355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Ивановский » Рождение миров » Текст книги (страница 19)
Рождение миров
  • Текст добавлен: 27 июня 2017, 11:00

Текст книги "Рождение миров"


Автор книги: Михаил Ивановский



сообщить о нарушении

Текущая страница: 19 (всего у книги 25 страниц)

Исследование невидимок

Когда существование темных туманностей удалось доказать, перед учеными встала задача исключительной сложности – исследовать новое явление природы. Это просто сказать, но не легко осуществить. Астрономы всегда имели дело с самосветящимися телами или с планетами, отражающими солнечный свет. Все астрономические инструменты созданы для наблюдения светил, а не черных невидимок.

Исследовать звезды удается, потому что в распоряжении ученых имеются лучи света этих звезд. Но как изучать темные, не светящиеся и необычайно разреженные пылевые облака?

Советские ученые не уступили своего первенства в изучении темной космической материи, которое было завоевано трудами В. Я. Струве. Они изобрели надежные, довольно точные способы исследования «угольных мешков». Вот один, наиболее простейший.

Астроном фотографирует какой-либо участок неба, на котором заметно покраснение звезд, а затем терпеливо подсчитывает, сколько звезд отпечаталось на пластинке. Звезды каждой звездной величины подсчитывают отдельно.

Затем астроном фотографирует другой участок поблизости от первого, но такой, на котором не заметно покраснения света звезд. И опять подсчитывает звезды.

Фотографирование повторяется несколько раз, чтобы избежать ошибок. И в итоге этой кропотливой работы у астронома получается табличка:

Число звезд 5, 6, 7 и 8 величин на обеих фотографиях совпадает. Очевидно, эти более яркие звезды находятся ближе к нам, чем туманность, и их лучам по пути ничто не мешает.

У звезд девятой величины совпадения нет. В нижней строке – 23, а в верхней – 62. На участке неба, где предполагается присутствие туманности, звезд девятой величины явно не хватает. Сравниваем дальше – число звезд каждой следующей величины в нижней строке как бы сдвинулось вправо на одну графу. Звезды девятой величины ослабели до десятой величины, а звезды десятой величины ослабели до одиннадцатой и так далее.

Это показывает, что на среднем расстоянии звезд девятой величины расположилось облако космической пыли. Оно ослабило свет звезд, которые находятся позади нее, часть этих звезд стала невидимой, и блеск звезд уменьшился на одну звездную величину.

Это, разумеется, очень приблизительный и грубый способ определения расстояний до темных туманностей. Он основан на неправильном предположении, что все звезды одинаково яркие, как уличные фонари.

Конечно, звезды не одинаковы – есть среди них и яркие и тусклые.

Советские астрономы не пользуются этим способом. Он приведен нами только для примера, как самый простой и наглядный.

Ленинградские астрономы К. Ф. Огородников, О. В. Добровольский и В. В. Лавдовский разработали более сложный, но зато и более точный способ определения расстояния до темных пылевых облаков. Их способ принят теперь всеми учеными.

Одной из ближайших к нам туманностей считается «Лошадиная Голова». Это облако пыли явственно вырисовывается на фоне светлой туманности Ориона. Своими очертаниями оно напоминает голову шахматного коня, за что и получило такое название. До «Лошадиной Головы», примерно, 300 световых лет или почти три миллиона миллиардов километров – 2,8·1015 километров.

Темная туманность «Лошадиная Голова».

Ослабление света звезд, видимых сквозь туманность, послужило той ниточкой, за которую ухватились астрономы и стали вытягивать различные сведения о природе пылевых облаков.

Видимые размеры какой-либо туманности, то есть то место, какое она занимает на небосводе, измерить нетрудно. Для этого у астрономических инструментов есть все приспособления. А зная видимые размеры туманности и определив расстояние до нее, вычислить истинную величину пылевого облака тоже сравнительно простое дело.

Облака темной материи оказались исключительно огромны. Среди них встречаются разные – есть и большие, есть и поменьше, но в среднем, по определению московского астронома П. П. Паренаго, они имеют в поперечнике около 11 световых лет.

Солнце, оказавшись в такой туманности, будет выглядеть, как просяное зернышко, брошенное в Тихий океан.

