Текст книги "Рождение миров"
Автор книги: Михаил Ивановский
сообщить о нарушении
Текущая страница: 15 (всего у книги 25 страниц)
Вращение планет
Все без исключения космогонические гипотезы не могли объяснить, почему планеты вращаются вокруг своих осей в ту же сторону, в какую они движутся по орбитам. Эта задача была тем препятствием, на котором опрокидывались все рассуждения, и авторы гипотез обычно умалчивали о вращении планет.
Лаплас, как известно, никакого объяснения не дал, полагая, что вращение планет должно быть понятно и без объяснения. Его последователи с горечью убедились, что Лаплас ошибся. Вращение планет по его гипотезе обязательно должно быть обратным – если планета, обращаясь вокруг Солнца, движется против часовой стрелки, то вращаться вокруг оси она должна по часовой стрелке.
В самом деле, по законам Кеплера каждое тело солнечной системы – все равно планета, метеор, пылинка или молекула, – обращаясь вокруг Солнца, имеет строго определенную скорость движения по орбите. Эта орбитальная скорость зависит от размеров орбиты. Чем дальше от Солнца расположена планета, тем меньше ее скорость.
Это наблюдается и в действительности. Меркурий движется по орбите со скоростью в 49 километров в секунду. Более далекая от Солнца Венера имеет орбитальную скорость в 35 километров в секунду. Скорость Земли еще меньше – 30 километров, Марса – 24, Юпитера – 13 и так далее.
Следовательно, – рассуждали ученые, – в эпоху образования планет каждая песчинка, летевшая немного дальше от Солнца, чем Земля, двигалась со скоростью около 29 километров в секунду, то есть медленнее Земли.
Частицы, летевшие с подсолнечной стороны Земли, то есть слева от нее и ближе к Солнцу, двигались со скоростью около 31 километра в секунду – быстрее Земли.
И те и другие частицы падали на растущую Землю.
Пылинки и камешки, летевшие с подсолнечной дневной стороны Земли и, следовательно, догонявшие ее, подталкивали Землю.
Пылинки и камешки, двигавшиеся с ночной стороны, то есть правее и дальше Земли, и отстававшие от нее, падая, притормаживали Землю.
Если какую-либо вертушку или колесо слева подталкивать в одну сторону, а справа в другую, то вертушка неминуемо завертится. И, очевидно, что земной шар тоже должен был завертеться волчком и именно слева направо – по часовой стрелке и ни в коем случае не наоборот.
Этот вывод казался ученым настолько очевидным, закономерным и безусловно правильным, что оспаривать его никто не осмеливался. Бессмысленно опровергать основные законы движения небесных тел.
Земля же и все остальные планеты наперекор здравому смыслу вращаются вокруг оси именно наоборот, справа налево – против часовой стрелки.
И это было удивительной, необъяснимой загадкой.
Некоторые ученые время от времени пытались придумать какое-либо мало-мальски сносное объяснение, почему планеты вращаются не так, как следовало бы. Но доводы выглядели искусственными и неубедительными. Вопрос оставался открытым.
О. Ю. Шмидт нашел ошибку в рассуждениях ученых, искавших причину прямого вращения планет. Он доказал, что земной шар ни в коем случае нельзя уподоблять вертушке, которую падающие песчинки заставили вертеться своими толчками. О. Ю. Шмидт исключительно просто и убедительно объяснил вращение планет в прямом направлении.
Физическое явление, которое легло в основу объяснения Шмидта, случалось наблюдать каждому человеку.
Темной безоблачной ночью высоко над Землей проносятся яркие искорки метеоров. Метеоры вторгаются в земную атмосферу с огромными скоростями, иногда превышающими 40 километров в секунду. При такой скорости метеорная частица уже на высоте 120–150 километров от поверхности Земли сталкивается с молекулами воздуха. Несмотря на крайнюю разреженность воздуха, на большой высоте перед метеором образуется воздушная «подушка», которая разогревается до нескольких тысяч градусов и начинает испускать ослепительный свет. Вследствие сопротивления воздуха метеорит теряет скорость, его поверхность раскаляется, вещество начинает испаряться, и за метеоритом тянется тонкий светящийся след, образованный раскаленными частицами воздуха и метеорного тела. Почти вся кинетическая энергия метеорита в это время преобразуется в теплоту и свет.
