешает программе или пользователю впоследствии применить команду chmod (или системный вызов chmod в программе), чтобы добавить право на запись для остальных, но поможет защитить пользователей, избавив их от необходимости проверять и задавать права доступа для всех новых файлов.

close

Системный вызов close применяется для разрыва связи файлового дескриптора fildes с его файлом. Дескриптор файла после этого может использоваться повторно. Вызов возвращает 0 в случае успешного завершения и -1 при возникновении ошибки.

#include

int close (int fildes);

Примечание

В некоторых случаях проверка возвращаемого значения вызова close бывает очень важна. Некоторые файловые системы, особенно с сетевой структурой, могут не сообщать об ошибке записи в файл до тех пор, пока файл не будет закрыт, потому что при выполнении записи могло отсутствовать подтверждение действительной записи данных.

ioctl

Системный вызов ioctl напоминает набор всякой всячины. Он предоставляет интерфейс для управления поведением устройств и их дескрипторов и настройки базовых сервисов. У терминалов, дескрипторов файлов, сокетов и даже ленточных накопителей могут быть определенные для них вызовы ioctl и вам необходимо обращаться за подробной информацией к страницам справочного руководства, относящимся к конкретным устройствам. В стандарте POSIX определены только вызовы ioctl для потоков, которые не обсуждаются в этой книге. Далее приведена синтаксическая запись вызова.

#include

int ioctl(int fildes, int cmd, ...)

Вызов ioctl выполняет операцию, указанную в аргументе cmd, над объектом, заданным в дескрипторе fildes. У вызова может быть необязательный третий аргумент, зависящий от функций, поддерживаемых конкретным устройством.

Например, следующий вызов ioctl в ОС Linux включает световые индикаторы клавиатуры (LEDs).

ioctl(tty_fd, KDSETLED, LED_NUM|LED_CAP|LED_SCR);

Выполните упражнения 3.1 и 3.2.

Упражнение 3.1. Программа копирования файла

Теперь вы знаете достаточно о системных вызовах open, read и write, чтобы написать простенькую программу copy_system.c для посимвольного копирования одного файла в другой.

В данной главе мы проделаем это несколькими способами для того, чтобы сравнить эффективность разных методов. Для краткости предположим, что входной файл существует, а выходной – нет, и что все операции чтения и записи завершаются успешно. Конечно, в реальных программах вам придется убедиться в том, что эти предположения верны!

1. Сначала вам нужно создать тестовый входной файл размером, скажем, 1 Мбайт и именем file.in.

2. Далее откомпилируйте программу copy_system.c.

#include 

#include 

#include

#include

int main() {

 char c;

 int in, out;

 in = open(«file.in», O_RDONLY);

 put = open(«file.out», O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);

 while(read(in, &c, 1) == 1) write(out, &c, 1);

 exit(0);

}

Примечание

Имейте в виду, что строка #include должна быть первой, поскольку она определяет флаги, касающиеся соответствия стандарту POSIX и способные повлиять на другие включенные в #include файлы.

3. Выполнение программы даст результат, похожий на следующий:

$ TIMEPORMAT="" time ./copy_system

4.67user 146.90system 2:32.57elapsed 99%CPU

...

$ ls -ls file.in file.out

1029 -rw-r–r– 1 neil users 1048576 Sep 17 10:46 file.in

1029 -rw– 1 neil users 1048576 Sep 17 10:51 file.out

Как это работает

Вы используете команду time для определения времени выполнения программы. В ОС Linux переменная TIMEFORMAT применяется для переопределения принятого по умолчанию в стандарте POSIX формата вывода времени, в который не включено время использования ЦПУ. Как видите, что в этой очень старой системе входной файл file.in размером 1 Мбайт был успешно скопирован в файл file.out, созданный с правами на чтение/запись только для владельца. Копирование заняло две с половиной минуты и затратило фактически все доступное время ЦПУ. Программа так медлительна потому, что вынуждена была выполнить более двух миллионов системных вызовов.

В последние годы ОС Linux продемонстрировала огромные успехи в повышении производительности системных вызовов и файловой системы. Для сравнения аналогичный тест с применением ядра 2.6 занял чуть менее 14 секунд:

$ TIMEFORMAT="" time ./copy_system

2.08user 10.59system 0:13.74elapsed 92%CPU

...

Упражнение 3.2. Вторая версия программы кодирования файла

Вы можете добиться лучших результатов, копируя блоки большего размера. Взгляните на модифицированную программу copy_block.c, которая копирует файл блоками в 1 Кбайт и снова использует системные вызовы.

#include 

#include 

#include 

#include 

int main() {

 char block[1024];

 int in, out;

 int nread;

 in = open(«file.in», O_RDONLY);

 out = open(«file.out», O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);

 while((nread = read(in, block, sizeof(block))) > 0)

  write(out, block, nread);

 exit(0);

}

Теперь испытайте программу, но сначала удалите старый выходной файл.

$ rm file.out

$ TIMEFORMAT="" time ./copy_block

0.00user 0.02system 0:00.04elapsed 78%CPU

...

Как это работает

Теперь программа выполняется только сотые доли секунды, поскольку ей требуется около 2000 системных вызовов. Конечно, это время очень зависит от системы, но оно показывает, что системные вызовы сопряжены с поддающимися измерению издержками, поэтому их применение стоит оптимизировать.