Тщательные измерения, сделанные В. А. Амбарцумяном, показали, что свет звезд, просвечивающих сквозь туманность, ослабевает не очень сильно. Звезда теряет в блеске, примерно, 1/4 звездной величины.

В. В. Лавдовский нашел несколько более плотных облаков, в них теряется до 1–2 звездных величин. Но таких облаков мало.

Исследование В. А. Амбарцумяна, многократно повторенное им самим, было затем проверено разными способами. В 1943 году этим занимался Б. В. Кукаркин, в 1945 году – П. П. Паренаго, в 1946 году – Б. Е. Маркарян, в 1948 году – Ш. Хабибулин. В общей сложности советские ученые измеряли и проверяли поглощение света в туманностях в течение восьми лет, и все пришли к одному заключению: первоначальные выводы Амбарцумяна безошибочны, – туманности очень прозрачны.

Это уже само по себе чрезвычайно важное открытие. Свет далекой звездочки пятой величины в течение одиннадцати лет летит, пробиваясь сквозь туманность, а ослабевает всего лишь процентов на десять!

Значит облака космической пыли прозрачны почти так же, как и оконное стекло.

Туманности бедны веществом

Лучистые посланники далеких миров, проходя в пылевом облаке, не только ослабевают, но теряют по пути фиолетовые, синие и зеленые лучи, и от этого краснеют.

Не всякая пыль способна вызывать покраснение света, а только мелкая – вроде вулканического пепла или частиц дыма. Такие пылинки имеют в поперечнике около одной стотысячной доли сантиметра.

Будь пылинки покрупнее, то вокруг звезд, видимых сквозь туманность, наблюдались бы ореолы – круги вроде тех, что видны вокруг Луны, когда она светит сквозь туман. Будь пылинки помельче, – не было бы покраснения света.

Следовательно, пылинки эти действительно имеют размеры около одной стотысячной доли сантиметра. Такие пылинки, пожалуй, неправильно называть пылинками. Они гораздо более похожи на частицы дыма, и космическую пыль следовало бы называть космическим дымом, но старое название уже укоренилось и вошло в обиход.

Определение размеров пылинок в темных туманностях, сделанное Е. К. Харадзе, М. А. Вашакидзе и О. А. Мельниковым, признано всеми астрономами правильным.

Никто из ученых не сомневается, что в пылевых облаках могут встречаться и более крупные частицы – песчинки, величиной с булавочную головку, и небольшие камешки, вроде гальки или щебенки, но основная масса туманностей состоит из частиц, размером около одного микрона. Напомним, что паутинная нить, из которой паук вяжет свою паутину, имеет в толщину пять микронов. Частицы космической пыльцы в пять раз тоньше паутинки.

Сведения о пылевых облаках связаны между собой путеводной нитью, и ученые извлекают их одно за другим, как звенья одной цепи.

Зная размер пылинок и степень прозрачности облаков, можно определить количество вещества, распыленного в облаке, и плотность облака.

Если собрать все вещество, распыленное в облаке, и скатать из него шары, то получатся всего лишь три небесных тела, каждое равное по массе нашему Солнцу. Не так уж много вещества в этих облаках.

Процедив туманность, размером с Тихий океан, добудут из нее только три просяных зернышка.

Плотность этих облаков ничтожно мала. Повидимому, пылинки там летают на расстоянии нескольких километров друг от друга. И, как показывают расчеты, чтобы собрать в сравнительно густом космическом облаке только один грамм твердого вещества, надо «подмести» десять миллиардов кубических километров пространства. Туманности велики, но вещества в них – пустяк!

Оказавшись в таких условиях, Солнцу будет трудно собрать что-либо в этом почти пустом облаке.

Попробуем подсчитать.

В настоящее время радиус солнечной системы, считая от центра Солнца до орбиты Плутона, составляет круглым счетом 6 миллиардов километров. Допустим, что Солнце будет стягивать к себе пылевое вещество с расстояния в 100 раз большего, чем радиус солнечной системы, то есть с 600 миллиардов километров вокруг себя.

