Текст книги "Авиация и космонавтика 2003 10"
Автор книги: Автор Неизвестен
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 5 (всего у книги 9 страниц)
Примерно в 2003-2004 гг. фирмо Aerojet планирует провести контрольные испытания двухрежимного ПВРД при запусках высотных ракет. По их результатам будет санкционировано начало демонстрационных полетов разрабатываемой системы.
Запуски экспериментальных ракет HyFly предполагается осуществлять с борта самолета F-4 на высоте 10 км и при скорости полета М=0,85. Первые три испытания отводятся отработке системы сброса ракеты и оценке работоспособности разгонных блоков. В последующем ракета HyFly будет совершать самостоятельные полеты с постепенным увеличением скорости с М=4 до М=6 на высоте 27 км. При нескольких стартах намечается провести испытания отделения от ракеты боезаряда.
ПРОЕКТ FAST HAWK
В 1996 г. Управление ONR совместно с корпорацией Boeing приступило к разработке ракеты Fasthawk с прямоточным воздушно-реактивным двигателем. В соответствии с техническим заданием, новая ударная система должна иметь следующие характеристики:
– длина (с разгонным блоком) 6,4 м,
– диаметр 0,52 м,
– стартовая масса (с разгонным блоком) 1,54 т,
– масса разгонного блока 634 кг,
– масса топлива (JP-10) 445 кг,
– масса боевой части 317 кг,
– крейсерская скорость полета М=4,
– высота полета 21 км,
– дальность действия 1260 км,
стоимость изготовления одного изделия 350 тыс. долл.
Активно-реактивный снаряд с СПВРД
Отличительной особенностью ракеты Fasthawk является цилиндрический корпус без управляющих поверхностей; подобная схема упрощает конструкцию пускового контейнера, существенно снижает аэродинамическое сопротивление и радиолокационную заметность изделия. Управление ракетой по тангажу и рысканию предполагается осуществлять путем поворота двигательного отсека, по крену – рулями, установленными в лобовом нерегулируемом воздухозаборнике с центральным телом.
Первоначально летные испытания экспериментального образца ракеты Fasthawk намечалось провести в 1999– 2000 гг., однако, технические сложности с созданием маршевого двигателя, теплозащиты и системы наведения, использующей наряду с данными бортовых инерциальных блоков сигналы со спутников «Навстар», вынудили ВМС отложить демонстрационные запуски на более поздний срок.
ГИПЕРЗВУКОВОЙ СНАРЯД С СПВРД
Летом 2001 г. на технической базе Опытно-конструкторского центра им. Арнольда AEDC (Arnold Engineering Development Center), входящего в структуру ВВС, специалисты Управления DARPA совместно с представителями Лаборатории GASL осуществили несколько запусков миниатюрной ракеты-снаряда, оснащенной СПВРД. В ходе одного из испытаний удалось произвести включение двигателя, развившего расчетную тягу Таким образом, после подготовительных двухлетних работ стоимостью 850 тыс. долл. были получены практические данные о работе подобных силовых установок в условиях реального гиперзвукового полета.
Активно-реактивный снаряд диаметром 10,2 см и длиной около 50 см изготавливался из титана (массовые характеристики изделия не сообщались). Запуски модели выполнялись с помощью двухступенчатой газодинамической пушки, обеспечившей со стартовой перегрузкой 10000 g разгон модели до скорости М=7,1. После выхода из ствола пушки длиной 36 м снаряд находился в свободном полете с работающим двигателем 25 мс, преодолев за это время расстояние в 80 м. Полет проходил в испытательной камере с несколько разреженной атмосферой; торцевая часть камеры была усилена стальными листами.
Опытная модель оснащалась СПВРД, использовавшем в качестве горючего этилен; компонент размещался в емкости под давлением 70,4 кг/ см3 . Выбор типа горючего был обусловлен тем, что в отличие от водорода подача этого более плотного компонента в камеру сгорания не требовала особой регулировки.
Дальнейшие планы Управления DARPA в реализации проекта ракеты– снаряда предусматривают проведение серии более сложных испытаний изделия. При их выполнении предполагается существенно увеличить длительность экспериментов с тем, чтобы оценить условия стабильного полета и работу двигательной установки в течение не менее 1,2 с. В этих целях снаряд будет оснащаться акселерометрами, расходомером горючего, датчиками давления в камере сгорания и т. п. Вдоль трассы полета длиной 230-300 м через каждые 6 м в двух взаимно перпендикулярных плоскостях планируется устанавливать специальную фотоаппаратуру для проведения видовой съемки.