Это и есть то явление, которое упускали из виду.
В первые тысячелетия своего существования юная Земля уже обладала атмосферой. Конечно, газовая оболочка новорожденной планеты имела ничтожную толщину и плотность. Но чтобы затормозить падение метеорита, достаточно очень небольшой плотности воздуха – такой, какую мы имеем в настоящее время на высоте 120 километров от поверхности Земли.
Частички, падавшие на Землю, встречая резкое сопротивление газовой оболочки, раскалялись, их кинетическая энергия переходила в теплоту и свет, а свет и теплота тут же рассеивались в пространстве. Падающие частички теряли свою кинетическую энергию раньше, чем успевали «толкнуть» Землю. Они испарялись, превращались в пыль, и эта пыль уже спокойно оседала на Землю.
Даже песчинки и камешки, достигавшие поверхности Земли, большую часть кинетической энергии расходовали на нагревание и механическое дробление.
Кроме того, юную планету в то время окружал довольно плотный рой частиц, делавших свои последние круги перед тем, как приземлиться. Эти частицы постоянно сталкивались между собой, раскалывались, разогревались от ударов друг о друга и тоже теряли свою кинетическую энергию.
Следовательно, «толчки», которые испытывала Земля от падения песчинок и камешков, были ничтожно малы. Существенного значения они не имели. И вращение Земли нельзя объяснить разностью скоростей частиц, летавших справа и слева от Земли. Их кинетическая энергия почти полностью излучалась в пространство в виде света и теплоты.
При образовании планет, указывает О. Ю. Шмидт, происходило не сложение кинетических энергий падающих частиц, а сложение моментов количества движения, которыми обладали эти частицы.
Момент количества движения в мире небесных тел отчасти можно уподобить нашим деньгам. Деньги тоже переходят из рук в руки, в бухгалтериях их переписывают со счета на счет, но сами по себе деньги не исчезают, не расходуются, они только передаются.
Момент количества движения не может превращаться в свет и теплоту, не может расходоваться на трение. Он только передается от одного тела к другому.
В рое мелких частиц или в планетной системе момент количества движения распределяется по иному закону, чем орбитальные скорости. Вот для примера Марс и Плутон. Они почти равны друг другу по массе: орбитальная скорость Марса равна 24 километрам в секунду; а орбитальная скорость Плутона составляет всего лишь 4,75 километра в секунду. Но Плутон в 26 раз дальше от Солнца, чем Марс. Поэтому, несмотря на большую разницу в скоростях, момент количества движения, принадлежащий Плутону, почти в 5 раз больше момента количества движения, которым обладает Марс. Чем дальше обращается планета или частичка от Солнца, тем ее момент больше.
А это означает, что все частички роя, летавшие за пределами земной орбиты с ночной стороны Земли (справа от нее) обладали большим моментом количества движения, чем частички, летавшие внутри земной орбиты, слева от Земли – с ее дневной стороны.
Падая на Землю и те и другие частички передавали ей и свою массу и свой момент количества движения. Падавшие справа – на ночную сторону Земли, приносили с собой больший момент количества движения, падавшие слева – меньший. Суммирование моментов подталкивало Землю, заставляло ее вращаться справа налево, то есть против часовой стрелки, – так, как она вращается в действительности. Объяснение прямого вращения является большой заслугой О. Ю. Шмидта. Ученому удалось решить задачу, перед которой, как перед крепостной стеной, наука стояла в течение целого столетия.
Закономерность, открытая О. Ю. Шмидтом, позволяет сделать важные выводы. Планеты-гиганты, накопившие большие массы, а вместе с тем и большие моменты количества движения, должны вращаться быстрее планет земной группы.
