Текст книги "Рождение миров"
Автор книги: Михаил Ивановский
сообщить о нарушении
Текущая страница: 6 (всего у книги 25 страниц)
Момент количества движения
Каждое вращающееся тело– волчок, камень в праще, Солнце, планета или вся планетная система в целом – обладает определенным моментом количества движения.
Момент количества движения – очень важное понятие. С ним придется встречаться еще много раз.
Когда речь идет о прямолинейном движении, дело обстоит сравнительно просто, каждый знает, что столкнуть с места тяжелый шар труднее, чем легкий. В этом случае усилие, которое приходится прикладывать к телу, зависит только от массы тела и от той скорости, с какой необходимо это тело двигать.
Если же нужно какой-либо предмет заставить вращаться вокруг оси, дело несколько усложняется. Вращение и движение по окружности – явления более сложные, чем обычное поступательное движение.
Опыт убеждает нас, что камень, привязанный к длинной веревке, раскрутить труднее, чем точно такой же камень на короткой веревке. И это понятно: чтобы разогнать камень по большей окружности, требуется соответственно большее усилие.
Значит, заставляя какой-либо предмет вращаться вокруг оси или двигаться по окружности, приходится считаться не только с массой этого предмета и не только с той скоростью, какую мы хотим этому предмету сообщить, но и с расстоянием, которое отделяет предмет от оси вращения. Если тело ближе к оси вращения, раскрутить его легче, если дальше – труднее.
Это подтверждается примерами из повседневной практики. Широкий и плоский волчок вертится лучше, чем шарообразный. Маховые колеса машин всегда делают большого диаметра и с массивным ободом, то есть так, чтобы основная масса маховика располагалась как можно дальше от оси вращения.
Следовательно, понятие – количество движения, применимое для случая прямолинейного движения, не подходит для вращающегося тела, – приходится принимать во внимание радиус тела или радиус той окружности, по которой это тело движется. Для этого в механике введено понятие – момент количества движения.
Момент количества движения тела, обращающегося по какой-либо окружности – орбите, равен произведению трех величин: массы тела, скорости его движения по орбите и радиуса орбиты. Разумеется, сомножители надо брать в соответственных единицах. Например, вычисляя моменты количества движения планет, можно принять за единицу массы – массу земного шара, за единицу скорости – скорость Земли, а за единицу расстояния – радиус земной орбиты.
Известно, что Юпитер расположен в 5,2 раза дальше от Солнца, чем Земля, его масса в 318 раз больше земной массы, а скорость орбитального движения составляет 0,437 скорости Земли. Перемножим эти числа и получим момент количества движения Юпитера – 722,8. Таким же простым способом можно высчитать моменты количества движения любой другой планеты и всей солнечной системы в целом.
Самой существенной особенностью момента количества движения является его неизменность, никакие внутренние силы – трения, расширения или сжатия, химические реакции и т. п. – не могут ни увеличить, ни уменьшить его. Момент количества движения никогда не исчезает и ни во что не преобразуется. Он только передается от тела к телу, то есть перераспределяется между ними или же переходит «по наследству» от одного тела к другому.
В этом заключается коренное различие между моментом количества движения и кинетической энергией движущегося тела. Кинетическая энергия может преобразовываться в теплоту, в свет, в звуковые колебания, она может переходить в любые другие виды энергии. Например, метеорит врезался в земную атмосферу. Он летит и сжимает впереди себя воздух. От этого и сам метеорит и воздушная «подушка» перед ним раскаляются, полет метеорита замедляется, – кинетическая энергия летящего метеорита расходуется на преодоление сопротивления воздуха, она преобразуется в свет и теплоту. Метеорит полностью сгорает, а его кинетическая энергия рассеивается в окружающем пространстве.
Но, несмотря на гибель метеорита, его момент количества движения не исчезает, его «наследует» Земля. На какую-то ничтожно-малую долю миллиметра уменьшается или увеличивается радиус земной орбиты, замедляется или ускоряется ее движение по орбите, удлиняются или укорачиваются сутки, то есть изменяется момент количества движения Земли.
Знаменитый русский ученый, которою В. И. Ленин называл отцом нашей авиации, академик Н. Е. Жуковский, объясняя студентам закон сохранения момента количества движения, показывал опыт с вертящейся скамейкой. Эта скамейка была похожа на табуретку, какой пользуются вагоновожатые и пианисты, – она могла вращаться на вертикальной оси почти без всякого трения.
