Текст книги "Рождение миров"
Автор книги: Михаил Ивановский
сообщить о нарушении
Текущая страница: 18 (всего у книги 25 страниц)
Осколки погибшей планеты
Все астероиды-метеориты, попавшие в наши коллекции, – обломки с неправильными очертаниями. Те астероиды, которые проносились недалеко от Земли – Эрот, Гермес и другие, – тоже оказались глыбами самой различной формы. Многие астероиды, летающие между орбитами Марса и Юпитера, непрерывно изменяют свой блеск, это также свидетельствует об их обломочной форме.
Астероиды несомненно являются осколками какого-то большого тела.
Профессор П. Н. Чирвинский еще в 1920 году доказал, что минералы, которые обнаружены в метеоритах, очень похожи на минералы, найденные в глубоких слоях земной коры. Видимо, метеоритные минералы тоже образовались в недрах планеты, подобной нашей Земле.
Гипотезу о происхождении астероидов из остатков погибшей планеты отстаивают лауреаты Сталинской премии академик А. Н. Заварицкий и профессор С. В. Орлов.
Академик А. Н. Заварицкий указывает, что среди метеоритов земных коллекций можно найти образцы минералов из всех слоев безвестной планеты. Железные метеориты – это куски ее железоникелевого ядра.
Палласиты являются представителями оболочки этого ядра – тугоплавкий минерал оливин затвердел раньше железа и образовал округлые зерна. Расплавленное железо обтекало оливиновые зерна, и получилась как бы металлическая губка.
Породы, из которых возникли мезосидериты, располагались еще дальше от ядра, чем палласиты. Они составляли промежуточный слой между ядром и внешней каменной оболочкой.
Каменные метеориты – это обломки наружных слоев погибшей планеты, а такой метеорит, как «Старое Борискино», из которого была добыта космическая вода, по мнению академика А. Н. Заварицкого, образовался из вещества, выброшенного вулканом, действовавшим на той планете.
Главное затруднение для этой гипотезы доставляют именно каменные метеориты. Их своеобразное строение мало чем напоминает горные породы земной коры. Эта смесь измельченных обломков разнородных кристалликов, беспорядочно слипшихся друг с другом, с металлической пылью и таинственными застывшими капельками – хондрами – похожа на слежавшуюся космическую пыль.
Каменные метеориты как будто бы говорят в пользу гипотезы Шмидта, а не Заварицкого. Но это не так.
Земля и ее горные породы существуют уже 3,5–4 миллиарда лет. В ее составе и строении произошли огромные перемены. Они совершенно изменили ее облик. Наши горные породы несколько раз были переплавлены. На них воздействовали газы и растворы, выделявшиеся из недр. Земная кора уже ничем не похожа на ту, которая была в первые века существования Земли.
Погибшая же планета развалилась в годы своей юности. Она имела еще первобытную оболочку из слежавшейся космической пыли; когда планета разбилась, из ее коры образовались каменные метеориты. Конечно, и в них произошли перемены, но не такие резкие, как на Земле.
В каменных метеоритах мы имеем образцы тех пород, какие покрывали Землю в догеологическое время.
Состав метеорного вещества, выпадающего на Землю, более или менее известен. Железные метеориты составляют около 1/5 общей массы метеоритной материи. Несколько процентов принадлежит палласитам и мезосидеритам. Остальное – каменные метеориты. Из них 90 % —хондриты и 10 % —прочие. Среди разных каменных метеоритов имеется несколько метеоритов особо богатых радиоактивными элементами и похожих на земные базальты.
Кроме того, в музеях хранится небольшое количество тектитов, или стеклянных метеоритов. Происхождение тектитов еще невыяснено. Они чрезвычайно похожи на оплавленные, округленные куски дешевого бутылочного стекла зеленоватого или коричневого цвета.
Тектиты подбирают в таких районах, где никогда не было стекольного производства или вулканических извержений – как, например, в пустынных областях Австралии, в песках Аравии, на острове Тасмания.
Никто и никогда не наблюдал падения тектитов, и поэтому их принадлежность к метеоритам не доказана. Но вполне возможно, что они тоже попали из межпланетного пространства.
Удельный вес метеоритов:
Железных – 7,12.
Палласитов – 4,74.
Мезосидеритов – 5,60.
Каменных – 3,54.
Тектитов – 2,40.