И действительно, на величайшей из планет – на Юпитере – сутки длятся только 9 часов и 50 минут. Сатурн вращается вокруг оси медленнее – за 10 часов и 14 минут. Уран – за 10 часов и 48 минут. Нептун– за 15 часов и 40 минут. Продолжительность суток на Плутоне еще не установлена. Но, основываясь на законе сложения моментов количества движения, можно предположить, что маленький Плутон вращается гораздо медленнее Нептуна и может быть даже медленнее Марса.
Меркурий, как самый маленький среди планет и самый близкий к Солнцу, даже в годы юности не мог вращаться быстро. Приливное действие Солнца окончательно затормозило его вращение вокруг оси. Теперь Меркурий обращается вокруг Солнца так же, как Луна вокруг Земли, обернувшись к нему одной стороной.
Другой малыш среди планет земной группы – Марс вращается немного медленнее, чем Земля. Но медлительность вращения Марса нельзя объяснить исключительно тормозящим действием приливного трения. Марс далек от Солнца. Солнечные приливы на Марсе неуловимо малы. Действие их ничтожно. Марс вращается медленно, потому что размеры его невелики. Если бы он смог накопить большую массу, то и вращался бы гораздо быстрее Земли.
Длительность суток на Венере до сих пор неизвестна. Эта планета окутана густыми белоснежными облаками. На ее поверхности нет ни одного устойчивого пятнышка, проследив за которым можно было бы определить скорость ее вращения. Предполагают, что Венера вращается очень медленно и ее сутки длятся примерно 30 наших суток. Но так ли это в действительности, – еще никем не доказано.
Раньше, до работ О. Ю. Шмидта, длительность суток на планетах казалась чем-то обособленным, независимым и даже случайным. Ученые полагали, что время вращения планеты вокруг оси можно узнать только наблюдением. Это не так. Закономерность, открытая О. Ю. Шмидтом, позволяет определять длину суток на планетах математическим путем.
Наклоны осей Юпитера, Сатурна и Урана.
В солнечной системе все связано друг с. другом. И плотность планет, и округленность их орбит, и наклоны их осей, и продолжительность суток – зависят в той или иной степени от массы планет и от расстояния, на котором они находятся от Солнца.
В солнечной системе нет обособленных, изолированных явлений.
Рождение лун
Луны образовывались одновременно с планетами и вместе с ними. В клубке твердых частиц, из которого формировалась будущая планета, кроме центрального сгущения, возникало много других сгустков – ядер будущих спутников. Сначала они обращались вокруг центра тяжести сгустка по различным и по-кометному вытянутым орбитам.
Массы лун росли, а орбиты соответственно округлялись. Одновременно шел естественный процесс отбора устойчивых образований. Спутники, возникавшие на орбитах, которые пересекали центральную – экваториальную плоскость сгустка, чаще других сталкивались со своими сверстниками и, разумеется, разваливались.
Луны, которые, обращаясь вокруг планеты, входили в зону Роша, тоже рассыпались на мелкие частицы. Остатки развалившихся спутников служили добычей планеты и других лун.
Сохранились ядра спутников, которые обращались в экваториальной плоскости, то есть в наиболее плотной части сгустка. Их массы росли быстрее, чем у остальных лун, их орбиты скорее округлялись.
Словом, тут действовал тот же самый закон, какой определил расстояние планет от Солнца. И, действительно, спутники разместились возле планет в определенной закономерной последовательности, установленной еще в 1937 году С. С. Петровым. Луны, накопившие наибольшие массы, приобрели наиболее округленные орбиты.
Все главные спутники планет, то есть наиболее массивные и близкие к планете, обращаются в ту же сторону, в какую вращаются планеты. Очевидно, что иначе и быть не могло. Закон сложения моментов количества движения действителен не только для планет, но и для спутников.
Луны, наиболее удаленные от планеты и небольшие по массе, возникали там, где сгусток был разрежен и столкновения частиц происходили значительно реже, чем вблизи планеты. Потери кинетической энергии на дробление и нагревание тут были невелики. Толчки падающих частиц оказывали существенное влияние. Вступало в действие «правило вертушки», то есть сумма кинетических энергий, приносимых частицами, имела большее значение, чем сумма моментов количества движения. И эти спутники были вынуждены вращаться в ту сторону, в какую их подталкивали падающие на них частицы. Поэтому три крайних спутника Юпитера и спутник Сатурна – Феба обращаются навстречу вращению планеты.