На скамейку становился человек с двумя тяжелыми гирями в руках, затем скамейку раскручивали, чтобы она завертелась с определенной скоростью, и просили человека развести руки в стороны. И как только он подымал руки, скорость вращения резко замедлялась, а когда он их опускал, прижимая гири к телу, скорость вращения снова возрастала.
Подняв руки, человек, стоящий на скамейке Жуковского, замедляет скорость своего вращения.
Этот опыт наглядно доказывает закон сохранения момента количества движения. Когда человек разводил руки в стороны, он тем самым увеличивал радиус вращающегося тела, и соответственно этому уменьшалась скорость. Наоборот, опуская руки вниз, он укорачивал радиус вращающегося тела, и скорость вращения возрастала.
Человек, стоящий на вращающейся скамейке может делать что угодно: подымать и опускать гири, приседать, становиться на цыпочки, наклоняться, – он не в силах изменить момент количества своего вращения. Каждое его движение, вызывающее изменение радиуса, будет неизбежно сопровождаться изменением скорости, а момент количества движения, то есть произведение массы на расстояние от оси вращения и на скорость, останется неизменным.
Несправедливый дележ
Ученые, исследовавшие распределение момента количества движения в солнечной системе, пришли к весьма странным выводам.
В Солнце сосредоточено 99,87 % всего вещества, имеющегося в солнечной системе. Оно самое массивное тело солнечной системы. Все планеты вместе взятые в 745 раз меньше Солнца. На их долю приходится только 0,13 % общей массы.
Момент количества движения между Солнцем и планетами распределен иначе. Планеты движутся по огромным орбитам. Поперечники орбит исчисляются миллионами и миллиардами километров. Скорости движения планет также велики. Поэтому планеты обладают огромным моментом количества движения – у Юпитера – 722,8, а у Солнца – только 40!
Солнце вращается вокруг оси медленно. Оно делает один оборот примерно в 25 суток. И поэтому, несмотря на огромную массу, Солнце обладает, самое большее, 3,37 % общего момента количества движения. У планет же – все остальное – 96,63 %!
Странное распределение! Почти вся масса у Солнца, почти весь момент у планет.
Согласно гипотезе Лапласа первобытное Солнце, отслаивая кольца, само при этом вращалось все быстрей и быстрей, так как его радиус сокращался. Казалось бы, что Солнце должно было унаследовать от породившей его туманности огромный момент количества движения. Но в действительности же момент количества движения Солнца почему-то очень мал. В чем кроется причина этого явления, – ни гипотеза Лапласа, ни разнообразные дополнения к ней не могли объяснить.
В конечном счете, это был тот же «проклятый» вопрос о «первом толчке». Этот толчок Ньютон приписывал богу, Бюффон – комете, Кант пытался обойти опасное место, придумав неестественное превращение прямолинейного движения в круговое. Лаплас, как известно, не подверг свою гипотезу математической проверке, а его последователи к этому тоже не стремились, так как в гипотезе Лапласа орбитальное движение планет вполне правдоподобно объяснялось вращением первобытной туманности. Но «проклятый» вопрос все-таки всплыл в форме распределения момента количества движения: откуда и каким образом планеты приобрели столь значительный момент количества движения, что заставило их начать свой бесконечный бег по орбитам?
Загадочное неравенство в распределении момента количества движения показалось ученым наиболее убедительным доводом против гипотезы Лапласа. Это было как бы каплей, переполнившей чашу многочисленных возражений.
Великая гипотеза, служившая науке свыше ста лет, была оставлена. Она сдалась под напором новых фактов и ушла из науки, но ушла с честью.
Для прошлых веков это была передовая, революционная гипотеза, энергично штурмовавшая небо. Она выполнила свое назначение: заставила глубже исследовать явления, происходящие в солнечной системе, помогала очищать науку от религиозного средневекового мировоззрения, сокрушала библейскую сказку о сотворении мира богом.
Как будет видно из дальнейшего, советский ученый В. А. Крат нашел простое и убедительное объяснение неравенства моментов количества движения Солнца и планет. Но это уже не могло спасти гипотезу. Многие новые открытия, наблюдения над соседними звездными мирами опровергали ее.
Глава четвертая
ВСТРЕЧА ДВУХ СОЛНЦ
Новая катастрофическая гипотеза
Гипотеза Лапласа погибла.