Астрономы учли, насколько это было возможно, количество астероидов, сохранившихся в солнечной системе; прибавили количество вещества, распыленного при столкновениях и погибшего от жара солнечных лучей; приняли во внимание удельный вес метеоритов и получили таким образом приблизительное представление о массе и размерах погибшей планеты.
На особой астрономической конференции, посвященной изучению погибшей планеты, было принято, что планета – мать астероидов – имела в поперечнике около 6000 километров. Она была несколько меньше Марса. Ее масса составляла 1/10 массы Земли, а плотность равнялась 3,77 плотности воды.
По расчетам А. Н. Заварицкого, металлическое ядро занимало, примерно, 1/16 часть объема планеты. У земного шара металлическое ядро занимает почти 1/6 объема планеты. Зато твердая базальтовая кора погибшей планеты была в полтора раза толще чем на Земле.
С. В. Орлов предложил назвать разбившуюся планету Фаэтоном. Фаэтон, как известно из греческой мифологии, был сыном Солнца, и судьба этого юноши отчасти напоминает судьбу предполагаемой планеты. Фаэтон однажды вздумал прокатиться по небу в отцовской колеснице, но не сумел сдержать буйных огненных коней своего отца и разбился.
Причина гибели пятой планеты земной группы неизвестна. Подозревают, что виноват в этом Юпитер. Юный Фаэтон не успел собрать достаточную массу и округлить свою орбиту так, чтобы держаться от своего соседа-великана на почтительном и безопасном расстоянии. Он обращался по вытянутой, удлиненной орбите и иногда подходил чересчур близко к Юпитеру.
В тот период, когда планета под тяжестью поступающего космического материала стала разогреваться, тяготение Юпитера нарушило ее внутреннее равновесие, планета, распираемая изнутри перегретыми газами, взорвалась или же просто развалилась. Ее обломки, ставшие астероидами, постепенно разошлись вдоль по орбите.
Такова современная гипотеза, объясняющая происхождение всех малых тел солнечной системы. Их родоначальником, повидимому, был погибший Фаэтон, который превратился в стаю астероидов. Столкновения астероидов могут порождать кометы и метеорные потоки. Маленькие астероиды, их осколки и остатки развалившихся комет падают на Землю в виде метеоритов. Метеориты, приближающиеся к Солнцу, образуют около него пылевое облако зодиакального света.
Глава десятая
НА КРАЮ ГИБЕЛИ
Камешки попадают в плен
Вообразим, что какой-то камешек, странствуя по Галактике, оказался в том районе, где находится Солнце. Он попал под влияние солнечного, тяготения и, изменив направление своего движения, устремился к Солнцу.
Если бы наш камешек «висел» где-нибудь в пространстве, а потом стал падать, то его путь был бы прямой линией, и он, безусловно, упал бы на Солнце. Но камешек тоже двигался, его скорость отличалась от скорости Солнца, и поэтому путь камешка принял форму кривой линии, огибающей Солнце.
Камешек, увлекаемый тяготением, летит по своей новой орбите, с каждой секундой ускоряя полет. Как показывают точные математические расчеты, скорость такого камешка на расстоянии в 150 миллионов километров от Солнца всегда будет больше 42 километров в секунду.
42 километра в секунду – это так называемая «скорость убегания». Любое тело, находящееся в 150 миллионах километров от Солнца и развившее «скорость убегания», обогнет Солнце и умчится обратно в бесконечные дали звездного мира. Пленником Солнца оно стать не может. Большая скорость освобождает от оков тяготения.
Если бы первобытное Солнце имело хотя бы одну планету, – другое дело. Планета могла бы стать соучастником Солнца и помогать ему улавливать блуждающие в пространстве тела. Она загоняла бы камешки и песчинки внутрь своей орбиты так же, как это делает в настоящее время с кометами Юпитер.
Но Солнце до рождения планет было одиноким. Соучастников и помощников у него не имелось, само же Солнце без содействия других тел или каких-либо иных сил не может захватить ни одного даже самого маленького кусочка космического вещества.
Так каким же образом одинокое Солнце поймало целый рой песчинок и камешков?
Решение этой задачи потребовало от О. Ю. Шмидта и его ближайшего сотрудника и помощника Г. Ф. Хильми огромного труда. Математическое исследование задачи длилось несколько лет. Сначала удалось найти только приблизительное решение. Затем ученые дали безусловно точное доказательство.