Отсюда следует вывод: между спутниками, обращающимися в прямом направлении, и спутниками, которые движутся им навстречу, должен существовать обширный промежуток – зона, где движение невозможно ни в ту, ни в другую сторону и, следовательно, невозможно образование спутников.
Действительность подтверждает существование такой «пустой» зоны. Между орбитой последнего «прямого» спутника Юпитера и орбитой его первого «обратного» спутника лежит промежуток в 10,8 миллиона километров. От Япета и Фебы в системе Сатурна – 9,4 миллиона километров. Между орбитами спутников, имеющих одинаковое движение, таких разрывов нет.
Луны росли в борьбе двух противоположных явлений. Суммирование кинетических энергий падающих частиц противодействовало накапливанию моментов количества движения – одно тянуло влево, а другое – вправо. Поэтому луны с самого рождения вращались вокруг оси довольно медленно.
Одновременно сказывалось влияние приливного трения. Приливные силы тормозили вращение спутников вокруг осей, и луны замирали, повернувшись к планетам одной стороной. Все спутники Юпитера и Сатурна, так же как и Луна, никогда не оборачиваются к своим планетам «спиной».
Зачатки лун, по всей вероятности, возникали не там, где они находятся сейчас, а на больших расстояниях от планет. Массы планет и лун росли, сила тяготения между ними увеличивалась. По мере увеличения массы, спутники приближались к планетам. Возможно, что системы спутников были прежде более многочисленны, чем теперь. Но ближние луны, притянутые планетой, вступали в пределы зоны Роша и гибли, разорванные приливными силами. Их остатки поглотили планеты.
Когда запасы вещества, захваченного Солнцем, были исчерпаны, рост планет замедлился и практически совсем прекратился. Луны тоже перестали подтягиваться к планетам. И возможно, что именно в этот переломный момент рыхлый, неустойчивый, еще не успевший уплотниться и окрепнуть, комок космической пыли, который должен был превратиться в одну из лун Сатурна, проник в опасную зону и был разорван приливными силами, и вокруг образовалось кольцо.
Такова гипотеза Шмидта в ее первоначальном варианте. Она привлекла к себе пристальное внимание ученых, ведь это была первая попытка вывести космогонию из того тупика, в какой ее завели буржуазные ученые. Самым ценным в новой гипотезе было то, что она объяснила те закономерности солнечной системы, которые до ее появления оставались без объяснения.
Гипотезе О. Ю. Шмидта пришлось выдержать суровую критику и встретить много серьезных возражений.
Глава девятая
ПУТЕШЕСТВИЕ ПО ЛОЖНОМУ СЛЕДУ
Кусочки неземного вещества
Из первоначального варианта гипотезы О. Ю. Шмидта следует, что метеоры, огненными искрами бороздящие небо, это остатки того роя частиц, который был некогда захвачен Солнцем. Земной шар, хотя и очень медленно, но и поныне продолжает расти, добирая крохи, какие еще сохранились в межпланетном пространстве.
Значит те образцы «чужого» вещества, которые собраны в метеоритном музее Академии наук СССР – это «родители» нашей планеты, или по крайней мере их самые близкие родственники.
Но верно ли это?
Метеориты находятся в распоряжении ученых, от них можно отколоть кусочки, рассмотреть их под микроскопом, растолочь в ступке, растворить в кислотах – исследовать, изучить и решить: можно ли их признать родителями планет?
Астрономы привлекли к исследованию метеоритов ученых самых различных специальностей – химиков, геологов, минералогов, геохимиков, металлургов, геофизиков. Каждый специалист изучал метеоритное вещество теми способами, какие выработаны его наукой и затем давал свое заключение.
Ученые не зря истребили часть своих запасов космического вещества. Особенности метеоритов изучены теперь весьма основательно.