Разработанный снаряд представляет собой 20%-ную модель перспективной ракеты, которая может найти самое широкое применение, в том числе и для доставки в космос миниспутников. По предварительным оценкам, использование наземных ускоряющих систем и экономичных воздушно-реактивных двигателей позволит повысить относительную массу полезного груза до 0,7 Однако для осуществления подобных запусков потребуются более мощные разгонные средства.
Несколько отходя от основной темы, хочется отметить, что работы по созданию и испытаниям газодинамических пушек активно велись на рубеже 1980-х и 1990-х годов для отработки техники перехвата баллистических ракет по программе «Стратегическая оборонная инициатива» SDI (Strategic Defense Initiative). В рамках проекта SHARP (Super High Altitude Research Project – «Проект сверхвысоких исследований») для полигонных испытаний специалистами Ливерморской национальной лаборатории им. Лоуренса LLNL была собрана двухступенчатая газовая пушка, рассчитанная на разгон снаряда массой 5 кг до скорости 4 км/с (при вертикальном выстреле с такими начальными условиями снаряд поднимется на высоту 450 км) Данная установка представляла собой сборку нагнетательного цилиндра длиной 82 м и диаметром 35,5 см, казенной части с камерой высокого давления и ствола калибра 106 мм и длиной 47 м. Отличительной особенностью установки от предшествовавших образцов являлось перпендикулярное расположение нагнетательного цилиндра и ствола, что позволяет легко и в широком диапазоне менять угол возвышения.
Работа пушки начинается с воспламенения в оконечной части нагнетательного цилиндра метана, продукты горения которого приводят в движение поршень массой 1 т (для компенсации отката цилиндра используются два противовеса массой по 100 т, скользящих по рельсовым направляющим). При движении к казенной части поршень производит сжатие закаченного в цилиндр водорода. После того кок в рабочей камере давление достигнет величины 492 кг/см5 , срабатывает затвор, перекрывающий пусковую чость ствола, и водород начинает разгон снаряда.
Созданную установку предполагалось использовать для решения задач кинетического поражения высокоскоростных целей. Но после закрытия программы SDI роботы по данной тематике были переориентированы на подготовку элементной базы, которая позволит снизить температурные и динамические нагрузки при запуске снарядов.
Наиболее эффективными нововведениями в конструкции подобных пушек рассматривались альтернативные устройства нагрева и подачи рабочего газа в разгонный ствол. Один из проектов предусматривал разогрев водорода тепловыделяющими элементами – керамическими гранулами размерами 300-400 мкм, способными в малом объеме накапливать значительное количество энергии (до 1000 МДж/м3 ). При взаимодействии с такими элементами температура водорода может быстро возрасти до 1230 °С, тогда как значение давления будет в пределах 1000-1400 кг/см! .
В качестве другого варианта упрощения разгонных установок предлагалось использовать электродуговые нагреватели водорода с каскадной его подачей в ствол вслед разгоняющемуся снаряду. Важной особенностью этой пушки, как и предыдущей, является отсутствие нагнетательной трубы и относительно низкое рабочее давление. Созданный фирмой GT-Devices экспериментальный образец такой установки в лабораторных условиях обеспечил разгон снарядов массой 1,8 г до скорости 7 км/с, а массой 10 г до скорости 4,6 км/с.
Экспериментальная газодинамическая пушка
Схема работы ракетно-прямоточного двигателя Strutjet I – стоечные ЖРД, 2 воздушный поток, 3 – высокоскоростные форсунки
КОМБИНИРОВАННЫЕ СИЛОВЫЕ УСТАНОВКИ
Комбинированные силовые установки, функционирующие в различных режимах, позволяют существенно улучшить технико-эксплуатационные характеристики аэрокосмических систем. Так, например, двигатели с воздушно-реактивным и ракетным циклами способны обеспечить выведение транспортной космической системы на околоземную орбиту. Для аппарата с такой силовой установкой предусматривается следующая схема полета. При взлете и до достижения скорости М=2,5-4 двигатель работает как ЖРД с некоторым потреблением атмосферного кислорода, затем как прямоточный двигатель с дозвуковым горением, а в диапазоне М=5-10 как СПВРД; за пределами атмосферы двигатель вновь переключается в режим ЖРД.