Пленение одного камешка или песчинки, конечно, немыслимо, но захват целого роя твердых частиц осуществим. Все дело в том, что их много – рой! Само пылевое облако, его центр тяжести, вся совокупность частиц, их общая масса послужит помощником Солнца, и часть пылевого облака совершенно неизбежно станет добычей Солнца.
Кроме того, обстоятельные исследования сотрудников О. Ю. Шмидта и других астрономов показали, что нельзя учитывать только одну силу тяготения. При встрече Солнца с туманностью возникает много физических явлений, которые могут выполнять роль тормозных колодок, то есть замедлить движение частиц, отнять у них часть энергии и тем самым задержать их возле Солнца.
Например, пылинки и камешки, огибающие Солнце, неминуемо должны сталкиваться между собой. Но как только два камешка столкнутся, один из них или оба вместе разобьются. Часть их энергии израсходуется на дробление, а скорость полета соответственно уменьшится.
Каждый раз, когда два тела ударяются друг о друга, они оба нагреваются. Часть их энергии переходит в теплоту и рассеивается. Каждая потеря энергии влечет за собой падение скорости.
Наконец, каждое столкновение сопровождается перераспределением скоростей. Это явление прекрасно известна всем, кому приходилось играть или наблюдать игру на биллиарде или в крокет.
Когда два шара сталкиваются, один из них приобретает повышенную скорость, а другой, потеряв скорость, еле катится. То же самое должно происходить и в рое твердых частиц. Законы природы одинаковы и для биллиардных шаров и для космических тел. Часть камешков роя после неизбежных столкновений со своими попутчиками получит скорость ниже «скорости убегания» и останется возле Солнца.
Эту теорию потерь и перераспределения скоростей движущихся частиц разработал ленинградский астроном Т. А. Агекян.
Тормозом для космических частиц служит также солнечный свет. Камешки, песчинки, пылинки, огибая Солнце, пересекают солнечные лучи и замедляют свой бег. Боковое давление солнечного света мешает движению частиц – тормозит его. Лучевое давление помогает захвату пылинок.
Точно так же, как и свет, действует корпускулярное излучение Солнца, оно тоже тормозит полет частиц, огибающих Солнце.
Когда камешек приближается к Солнцу, газы, которые содержатся в порах минералов, улетучиваются, легкоплавкие вещества испаряются, камешек тает, а его остатки, подхваченные светом, стремительно уносятся прочь.
Количество вещества, испепеляемого жаром солнечных лучей, зависит от плотности роя. Оно может быть весьма велико.
Поток вещества, отбрасываемого Солнцем совместно со светом и корпускулярным излучением, тоже тормозит движение частиц, попавших в поле тяготения Солнца.
Вспомним также, что раньше Солнце было не таким как сейчас. Его свет был ярче, корпускулярное излучение обильнее, а температура выше. Все тормозящие силы действовали энергичнее. Скорость захваченных частиц неуклонно падала, и у них не оставалось никаких шансов, никаких надежд на освобождение. Они становились спутниками Солнца, его пленниками.
Следовательно, Солнце, встретившись с туманностью, не могло пролететь сквозь нее, как пушечное ядро сквозь облако. Оно вылетело из туманности, окруженное обширным роем частиц.
Случайность или закономерность
Солнце в своем движении по галактической орбите нагнало туманность. Была ли эта встреча случайной? – спрашивали противники гипотезы Шмидта. Если да, то чем эта гипотеза лучше гипотезы Джинса. Признав рождение планет плодом счастливого стечения обстоятельств, мы тем самым должны согласиться, что в звездном мире планетные системы – явление исключительное и, может быть, даже наше семейство планет существует в Галактике в одном единственном экземпляре. А это и есть как раз то, о чем мечтают и что силятся доказать ученые идеалистического лагеря.
Если же встреча Солнца с туманностью – явление не случайное, оно должно повторяться. Обращаясь вокруг центра Галактики, Солнце, очевидно, должно было неоднократно пересекать область, занятую темными космическими облаками.
Московский астроном П. П. Паренаго подсчитал, что солнечная система за время своего существования должна была несколько сот раз встречаться с туманностями. Земля совершила вместе с Солнцем примерно 17 оборотов вокруг центра Галактики – прожила 17 галактических лет, и встречи Солнца с облаками космических частиц были совершенно неизбежны, – но каковы же были их последствия?
Вот этот-то коренной вопрос до сих пор не исследован. Он является слабым местом гипотезы и труден для решения. В распоряжении ученых имелось слишком мало времени для исследований.