Круговые орбиты планет, их размещение почти в одной плоскости, близкой к плоскости солнечного экватора, обращение планет, одинаковое по направлению с вращением Солнца, совпадение орбитального движения спутников с вращением планет – все это снова превратилось в загадку.
Кроме того, перед учеными встала другая задача: показать, почему у планет момент количества движения больше, чем у Солнца. Иначе говоря, надо было найти, и откуда взялся материал, из которого образовались планеты, и какая причина закрутила всю эту гигантскую планетную «карусель», имеющую свыше одиннадцати миллиардов километров в поперечнике.
Ученым казалось, что причиной неравномерного распределения момента количества движения между Солнцем и планетами может быть только вмешательство какой-то посторонней силы.
В 1880 году один малоизвестный новозеландский ученый высказал предположение, что планеты могли возникнуть, когда встретились два солнца. Сначала на эту догадку никто особого внимания не обратил – авторитет гипотезы Лапласа был еще достаточно велик. Но потом астрономам пришлось взять ее за основу и начать разрабатывать.
В 1905 году геолог Чемберлин и астроном Мультон выдвинули новую гипотезу и опубликовали ее под названием «планетезимальной». По мысли авторов этой гипотезы наше Солнце несколько миллиардов лет назад встретилось с другой звездой. Два небесных светила едва не столкнулись – они обогнули друг друга на расстоянии всего лишь в несколько миллионов километров.
На близком расстоянии силы тяготения исключительно велики. Под влиянием притяжения звезды на Солнце поднялись два чудовищно-огромных приливных горба. Одновременно притяжение встречной звезды нарушило равновесие в недрах Солнца. Сжатые газы вырвались из приливных горбов и вытянулись наподобие гигантских протуберанцев. Извергнутое вещество образовало две спиральные струи, которые изогнулись вслед за уходящей звездой.
Часть вещества этих струй тут же рассеялась в пространстве, часть упала обратно на Солнце, а остатки сгустились в капли и куски самого различного размера.
Встречная звезда, вызвавшая своим притяжением эту космическую катастрофу, скрылась в глубинах Вселенной и успела затеряться среди звезд Млечного Пути.
Но во время встречи звезда, огибая Солнце, отдала некоторую долю энергии своего движения тем частицам, которые были исторгнуты Солнцем. Именно она заставила их обращаться вокруг Солнца. Тот момент количества движения, каким обладают в настоящее время планеты, заимствован ими со стороны – от проходившей мимо звезды.
Вырванные из Солнца частицы двигались вокруг центрального светила все в одной плоскости, но по самым различным эллиптическим орбитам. Солнце было тогда отчасти похоже на спиральную туманность. Ветви спирали, окружавшей Солнце, состояли из отдельных отвердевших частиц, похожих на нынешние метеориты. Этим частицам авторы гипотезы дали особое название – планетезимали, что значит – зародыши планет. Отсюда и название этой гипотезы – планетезимальная.
Много планетезималей упало на Солнце, остальные продолжали обращаться вокруг него. Среди них были и крупные куски и мельчайшая пыль. Планетезимали часто сталкивались друг с другом, потому что их орбиты пересекались. Мелкие падали на крупные куски, которые стали ядрами будущих планет.
Пространство возле Солнца было как бы пастбищем для растущих планет. Они собирали летающую вокруг них пыль и быстро увеличивались.
Когда планетезимали падали на ядро планеты, они отдавали ему не только свое вещество, но и момент количества движения. А так как у планетезималей были самые различные орбиты, то, собираясь вместе, они могли двигаться только по общей для всех, сглаженной, округленной орбите. Чем больше ядро планеты накапливало материала, тем округленнее становилась его орбита. И, действительно, маленькие планеты, такие, как Меркурий и Марс, не успели собрать большого количества планетезималей, – их орбиты не полностью округлились. Они и до сих пор движутся по орбитам более вытянутым, чем у Земли, Венеры и у других планет.
Меркурий не смог набрать на метеоритном «пастбище» много материала. Он образовался слишком близко к Солнцу. Своим могучим притяжением Солнце само стягивало к себе планетезимали, оставляя Меркурий без строительных материалов.
Венере также досталось вещества меньше, чем Земле и Луне.
Видимо наиболее густая и плотная часть спиральных ветвей, окружавших Солнце, находилась на расстоянии Юпитера. Из нее-то и образовались четыре планеты-гиганта – Юпитер, Сатурн, Уран и Нептун. О существовании Плутона в 1905 году еще не знали.