Работы по комбинированным двигательным установкам ведутся различными подразделениями NASA. Основные усилия Центра Маршалла сосредоточены на создании ракетно-прямоточного двигателя ISTAR (Integrated Systems Test of an Air-breathing Rocket), работающего на углеводородном горючем. Контракт стоимостью 16,6 млн долл. на эскизное проектирование изделия был подписан с консорциумом RBC3 или RBCCC (Rocket-Based Combined Cycle Consortium), организованном тремя ведущими двигателе– строительными компаниями Aerojet, Pratt and Whitney и Rocketdyne. В 2003 г. начался этап опытно-конструкторских работ стоимостью 123,4 млн долл. В ходе их выполнения предполагается провести стендовую отработку основных компонентов двигателя с тем, чтобы в 2006 г. приступить к огневым испытаниям его экспериментального образца.
Силовая установка ISTAR проектируется на базе комбинированного двигателя Strutjet, разработкой которого с конца 1980-х годов занимается фирма Aerojet. Отличительной особенностью последнего изделия является практически неизменяемая при всех режимах работы форма воздушного канала, что позволяет существенно упростить конструкцию и снизить нагрузки на изделие при переходных процессах. В начале воздушного канала установлены клинообразные стойки (struts), одновременно являющиеся и воздухозаборниками, и конструктивными элементами, на которых смонтированы высокоскоростные форсунки и жидкостные двигатели.
Запатентованные фирмой Aerojet форсунки, как элемент ПВРД установленные на боковых поверхностях стоек, обеспечивают каскадный впрыск горючего. Система подачи топлива к форсункам оснащена высокоэффективными фильтрами, позволяющими не только задерживать посторонние фрагменты, но и дробить крупные молекулярные структуры горючего. Также на стойках предусмотрены механические средства регулировки геометрии воздухозаборников нижней и верхней кромками.
В зависимости от области применения двигатель Strutjet может работать на разных типах горючего. Жидкий водород предпочтителен для средств выведения космических аппаратов, углеводородные горючие типа JP-7 и JP– 10 для крылатых ракет, пропан для трансатмосферных боевых аппаратов дальнего действия.
Старт одноступенчатой МТКС с двигательной установкой Strutjet должны обеспечить ЖРД, встроенные в тыльную часть стоек. Избыток горючего в пламени двигателей на начальном этапе полета будет дожигаться за счет атмосферного кислорода, проходящего через воздушный канал. По мере увеличения скоростного напора и изменения соотношения компонентов топлива в сторону окислителя должны постепенно включаться форсуночные головки ПВРД.
После достижения скорости примерно М=2,4 жидкостные двигатели будут отключены и силовая установка станет работать в режиме прямоточного ВРД, при этом ее удельный импульс возрастет до 3800 с. При функционировании установки Strutjet в режиме ПВРД со сверхзвуковым горением на скоростях М=5-10 стабильность потока в воздушном канале предполагается поддерживать механическими средствами. В дальнейшем эффективность применения ПВРД падает, и поэтому будут вновь включены ЖРД, которые обеспечат выход транспортного аппарата на околоземную орбиту.
ТРДДФ YF-120
На этапе предварительного проектирования двигателя Strutjet предполагалось, что усредненный по всему полету его удельный импульс составит 585 с, а тяговооруженность 22 единицы. За счет применения такой силовой установки в составе одноступенчатой МТКС относительную массу топлива системы можно будет снизить до 84%, (для аналогичных транспортных систем с ЖРД этот параметр составляет 90%).
Выполненные летом 1999 г. стендовые испытания уменьшенной (в 6 раз) модели двигателя Strutjet подтвердили реальность достижения указанных характеристик.
В рамках программы Revolutionary Turbine Accelerator (RTA – «Качественное улучшение характеристик газотурбинных двигателей») Центр Гленна ведет подготовку элементной базы для создания комбинированного турбопрямоточного двигателя (turbofan-ramjet), способного работать сначала в режиме двухконтурного турбореактивного двигателя с форсажем (до скорости М=2,5), а затем как прямоточный ВРД. Максимально достижимая скорость для аппаратов с таким установками определяется М=4,2.