Другие системные вызовы для управления файлами

Существует ряд других системных вызовов, оперирующих низкоуровневыми дескрипторами файлов. Они позволяют программе контролировать использование файла, возвращая информацию о его состоянии,

lseek

Системный вызов lseek задает указатель текущей позиции чтения/записи дескриптора файла, т.е. вы можете применять его для установки в файле места, с которого будет происходить следующее считывание или на которое будет производиться следующая запись. Вы можете задать указатель на абсолютную позицию файла или позицию, относительно текущего положения указателя или конца файла.

#include

#include

off_t lseek(int fildes, off_t offset, int whence);

Параметр offset применяется для указания позиции, а параметр whence определяет способ применения offset и может принимать следующие значения:

SEEK_SEToffset задает абсолютную позицию;

SEEK_CURoffset задается относительно текущей позиции;

SEEK_ENDoffset задается относительно конца файла.

Вызов lseek возвращает величину параметра offset в байтах, измеряемую от начала файла, для которого установлен указатель, или -1 в случае неудачного завершения. Тип данных off_t, применяемый для параметра offset в операциях поиска, – зависящий от реализации тип integer (целое), определенный в файле sys/types.h.

fstat, stat и lstat

Системный вызов fstat возвращает информацию о состоянии файла, ассоциированного с открытым дескриптором файла. Эта информация записывается в структуру buf, адрес которой передается как параметр.

Далее приведена синтаксическая запись вызовов.

#include

#include

#include

int fstat(int fildes, struct stat *buf);

int stat(const char *path, struct stat *buf);

int lstat(const char *path, struct stat *buf);

Примечание

Учтите, что включение файла sys/types.h не обязательное, но мы рекомендуем включать его при использовании системных вызовов, поскольку некоторые из их определений применяют для стандартных типов псевдонимы, которые могут измениться когда-нибудь.

Родственные функции stat и lstat возвращают информацию о состоянии названного файла. Они возвращают те же результаты за исключением того, что файл является символической ссылкой. Вызов lstat возвращает данные о самой ссылке, а вызов stat – о файле, на который ссылка указывает.

Элементы вызываемой структуры stat могут меняться в разных UNIX-подобных системах, но обязательно включают перечисленные в табл. 3.4 элементы.

Таблица 3.4


stat
st_mode Права доступа к файлу и сведения о типе файла
st_ino Индекс, ассоциированный с файлом
st_dev Устройство, на котором размещен файл
st_uid Идентификатор (user identity) владельца файла
st_gid Идентификатор группы (group identity) владельца файла
st_atime Время последнего обращения
st_ctime Время последнего изменения прав доступа, владельца, группы или объема
st_mtime Время последней модификации содержимого
st_nlink Количество жестких ссылок на файл

У флагов st_mode, возвращаемых в структуре stat, также есть ряд ассоциированных макросов в заголовочном файле sys/stat.h. В эти макросы включены имена флагов для прав доступа и типов файлов и некоторые маски, помогающие проверять специфические типы и права.

Флаги прав доступа такие же, как в системном вызове open, описанном ранее. Для флагов типов файла включены следующие имена:

S_IFBLK – блочное устройство;

S_IFDIR – каталог;

S_IFCHR – символьное устройство;

S_IFIFO – FIFO (именованный канал);

S_IFREG – обычный файл;

S_IFLNK – символическая ссылка.

Для других флагов режима файла включены следующие имена:

S_ISUID – элемент получает setUID при выполнении;

S_ISGUID – элемент получает setGID при выполнении.

Для масок, интерпретирующих флаги st_mode, включены следующие имена:

S_IFMT – тип файла;

S_IRWXU – права пользователя на чтение/запись/выполнение;

S_IRWXG – права группы на чтение/запись/выполнение;

S_IRWXO – права остальных на чтение/запись/выполнение.

Существует ряд макросов, помогающих определить типы файлов. Они просто сравнивают надлежащим образом установленные флаги режима файла с подходящим флагом, типа устройства. К ним относятся следующие:

S_ISBLK – проверка для блочного файла;

S_ISCHR – проверка для символьного файла;

S_ISDIR – проверка для каталога;

S_ISFIFO – проверка для FIFO;

S_ISREG – проверка для обычного файла;

S_ISLNK – проверка для символической ссылки.

Например, для проверки того, что файл не является каталогом и у него есть права на выполнение только для владельца и больше никаких других прав, вы можете воспользоваться следующим тестом;

struct stat statbuf;

mode_t modes;

stat(«filename», &statbuf);

modes = statbuf.st_mode;

if (!S_ISDIR(modes) && (modes & S_IRWXU) = S_IXUSR)

...

dup и dup2

Системные вызовы dup позволяют дублировать дескриптор файла, предоставляя два или несколько разных дескрипторов, обращающихся к одному и тому же файлу. Эта возможность может применяться для чтения и записи в разные части файла. Системный вызов dup дублирует файловый дескриптор fildes и возвращает новый дескриптор. Системный вызов dup2 умело копирует один дескриптор файла в другой, задавая дескриптор, применяемый для копии.

Далее приведена синтаксическая запись для вызовов.

#include

int dup(int fildes);

int dup2(int fildes, int fildes2);

Эти вызовы могут оказаться полезными в случае нескольких процессов, взаимодействующих через именованные каналы. Более глубоко мы рассмотрим системные вызовы dup в главе 13.


    Ваша оценка произведения:

Популярные книги за неделю