Юпитер, этот великан солнечной системы, настолько массивен, что его тяготение спорило с солнечным. Соседка Юпитера – пятая по счету от Солнца планета – так и не смогла собраться в одно целое. Ей не хватило материала, а тяготение Юпитера вносило сильные возмущения в движение планетезималей. Они так и остались на пятой орбите роем осколков, которые называются теперь астероидами.
Марс остался обделенным, так как львиная доля «стройматериалов» была захвачена тяготением Юпитера.
Образование спутников шло таким же путем, как и образование планет. Поэтому спутники, ближайшие к планетам, меньше более далеких.
Конечные части струй вещества, отброшенных Солнцем, дали начало кометам с их сильно удлиненными орбитами.
Метеоры, которые золотыми искрами секут ночное небо, – это остатки былого запаса планетезималей, которые и поныне продолжают падать на планеты.
Все сказанное, очевидно, относится и к той звезде, которая, вызвав катастрофу на Солнце, сама пережила такую же катастрофу под влиянием тяготения Солнца и теперь странствует где-то по Вселенной, окруженная свитой планет.
Планетезимальная гипотеза довольно удачно объясняла основные закономерности солнечной системы и указывала, откуда планеты почерпнули свой запас движения.
Ученые подхватили мысль о рождении планет при встрече двух солнц и стали ее развивать.
Над этой гипотезой более 25 лет трудились три крупнейших буржуазных астронома, три признанных главаря идеалистического лагеря Джинс, Джеффрис и Ресселл.
В начале своей научной деятельности, в годы юности, эти ученые сделали много полезного для науки, но затем обстоятельства изменились.
В октябре 1917 года выстрел «Авроры» возвестил миру начало новой эры в истории человечества – эры Великой Октябрьской революции. В России рухнул капиталистический строй. В остальных государствах он стал перед угрозой неминуемого и неизбежного краха. Буржуазным ученым пришлось решать вопросы: с кем быть, с кем идти, за что бороться? Стать ли в ряды представителей передовой материалистической науки – трудиться на благо человечества, исследовать природу, подчиняя ее человеку, или же обратить свои знания на защиту гибнущего капиталистического строя, тормозить развитие науки, превращать ее в служанку религии.
Многие западноевропейские ученые, такие, как Жолио-Кюри, Перрен, Ланжевен, Блеккет, Холдейн остались верны идеям передовой науки.
Джинс, Джеффрис, Ресселл поступили иначе. Они примкнули к реакционному лагерю, и это сказалось на их научном творчестве. Они взяли от планетезимальной гипотезы все наиболее спорное, ошибочное, неправильное и стали совершенствовать ошибки.
В результате получилась гипотеза, которая, подобно гипотезе Канта, охватывала и объясняла происхождение всей Вселенной.
Основанием для новой идеалистической гипотезы послужило неправильное истолкование замечательных астрономических открытий, сделанных в 1912–1930 годах.
Тайна спиральных туманностей
Среди звезд, в черной глубине мирового пространства, виднеются светящиеся пятнышки самых различных очертаний – среди них есть облачка клочковатой, неправильной формы, есть и круглые, и овальные, и веретенообразные. Некоторые из этих облачков – такие, как «Водоворот» из созвездия Гончих Псов или туманность М-33 из созвездия Треугольника, имеют отчетливо-спиральное строение, – из центрального яркого сгущения исходят ветви, закрутившиеся в стремительном вихревом движении.
Туманность «Водоворот» из созвездия Гончих Псов.
Ученые называли неведомые небесные светила туманностями и считали их ближайшими родственниками планетарных туманностей – казалось, велика ли разница – тут завиток, а там колечко.
Но это было ошибкой. Разоблачил ее спектральный анализ.
В конце прошлого века астрономы научились фотографировать спектры звезд и постепенно раскрывали значение каждой спектральной линии. Спектроскоп оказался превосходным разведчиком далеких звездных миров. Световой луч, этот быстролетный посланец небесных светил, попадая в спектроскоп, разворачивался в спектр. Фотопластинка воспринимала спектр и затем служила документом, своего рода звездным паспортом, удостоверяющим химический состав небесного тела, плотность его вещества, температуру и многое другое.
Спектры звезд и туманностей оказались резко различными – звезды давали в спектроскопе сплошную радужную полоску, пересеченную темными, а иногда и яркими линиями; туманности – только отдельные яркие и большей частью зеленоватые линии на черном фоне.