С начала 1960-х годов, когда был создан турбореактивный двигатель J58 для самолета SR-71, развивавшего скорость М=ЗД подобные проекты в США не предпринимались. Поэтому названная силовая установка разработанная фирмой Pratt and Whitney, стала своеобразным эталоном для нового изделия.
Среди основных требований, предъявляемых к комбинированному двигателю RTA, известны следующие (в скобках указаны параметры ТРД J58):
– тяга 25 т (15,6 т),
– тяговооруженность 10-15 (4; для современных военных ТРДД она составляет 8 единиц),
– диаметр 1,5 м (1,4 м),
– продолжительность работы 30 мин (1,5 ч),
– ресурс термонагруженных элементов 750 ч (100 ч),
– горючее JP-8 с добавками (JP-7).
Поскольку разработка летного образца силовой установки еще не обеспечена финансами, то программа RTA ориентирована на создание масштабных моделей будущего двигателя. Летом 2002 г. NASA заключило с фирмой General Electric пятилетний контракт стоимостью 55 млн долл. на изготовление экспериментальной модели двигателя диаметром 1 м. Это модель, предназначенная для общей оценки работоспособности изделия в наземных условиях, проектируется на элементной базе ТРДД YF-120. В соответствии с достигнутыми договоренностями, стендовые запуски комбинированной установки RTA должны состояться в 2006-2007 гг.
Для летной отработки планируется подготовить двигатели диаметром 0,4 м. Среди кандидатов на подряд называются фирмы Rolls-Royce USA и Williams International (окончательный выбор NASA планировало сделать в 2003 г.).
К натурным испытания малых моделей двигателя намечается приступить в 2009-10 гг. Возможно, этими силовыми установками будут оснащаться экспериментальные аппараты Х-43В. Для обеспечения полетов данного изделия потребуется четыре двигателя.
Полномасштабный турбопрямоточный двигатель может быть создан и испытан после 2018 г.
ИМПУЛЬСНЫЕ ДЕТОНАЦИОННЫЕ ДВИГАТЕЛИ
Тяга в импульсных двигателях дискретно производится за счет ударной волны, производимой микровзрывом в камере сгорания. Различаются детонационные двигатели двух типов: воздушно-реактивные с потреблением атмос– ферного кислорода PDE (Pulse Detonation Engine) и ракетные PDRE (Pulse Detonation Rocket Engine).
Силовые установки первого типа, работающие на углеводородном горючем, способны эффективно функционировать начиная от момента взлета до скоростей М=3-4, что делает их особенно привлекательными для использования в составе боевых крылатых ракет. Двигатели PDRE предназначаются в основном для космических полетов Цикл функционирования подобных установок предусматривает выполнение пяти основных операций:
– подачу в камеру сгорания компонентов топлива и образование рабочей смеси,
– срабатывание детонирующего устройства (по аналогии с автомобильной свечой зажигания),
– распространение ударной волны вдоль камеры сгорания со скоростью несколько тысяч метров в секунду (для обычного ЖРД этот параметр оценивается на два порядка ниже),
– выброс продуктов горения,
– восстановление исходного давления в камере сгорания перед подачей компонентов топлива.
Наиболее сложными проблемами эксплуатации таких двигателей является обеспечение именно детонации топлива, а не его скоростного горения. Наибольшую значимость при этом приобретают стехиометрический состав топлива, размер капель компонентов и локальный коэффициент перемешивания.
Основными преимуществами импульсных детонационных двигателей считаются:
– высокие экономические показатели. Удельный импульс ракетных двигателей на 5-10% выше, чем у криогенных ЖРД; расход топлива у импульсных двигателей с потреблением атмосферного кислорода на 30-50% меньше, чем у ВРД,
– простота конструкции и, соответственно, высокая надежность. Компоненты топлива подаются в камеру сгорания при низком давлении, что позволяет отказаться от использования турбонасосных агрегатов и усиленных трубопроводов (некоторого упрочнения потребует лишь камера сгорания, поскольку при микровзрыве давление в ней увеличивается в 18-20 раз),
– низкие затраты на производство. По удельной стоимости единицы тяги импульсные двигатели примерно в четыре раза дешевле обычных ТРД (55 долл за 1 кг тяги против 220 долл./кг),
– каскадность изменения уровня тяги (практически мгновенные выход на рабочий режим и останов двигателя),
– широкие возможности по дросселированию тяги.