Пройдя сквозь туманность, Солнце оставит позади себя цилиндрический туннель. Вычислим его объем. Площадь основания возьмем радиусом в 600 миллиардов, а высоту – равную 11 световым годам или 104 000 миллиардам километров.

3,14·(600·109)2·11·9,46·1012 = 118·1034 кубических километров.

В каждых 10 миллиардах кубических километров туманности содержится 1 грамм вещества.

Следовательно, если Солнце будет подчистую «подметать» туманность, собирая все, вплоть до мельчайшей пылинки, то его добыча составит 118·1034: 1010 = 118·1024 граммов или 118·1018 тонн.

Масса Луны равна 75·1018 тонн. Приобретенного Солнцем, вещества хватит только на образование луны или еще нескольких мелких спутников планет. Для создания всей планетной системы материала явно недостаточно.

Надо учесть также, что пылинки размером в 0,1 микрона не притягиваются Солнцем, а отталкиваются давлением его лучей. Солнце, приближаясь к пылевому облаку, своими лучами разгонит часть вещества туманности. Это сильно уменьшит добычу Солнца, оно сможет воспользоваться только более крупными частицами, камешками, песчинками, пылинками, которые по своим размерам не поддаются действию отталкивательных сил. А таких частиц в туманностях мало.

Вывод печальный. Среди туманностей, какие мы наблюдаем в ближайшей к нам части Галактики, нет ни одной пригодной для образования планет. С такими туманностями Солнце безусловно могло встречаться десятки раз, но планетной семьей оно в них не обзаводилось.

В гипотезе О. Ю. Шмидта обнаружились зияющие провалы. Ее исходная идея оказалась ошибочной. Встреча Солнца с туманностью и захват Солнцем роя твердых частиц не ведут к образованию планетной системы. Происхождение малых тел солнечной системы гипотеза объяснила тоже неправильно. В этих, областях у гипотезы не хватило фактов.

Но в то же время гипотеза Шмидта, как ни одна другая гипотеза, сумела объяснить вращение планет вокруг осей, прямые и обратные движения спутников, размещение орбит планет примерно в одной плоскости, почти круговые движения планет по орбитам, разделение планет на две группы; она наметила путь к объяснению закона планетных расстояний, указала, что длина суток на планетах зависит от величины массы планет, а плотность вещества на планетах зависит от их места в солнечной системе.

Картина формирования земного шара из твердых допланетных частиц, хорошо согласуется с последними открытиями геологии, геофизики, геохимии.

Такое полное и обстоятельное истолкование особенностей солнечной системы и происхождения Земли получено в истории науки впервые.

Словом все, что касается формирования Земли и остальных планет из облака твердых допланетных частиц – правдоподобно.

Все, что касается происхождения этого облака – сомнительно.

Неутомимые следопыты прошлого нашей Земли продолжали свои поиски. Предстояло найти, каким образом около Солнца появилось облако допланетных частиц.

Глава одиннадцатая
НА РОДИНЕ ЗВЕЗД


Счастливая ошибка

Человек, невольно содействовавший появлению одной реакционной гипотезы о происхождении звезд, остался неизвестным. Расследование не дало результатов, виновника не нашли, хотя искали его не для того, чтобы наказать, а, наоборот, – щедро наградить.

Обстоятельства этой характерной для буржуазной науки истории таковы.

Дело происходило в 1922 году. Астроном Э. Габбл фотографировал белые спиральные туманности, применяя наибольшие увеличения, какие только способен был дать стодюймовый зеркальный телескоп обсерватории Моунт Вильсон.

В те годы ученые еще не знали, что представляют собой эти странные небесные светила. Они видели, что среди звезд светятся какие-то пятнышки с расплывчатыми неясными очертаниями. В телескопе эти пятнышки выглядели спиральными завитками, словно закрученными неведомым космическим вихрем.

Клочковатая форма белых завитков роднила их с обычными туманностями, но в то же время они не были на них похожи. Завитки излучают белый свет, а туманности – зеленоватый. Спектры туманностей состоят из отдельных цветных линий, свойственных светящимся газам, а спектр спиралей – звездный, такой же как у Солнца. Что же это – звезды, кажущиеся туманностями, или туманности, состоящие из звезд, – оставалось неизвестным.