Представим, что галактический год по образцу солнечного года тоже состоит из 365 галактических суток по 24 часа – или же из 31 556 926 галактических секунд. При таком счете письменностью люди пользуются только 20 галактических минут, телескоп изобрели всего лишь 53 галактических секунды назад, а после того, как узнали о вращении Галактики – прошло не более 4 галактических секунд. Иначе говоря, Солнце за последние три столетия пролетело всего лишь одну шестисоттысячную долю своей галактической орбиты. На таком малом отрезке ученые, разумеется, ничто заметить не могли.
Если повторные встречи Солнца и туманности происходили, то несомненно одно: Солнце не могло каждый раз пронизывать туманность обязательно в ее центральной и самой плотной части. Гораздо вероятнее, что каждая встреча протекала по-разному – или Солнце миновало туманность стороной, или пересекало ее сильно разреженные края.
Происходили ли еще встречи Солнца и туманности – неизвестно. Но некоторые факты позволяют предполагать, что они были.
Возьмем список спутников Юпитера. Эта планета обладает весьма многочисленным семейством из одиннадцати лун.
Первые пять спутников Юпитера – наиболее массивные из всех. Они обладают очень округленными орбитами, а плоскости их орбит совпадают с плоскостью экватора планеты. Нельзя сомневаться в том, что эти пять лун возникли одновременно с Юпитером, они составляют с ним как бы одно целое.
Орбиты трех следующих спутников наклонены к плоскости экватора на 27–28°. Эти луны малы, и их орбиты плохо округлены.
Последние три спутника тоже расположились не в плоскости экватора планеты, и движутся они в обратном направлении.
Такими же нарушителями порядка являются крайние спутники Сатурна – Япет и Феба.
Никто из авторов космогонических гипотез даже и не пытался найти причину разделения спутников Юпитера на три обособленных группы с разными наклонами орбит. Гипотеза Шмидта в ее первоначальном варианте тоже не дала объяснения.
Три группы спутников Юпитера.
Группировка спутников с необычными наклонами орбит невольно наводит на мысль, что она получилась в результате повторных встреч Солнца с облаками космических частиц. И крайние спутники планет – более позднее приобретение солнечной системы.
Облака, встреченные Солнцем после образования планет, видимо, были разреженнее и беднее материалом, чем облако, послужившее предком планет. Поступление нового строительного материала не на много увеличило массы планет и не повело к образованию крупных спутников. Но все же память о встрече осталась в виде нескольких новых лун.
Может быть небольшое увеличение массы Сатурна вызвало сокращение орбит его спутников. При этом одна из лун оказалась втянутой в зону Роша и развалилась.
В этом случае кольца Сатурна также подтверждают догадку ученых о том, что Солнце не один раз встречалось с туманностью.
Ближайший спутник – Юпитер – обращается почти на самой границе опасной зоны. Вряд ли он мог сложиться на нынешней орбите, так близко от предела Роша. Вероятнее, что спутник подошел к нему в результате увеличения массы Юпитера.
Галактические времена года
Земной шар, как это совершенно точно установлено геологами, несколько раз переживал эпохи оледенения. В периоды оледенений ледяные поля толщиной в несколько километров покрывали огромные пространства в северном и южном полушариях. Ледовитый океан промерзал до дна. Мощные ледники спускались с гор, все стирая на своем пути.
Потом ледники таяли, отодвигались в полярные страны, наступало потепление.
И так повторялось несколько раз.
Последний ледниковый период закончился сравнительно недавно. Отложения тонких слоев так называемых ленточных глин показали геологам, что территория нынешней Ленинградской области освободилась от льда 16 тысяч лет назад.
Вид земной поверхности в эпоху последнего великого оледенения.
Где кроется причина чередования ледниковых периодов с более теплыми эпохами – неизвестно. Доказано только то, что оледенения Земли как-то связаны с усиленным горообразованием. Когда подымаются новые горные хребты, наступает резкое похолодание, и полярные шапки льдов разрастаются.
Для объяснения ледниковых периодов геологи предлагали много сложных и противоречивых гипотез.
Некоторые же астрономы считали, что причиной великих оледенений служит появление космической пыли в межпланетном пространстве.
Однако ученые отвергли это объяснение – ведь Солнце, приближаясь к туманности, давлением своих лучей разгонит большую часть пыли и газов. Следовательно, в расчет можно принимать только наиболее крупные частицы, которые не так податливы лучевому давлению. А таких песчинок в пространство между Солнцем и Землей попадет очень мало, и заслонить свет Солнца они не смогут.