Ведущие позиции по разработке импульсных детонационных двигателей занимает специализированный центр Seattle Aerosciences Center (SAC), выкупленный в 2001 г. компанией Pratt and Whitney у фирмы Adroit Systems. Большая часть работ центра финансируется ВВС и NASA из бюджета межведомственной программы Integrated High Payoff Rocket Propulsion Technology Program (IHPRPTP), направленной на создание новых технологий для ракетных двигателей различных типов (данная программа является своеобразным аналогом проектов IHPTET и VAATE).
В общей сложности начиная с 1992 г. специалистами центра SAC осуществлено свыше 500 стендовых испытаний экспериментальных образцов двигателей различных типов. В феврале 2000 г. на технической базе Лаборатории AFRL фирма провела серию запусков шестикамерного двигателя PDRE, работающего на газообразном кислороде и водороде. Компоновкой этого двигателя предусмотрено кольцевое расположение камер сгорания, длина которых составляла 90 см, а диаметр 2,5 см.
Испытания шестикомерного импульсного двигателя PDRE
В ходе испытаний, продолжительность которых составляла 10-30 с, детонация топлива в каждой камере проводилась с периодичностью 0,01 с. Ток кок микровзрывы в камерах выполнялись последовательно, то общая частота импульсов двигателя достигала 600 Гц, что позволило обеспечить высокую стабильность основных характеристик изделия.
Кроме того, в ходе нескольких запусков фирма провело испытания двух типов сопел. В проектном отношении этот элемент является одним из самых сложных узлов двигателя, так как требуется подобрать оптимальную форму для нескольких режимов работы: сверхзвукового, дозвукового, а также режима «запирания» сопла, в условиях которого будет производиться заполнение камеры сгорания компонентами топлива.
Работы по импульсным двигателям PDE с потреблением атмосферного кислорода Центр SAC ведет по заказу ВМС. В начале 2003 г. состоялись стендовые испытания опытной модели пятикамерной установки данного типа. В ходе состоявшихся запусков при скорости набегающего потока М=2,5 изделие, использующее в качестве горючего этилен, развило тягу 226-272 кг.
Конечной целью проекта является создание противокорабельной ракеты с крейсерской скоростью полета М=2,5-4 на высоте 12,2 км и дальностью действия 1300-1500 км. Согласно техническому заданию, летные испытания опытной модели изделия с экспериментальным двигателем PDE должны состояться в 2006 г., чтобы спустя четыре года принять систему на вооружение.
Кроме того, детонационные двигатели могут стать составным элементом комбинированных установок различных типов, например, использоваться в качестве форсажной камеры ТРДД.
Учитывая сложность программы, специалисты ВМС привлекли к ее реализации практически все организации, занимающиеся детонационными двигателями. Кроме компании Pratt and Whitney в работах принимают участие Исследовательский центр United Technologies Research Center (UTRC) и фирма Boeing Phantom Works.
Представленное описание основных направлений работ, выполняемых в США с задачами качественного улучшения технико-эксплуатационных характеристик двигательных установок высокоскоростных летательных аппаратов, позволяет сделать следующие обобщения.
Во-первых, планомерно проводятся работы по обновлению элементной базы уже существующих традиционных силовых установок – газотурбинных и жидкостных двигателей; при этом соответствующие проекты рассчитаны на десять-пятнадцать лет.
Во-вторых, подготовка технологий для наиболее перспективных двигателей типа СПВРД осуществляется различными военными и гражданскими ведомствами при активном взаимодействии их научно-исследовательских организаций. В то же время следует отметить, что проекты, ориентированные на более отдаленную перспективу и связанные, как правило, со значительным техническим риском (например, разработка водородных СПВРД, импульсных двигателей), большей частью выполняются NASA. Ежегодно на разработку гиперзвуковых технологий агентство тратит около 130 млн долл.
Активное сотрудничество NASA и подразделений Министерства обороны в этой области утверждено принятой в 2001 г. директивой «Национальная аэрокосмическая инициатива» (National Aerospace Initiative – NAI). Первоочередными задачами программы NAI является создание боевой техники: к 2012 г. планируется разработать боевые ракеты со скоростью полета М=4, к 2020 г. ударные самолеты с крейсерской скоростью М=2-4. Позднее освоенные технологии предполагается применить при создании перспективных МТКС, эксплуатация которых может начаться после 2025 г. [5].