Спектроскоп убедительно показывал, что звезды светят, как массивные, сравнительно плотные раскаленные тела, а туманности – это только легкие и холодные облака сильно разреженных газов и мелкой пыли.
Многие туманности, издавна известные астрономам и даже получившие собственные имена – такие как туманность Ориона, «Северная Америка», «Сова», «Сатурн», «Хеликс», «Трифид», «Волокнистая» – светят именно как туманности. А загадочные спиральные завитки, вроде «Водоворота» из Гончих Псов или Большой туманности Андромеды дают сплошной, радужный спектр. Они светят, как звезды. И в спектрах нет ничего, что хоть отчасти напоминало бы туманность.
Ученые применяли самые сильные увеличения, на какие только были способны их телескопы, и ничего понять не могли – в телескоп эти странные пятнышки выглядели туманностями.
В 1888 году удалось получить очень четкую фотографию Большой туманности Андромеды. На снимке было хорошо видно, что эта туманность, так же как и «Водоворот» из Гончих Псов, имеет спиральное строение, но только она повернута к нам боком и потому выглядит продолговатой. На самом же деле Большая туманность Андромеды круглая и спиральная.
Ученые терялись в догадках. Наблюдения в телескоп резко противоречили свидетельству спектроскопа. Для телескопических наблюдений это были туманности, а для спектроскопических – звезды.
Авторы и сторонники планетезимальной гипотезы решили спор весьма просто: спиральные облачка светящегося вещества – есть не что иное, как звезды, у которых происходит образование планет. И в самом деле, в «Водовороте» отчетливо видны две струи светящегося вещества, исходящие из центра – струи закручены наподобие часовой пружины, а в струях вырисовываются отдельные сгустки – будущие планеты. Сбоку же сверкает второй клубок светящегося вещества – это может быть и есть встречная звезда, вызвавшая небесную катастрофу.
Объяснение соблазнительное, но оно оказалось неверным.
«Сигара» астронома Джинса
В 1916 году английский ученый Джинс раскритиковал планетезимальную гипотезу. По его мнению образование на Солнце приливных выпуклостей не могло сопровождаться взрывом газов, сжатых в недрах Солнца. Планеты не могли образоваться из холодных и твердых частиц – планетезималей. Они должны были родиться горячими.
Джинс выдвинул новую гипотезу, но тоже основанную на встрече двух солнц.
Совершенно очевидно, что встречная звезда могла быть и равной Солнцу по массе и объему, и меньше его, и больше. Пройти мимо Солнца она могла и почти вплотную и в отдалении. Джинс вычислил, какое влияние окажут друг на друга две сблизившиеся звезды в зависимости от условий встречи.
Результаты его вычислений показали, что при большом расстоянии между звездой и Солнцем, на обоих небесных телах подымутся приливные волны. Шарообразная форма нарушится. Звезды станут похожи на дыни, но как только они разойдутся, все вернется к прежнему состоянию. Никаких планет не образуется.
Образование планет по гипотезе Джинса.
Чтобы вырвать из Солнца часть его вещества, притяжение встречной звезды должно быть достаточно велико. Поднявшийся на Солнце приливной горб оторвется от него только в том случае, если тяготение звезды пересилит притяжение Солнца.
Ясно, что карликовая звезда с малой массой «вреда» Солнцу не причинит. Солнце само разорвет ее своим притяжением, как только она перейдет границу опасной зоны Роша.
Звезда, равная Солнцу, сможет причинить ему ущерб, только коснувшись поверхности Солнца. Произойдет катастрофа, но планет не возникнет.
Причиной рождения планет могло быть приближение звезды более массивной, чем Солнце, и то только в том случае, если расстояние между звездой и Солнцем оказалось бы не очень большим.
По предположению Джинса, планеты образовались так: приближающаяся звезда своим тяготением подняла на Солнце два приливных горба. По мере того, как расстояние сокращалось, приливные горбы росли. При этом приливной горб, обращенный к звезде, увеличивался быстрее своего двойника на противоположной стороне Солнца.
Наконец расстояние, разделяющее Солнце и звезду, уменьшилось до предела. Между их поверхностями осталось два-три миллиона километров. Приливной горб, поднявшийся на Солнце гигантской выпуклостью, постепенно терял связь с Солнцем. Притяжение звезды сначала уравнялось с солнечным, потом превысило его, и приливной выступ вытянулся по направлению к звезде длинным рукавом или сигарообразной струей.