Известно, что все метеориты до встречи с Землей имеют неправильную форму обломков с неровными краями, они похожи на осколки других более крупных глыб.
Пролетая сквозь атмосферу со скоростью до 70–80 километров в секунду и разогреваясь от сильного трения о воздух, метеориты снаружи оплавляются.
Струи раскаленного воздуха обтекают метеорит и как бы обтачивают его, придавая ему форму, подобную головке артиллерийского снаряда.
Первоначально метеорит имеет неправильную форму обломка. Встречные частицы воздуха обтачивают его, придавая метеориту сходство с головкой артиллерийского снаряда.
На поверхности метеоритов образуется корка из расплавленных минералов. Таковы, например, метеориты: «Каракол», упавший 9 мая 1840 года, и «Репеев Хутор», упавший 8 августа 1933 года.
Некоторые метеориты, пробиваясь сквозь воздушную оболочку Земли, раскаляются с поверхности очень сильно, но внутри они все равно остаются холодными. За короткое время полета в атмосфере метеорит не успевает прогреться насквозь. Известен случай, когда метеорит, упавший теплой летней ночью в болотистую местность, был найден в куске льда. Влажная почва болотца быстро охладила поверхность метеорита, а низкая температура его внутренних частей заморозила воду, скопившуюся в ямке, которая образовалась на месте падения.
Метеорит «Каракол», упавший 9 мая 1840 года.
Удалив наружную оплавленную корку, ученые находят под ней метеоритное вещество таким, каким оно было до падения метеорита на Землю.
Медленно летящие метеориты сохраняют первоначальную обломочную форму, и оплавленная корка на них почти не образуется.
Химики уже давно дали отчет в своих исследованиях химического состава метеоритов. Все эти кусочки «чужого» вещества – и чисто каменные, и железные, и железо-каменные – содержат обычные химические элементы. Никаких новых, неизвестных науке элементов не обнаружено. Железо, никель, кобальт, медь, фосфор, сера, углерод, кислород, кремний, магний, кальций, золото, серебро, платина – все, что есть в таблице Менделеева, имеется и в метеоритах.
Материя во всей Вселенной едина. Менделеевская система элементов верна не только в земных условиях, она действительна и для Солнца и звезд, для комет, планет и метеоритов.
И отсюда ученые делают важный вывод: сходство химического состава метеоритов и земной коры не доказывает, что Земля складывалась из метеоритов. Так как химический состав всех небесных тел одинаков, то с таким же правом можно утверждать, что метеориты получились в результате гибели какого-либо небесного тела. Или же – планеты и метеориты образовались одновременно из одного и того же допланетного вещества.
И эти мнения совершенно равноправны. Но верным из них может быть только одно, а какое именно, должны показать дальнейшие исследования.
Особенности метеоритного железа
Кузнец из деревни Медведевки, который нашел «Палласово железо», хотел пустить свою находку в дело. 700 килограммов железа по тем временам для деревенского кузнеца было несметным богатством. Он хотел наковать из железа подков, сошников, топоров. Но, увы, странное железо сравнительно хорошо ковалось в холодном состоянии, но в горячем виде с ним ничего нельзя было сделать. Когда кусок железа нагревали и начинали ковать, то под ударами молота оно крошилось и рассыпалось на куски. Как ни старался кузнец, но так и не смог воспользоваться метеоритом, и кусок «небесного» железа сохранился для научных исследований.
Нековкость метеоритного железа является одним из его отличительных признаков. Объясняется это примесью никеля. В железных метеоритах содержится не меньше 5 % и не более 50 % никеля. В железе, которое добывается из руд земной коры, никеля содержится либо меньше 3 %, либо больше 50 %.
Есть у метеоритного железа и другая особенность. Небольшой участок метеорита опиливают, чтобы получить ровную гладкую площадку. Затем ее поверхность полируют до зеркального блеска. Отполированный участок протирают ваткой, смоченной в слабом растворе какой-либо кислоты, и на нем выступает рисунок, напоминающий морозные узоры на стекле.