Последние исследования верхних слоев воздушной оболочки Земли, – ее стратосферы, позволяют пересмотреть это суждение. Дело не в том, сколько пыли окажется в пространстве между Солнцем и Землей, а в том, сколько ее накопится в стратосфере.
На большой высоте восходящие и нисходящие потоки воздуха почти отсутствуют. Стратосфера слоиста, перемешивание воздушных масс там происходит крайне медленно. Поэтому пыль, попадающая в заоблачную высь, способна плавать там в течение нескольких лет. Как, например, пепел, извергнутый вулканом Раката на острове Кракатао.
То же самое произойдет и в случае встречи солнечной системы с туманностью. Космическая пыль, попадая в стратосферу, не будет сразу же опускаться на Землю, она начнет накапливаться и образует плохо проницаемый для света панцырь. Температура на Земле заметно понизится.
Земля в своем обращении вокруг Солнца ежегодно в августе встречается с потоком мелкой пыли, который тоже обращается возле Солнца, так же как и метеорные рои. Встреча с этим совершенно незаметным и незначительным скоплением пыли сильно влияет на прозрачность атмосферы. Профессор Н. Н. Калитин, измерявший силу солнечного света в Павловске, близ Ленинграда, установил, что засорение атмосферы августовской космической пылью понижает температуру воздуха на 5°.
Земля пролетает сквозь этот пылевой поток в течение нескольких суток. Помутнение атмосферы быстро рассеивается и проходит без всяких последствий. Но если бы помутнение держалось несколько сот или даже тысяч лет, то это могло привести к оледенению Земли. За зиму в полярных странах образовалось бы льда больше, чем летом его могли растопить солнечные лучи. Полярные шапки, ежегодно разрастаясь, захватили бы огромную территорию.
Пыль, оседая на Землю, не будет распределяться по ее поверхности равномерным слоем, а начнет скапливаться там, куда ее понесут воздушные течения, то есть в полярные страны и в страны умеренного пояса. Масса Земли начнет увеличиваться, а ее форма – изменяться, так как в полярных областях скопится и много космического материала и еще больше льда.
Увеличение нагрузки на околополярные области нарушит равновесие в недрах земного шара. Начнется передвижка материковых глыб. Возникнут разломы земной коры. Наступит эпоха усиленного горообразования – естественное следствие увеличения массы Земли и изменения формы земного шара.
Следовательно, встреча Солнца с облаками космической пыли может служить причиной и оледенения Земли и горообразования.
В настоящее время некоторые ученые, исследовавшие древнейшие напластования земной коры, приходят к заключению, что ледниковые периоды чередовались с эпохами потепления через, приблизительно, равные промежутки времени в 200–220 миллионов лет.
Срок, найденный геологами, удивительно хорошо совпадает со временем обращения Солнца вокруг центра Галактики. Случайно ли это совпадение чисел, или оно обусловлено какими-то особенностями солнечной орбиты в Галактике – неизвестно. Никто из астрономов не имел еще возможности определить форму галактической орбиты Солнца. Но вряд ли она круговая. Гораздо более вероятно, что орбита Солнца имеет форму эллипса.
Очевидно, обращаясь по эллипсу, Солнце один раз в 200 миллионов лет приближается к центру Галактики, и тогда оно неминуемо должно попасть в облака космической пыли, которые окутывают галактический центр. И тогда возможно, что на Земле, кроме обычной смены времени года, наступает и галактическое лето и галактическая зима.
Все это, конечно, предположение, которое может быть и утверждено и отвергнуто. Это один из бесчисленных вопросов, которые занесены в памятную книжку науки, как подлежащие исследованию.
Но те скудные факты, какие имеются в распоряжении ученых, говорят: встречу Солнца с туманностью делом случая считать нельзя.
Подведем итог. Встреча Солнца с туманностью возможна. Ее нельзя приписать счастливому стечению обстоятельств или объяснить какими-либо сверхъестественными силами.
Захват части облака космической пыли в этом случае тоже возможен. Но это мало. Возможность и вероятность – разные вещи. Ведь для образования планет надо, чтобы рой твердых частиц, захваченный Солнцем, был достаточно велик и богат необходимыми строительными материалами. А именно это ученым пока еще не известно.
Что если в облаках космической пыли нет или очень мало материала, пригодного для образования планет?