Второй приливной горб, поднявшийся на противоположной стороне Солнца, отделиться от него, разумеется, не мог.
Сигарообразная струя, вырванная из Солнца, изогнулась вслед за проходившей мимо звездой, вытянулась и стала распадаться на отдельные сгустки.
Маленькие сгустки тут же рассеивались. Их масса была слишком невелика, взаимное притяжение частиц – ничтожно, и они превращались в пыль или застывали в виде крошечных капелек-метеоритов. Большая часть вещества, исторгнутого из Солнца, рассеялась, образовав вокруг Солнца пылевое и метеоритное облако.
Уцелели только наиболее крупные сгустки. Они были массивны и потому более устойчивы. Эти сгустки приняли шарообразную форму. Они быстро остывали и, уплотняясь, превращались в планеты.
Из средней, наиболее толстой, части сигарообразной струи образовались наиболее крупные планеты – Сатурн и Юпитер. Из тонких концов «сигары» сформировались более мелкие планеты. А из ее кончика, обращенного к Солнцу, получилась самая маленькая планета – Меркурий.
В 1930 году была открыта девятая планета солнечной системы. Джинс увидел в этом важное доказательство в пользу своей гипотезы, так как Плутон, который должен был возникнуть из дальнего конца «сигары», тоже оказался одной из самых маленьких планет.
«Сигара» Джинса.
Правилу «сигары» подчиняются не только планеты, но и их спутники. Рождение лун автор гипотезы описывает так: звезда – второй родитель планет – успела отойти достаточно далеко. Ее влияние ослабело.
Планеты продолжали кружиться возле Солнца. Их первоначальные орбиты были удлиненными, эллиптическими. Новорожденные и еще не успевшие остыть планеты тогда подходили очень близко к Солнцу, и Солнце сыграло для них роль встречной звезды: под влиянием его тяготения на планетах подымались приливные горбы, которые вытягивались в сигарообразные струи. Эти струи распадались на сгустки, а сгустки становились лунами.
У больших планет количество оторванного вещества было велико. «Сигары» получались длинными и массивными. Большие планеты обзавелись многочисленными семьями лун.
Размеры спутников тоже сохраняют очертания сигарообразного выступа, их породившего. И у Юпитера и у Сатурна ближайший к планете спутник – маленький. Остальные – побольше. Самые массивные спутники Юпитера, образовавшиеся из наиболее толстой части «сигары», – Ганимед и Каллисто, занимают четвертое и пятое места, а у Сатурна самая крупная луна – Титан – расположилась на шестом месте. Более далекие от планет луны – маленькие.
У небольших планет приливные выступы не могли быть длинными и массивными, а кроме того небольшие планеты остывали гораздо быстрее крупных. Поэтому и число спутников и их масса примерно соответствуют величине планет. Исключение составляет Земля. Она, повидимому, с самого начала сложилась двойной планетой.
Грандиозная катастрофа, разыгравшаяся на Солнце во время встречи со звездой, породила кроме планет бесчисленное множество мельчайших телец – космической пыли, отдельных крупинок, капелек и кусков вещества – метеоритов.
Новорожденным планетам приходилось пробивать себе путь в довольно густом метеоритном облаке, которое окутывало Солнце. Планеты как бы «подметали» пространство, постепенно собирая всю летающую мелочь. Непрерывные и многочисленные столкновения планет с метеоритами округляли их орбиты. Из эллиптических орбиты становились круглыми. Крупные планеты, успевшие собрать много космического материала, округлили свои орбиты. Меркурий, Марс и Плутон, которые не успели «вырасти», сохранили орбиты более эллиптические.
Часть распыленного космического вещества, оставшаяся несобранной планетами, и поныне летает вокруг Солнца в виде комет, метеоритных потоков и отдельных метеоритов.
Кольца Сатурна, по гипотезе Джинса, образовались из спутника, проникшего внутрь зоны Роша и разорванного тяготением планеты.
Астероиды – это обломки разбившейся планеты.
Причину образования обратных спутников, необычайную скорость движения Фобоса – спутника Марса, Джинс вообще никак не объясняет.
Вскоре после опубликования гипотезы ученые сумели определить возраст метеоритов, оказалось, что возраст метеоритов примерно соответствует возрасту Земли!
Сообщение о том, что Земля и метеориты образовались одновременно, было истолковано, как доказательство в пользу Джинса.