Узорчатое строение метеоритного железа говорит о том, что сплав никеля с железом образовал большие восьмигранные кристаллы, причем железо, бедное никелем, отделилось от железа, богатого никелем, и сплавы разного состава отложились тонкими слоями по граням кристаллов. На полированной и протравленной кислотой поверхности внутреннее строение железоникелевых кристаллов выступает в виде узоров.
Ученые смешивали железо и никель в том же соотношении, в каком они содержатся в метеоритах. Эту смесь плавили в тиглях. Опыт показал, что железоникелевый сплав при температуре выше 1500° становится жидким, при понижении температуры сплав застывает, и в нем образуются мелкие кристаллы никелистого железа.
Эти кристаллики обладают склонностью выстраиваться параллельными рядами и расти, образуя более крупные кристаллы.
При дальнейшем понижении температуры – ниже 800° – кристаллики никелистого железа начинают разламываться на две части – одна из них содержит мало никеля, а другая, наоборот, забирает избыток никеля. Новые кристаллики располагаются на месте своего рождения – параллельно граням первоначального кристалла. Таким образом они сохраняют прежний узор, подобно тому, как окаменевшее дерево сохраняет рисунок древесных колец. Однако точно такого же узора, какой наблюдается в метеоритах, получить не удалось.
Исследователи подумали, что причина неудачи кроется в том, что состав лабораторного сплава чуть-чуть отличается от состава метеоритов. Для опыта взяли осколки настоящих метеоритов и нагрели их до плавления. При температуре в 800° своеобразный метеоритный узор исчез, словно растаял. Затем, когда сплав охладили, узорчатое строение не восстановилось. И что бы ученые ни делали – охлаждали сплав и медленно и быстро, плавили металлы под большим давлением или, наоборот, в безвоздушном пространстве – возобновить метеоритный узор в сплаве искусственным путем в лаборатории до сих пор никто не сумел.
Узорчатое строение метеоритного железа.
Минералоги предполагают, что кристаллы в метеоритах образуются при очень медленном охлаждении железоникелевого сплава. Нужны тысячи лет, чтобы выделилось железо, богатое никелем, и выросли крупные восьмигранные кристаллы, порождающие столь удивительный рисунок на полированной поверхности метеорита.
Кроме метеоритов с восьмигранными кристаллами и «морозным» узором, встречаются метеориты, в которых железоникелевый сплав кристаллизуется шестигранниками.
Третья разновидность железных метеоритов состоит из смеси маленьких зернышек железа, сплавленного с никелем, и в ней каких-либо узоров не заметно.
Очень редкий вид железных метеоритов выпал 12 февраля 1947 года в западных отрогах Сихотэ-алиньского хребта в Уссурийской тайге.
Сихотэ-алиньские метеориты подверглись лабораторной обработке. Некоторые образцы отполировали и протравили кислотой. На протравленной поверхности вырисовывалось их строение. Эти метеориты не похожи на другие образцы космического железа. Они состоят из небольших, неправильной формы, кусков железоникелевого сплава. Содержание никеля в отдельных кусках и зернах неодинаково, и поэтому после протравы кислотой они приобретают различный цвет.
Видно, что эти куски словно спрессованы, они переплелись между собой, вдавились друг в друга так, как будто их сначала свалили, а потом с большой силой сжали. Но прочной глыбы при этом не получилось. Сихотэ-алиньский метеорит, врезавшись в земную атмосферу, развалился на части и выпал на поверхность Земли метеоритным дождем.
Строение железных метеоритов показывает: все они были когда-то расплавленными или же горячими и мягкими, но образовывались в различных условиях– некоторые очень медленно остывали, другие находились под большим давлением, третьи явно подвергались повторному нагреванию.
Повидимому железные метеориты, попавшие в наши коллекции, раньше находились внутри какого-то крупного небесного тела, которое было горячим, постепенно в течение нескольких миллионов лет остывало, а потом от неизвестной нам причины развалилось или было разбито при случайном столкновении. Обломки этого тела летают в межпланетном пространстве и служат теперь добычей планет.
Таково мнение большинства ученых.