Литература
Модернизация газотурбинных двигателей
1. Flight International, 2000, 7– 13/XI, vol.158, N 4754, p.43
2. Flight International, 2001, 24-30/VII, vol.160, N 4790, p.6.
3 Aviation Week and Space Technology,2001,5/XI,vol 155.N 19,p 64,65
4 Space News, 2002, 6/V, vol 13, N 18, p.6.
5 Flight International. 2003, 27/V-2/VI, vol.163, No4884, p.28
Прямоточные воздушно-реактивные двигатели
2.1. Водородные СПВРД для аппаратов X– 30 и Х-43А
1 Military Space. 1994, 22/VIII, vol 11, N 17, p. 1,2.
2. Military Space, 1994. 12AH, vol. 11, N 25, p 4,5.
3 Aviation Week and Space Technology, 1994,28/111,vol. 140,N13,p 52-54
4 Flight International, 1994, 3-9/VIII, vol.146, N 4432, p.6
5. Aviation Week and Spoce Technology.2001,12/ll.vol 154.N 7,p 60.61
6 Aviation Week and Space Technology,2001,23/IV,vol. 154.N17,p.4 7
7. Aviation Week and Space Technology, 1999,28/VI,vol 150,N26,p.54-56
8. Flight International, 2001, 22-28/V, vol.159, N 4781.p34.35
9 Spoce News, 2001, 26/11, vol 12, N 8, p.24
10. Flight International, 2002, 25/VI-l/VII, vol.161. N 4837. p 24
ПВРД на углеводородном горючем
Программа HyTech
1 Aviation Week and Spoce Technology, 1997,13/X,vol. 147,N 15,p.63,64
2 Aviation Week and Spoce Technology.2001,26/111,vol. 154,N13,p.58-61
3 Aviation Week and Spoce Technology,2002,24/VI,vol 156,N25,p 95-98
4. Aviation Week and Spoce Technology.2001,23/IV.vol. 154.NI 7,p 47
5 Aviation Week and Spoce Technology, 1998.7/IX.vol. 149,N10.p.98.101
6 Aviation Week and Space Technology, 1999,11 /X.vol. 151 ,N 15,p.96
7 Aviation Week and Space Technology,2003,2/VI,vol 158,No22,p 22-24
Программа HyFly
1 Aviation Week and Space Technology, 1997,13/X.vol. 147.NI 5,p.63,64
2 Aviation Week and Space Technology, 1998,7/IX,vol. 149,N10,p 98,101
3 Aviation Week and Space Technology,2002,2/IX,vol 157,N10,p.56,58,59
2.2.3 Проект Fosthowk
1 Aviation Week and Space Technology, 1997,13/X,vol. 14 7.N 15,p 63,64
2 Aviotion Week and Spoce Technology,2001,8/l,vol. 154,N2,p.26,27
Гиперзвуковой снаряд с СПВРД
1 Aviation Week and Spoce Technology,2001,27/VIII,vol 155,N9,p .40
2. Aviation Week and Spoce Technology. 1992,10/VIII,vol 137,N6,p 57.59
Комбинированные двигательные установки
1 Flight International. 2002. 1-7/1. vol 161, N 4812, p 4
2. Aviation Week and Spoce Technology.2001.26/lll,vol 154,N 13,p 28.29
3 Aviation Week and Space Technology, 1999,5/Vll.vol. 151 ,N 1 ,p.57-60
4 Flight International. 2002, 28/V-3/VI. vol 161, N 4833, p.32,33
5. Flight International, 2002, 30/IV-6/V, vol 161, N 4829, p.30
6 Aviation Week and Spoce Technology,2002,22/VII,vol. 157,N4,p.58.
7 Aviotion Week and Spoce Technology, 1998,12/l,vol 148,N2,p. 122
Импульсные детонационные двигатели
1 Aviation Week and Space Technology,2000,17/VII,vol. 153,N3,p.70-71.
2 Aviation Week and Space Technology, 1999,5/IV.vol 150,N14,p.57,58
3 Flight International, 2000, 7-13/XI, vol.158, N 4754, p.43
А. ПАШКОВ