Положение среди звезд двух соседних галактик: в созвездии Андромеды – М-31 и в созвездии Треугольника – М-33.

Э. Габбл хотел раскрыть загадку белых спиралей. Безлунными ночами, когда устанавливалась тихая погода, когда воздух был прозрачен, а небо безоблачно, Габбл фотографировал спиральные туманности, накапливая материалы наблюдений. Свое внимание астроном сосредоточил на двух туманностях: в созвездии Андромеды и по соседству с ней – в Треугольнике.

Снимки, сделанные на пластинках, имевшихся в обсерватории, ничего особенного или нового не показывали. Отчетливо виднелись спиральные ветви и почти круглое яркое ядро туманности. Казалось, что светоносное вещество несколькими струями изливается из ядра и закручивается вокруг него наподобие часовой пружины. Ничего, что проливало бы свет на природу белых туманностей, заметить не удавалось.

Старый запас фотопластинок подошел к концу. В обсерватории вскрыли коробку из недавно полученной партии пластинок, зарядили кассеты, и Габбл сделал несколько снимков.

Пластинки проявили. Астроном стал их рассматривать и с восторгом убедился, что спиральные ветви не выглядят сплошными струями светоносного тумана. Они распались на множество черных точек. Это были самые обыкновенные звезды, но только исключительно мелкие – восемнадцатой и девятнадцатой величины.

Габбл продолжал фотографировать туманности Андромеды и Треугольника. Число снимков росло. Астроном сравнивал их между собой и заметил, – некоторые черные точки-звездочки на всех фотографиях остаются одинаковыми, а некоторые – меняются. Габбл разложил на столе все снимки, сделанные в течение нескольких месяцев и рассматривал их по порядку, начиная с более ранних. Таким образом он проследил все изменения, происходящие среди звезд туманности Андромеды.

Галактика Андромеды (большое увеличение).

Несколько десятков звезд сначала становились крупнее, потом они слабели и даже совсем исчезали, а затем снова появлялись, разгораясь до прежней величины. Блеск звезд изменялся с исключительной правильностью – звезды разгорались и меркли в точно определенные сроки – одни за 5 суток, другие за 7, третьи за 10, 20 и даже за 40 суток. Все они разгорались быстрее, чем ослабевали.

Это были старые друзья астрономов, чудесные маяки Вселенной – цефеиды. Именно они мигали в спиральных ветвях белых туманностей.

Известно, что все цефеиды – большие и яркие звезды. Тут же, на снимках спиральной туманности Андромеды, они выглядят крошечными звездочками 18 и 19 величины. Очевидно, что эти цефеиды находятся очень далеко.

Измерения, сделанные Габблом и другими астрономами, показали, что до туманности Андромеды 850 тысяч световых лет. Эта туманность расположена за пределами нашей Галактики, и она вовсе не туманность, а соседний млечный путь – другая галактика, другой звездный остров, подобный, по внешнему виду, форме и размерам нашей собственной Галактике.

Все остальные пятнышки, виднеющиеся в Гончих Псах и в других созвездиях, тоже оказались галактиками.

Наука торжествовала новую победу. Ученые узнали о существовании соседей Млечного Пути. Перед ними раскрылась величественная картина Мироздания – беспредельное, бесконечное пространство, населенное бесчисленным множеством звездных островов и архипелагов.

Ученым хотелось добиться еще более лучших снимков и разглядеть строение центральных областей ближайших галактик. Что они такое – клубки ли раскаленной материи или просто скопления обычных звезд.

Но запас хороших пластинок подходил к концу; фирме был послан заказ изготовить точно такие же пластинки и, если возможно, то и более чувствительные. Фирма прислала партию пластинок, но увы – на этих пластинках спиральные ветви опять получались сплошными струями и на звезды не распадались. Телескоп с этими пластинками ослеп.

На тревожные запросы обсерватории фирма ответила, что однажды при производстве пластинок кем-то из служащих нечаянно была допущена ошибка или небольшое отклонение от правил производственного процесса. В результате этой «счастливой ошибки» получилась исключительно удачная партия высокочувствительных фотопластинок. Кто это сделал, какая именно «счастливая ошибка» произошла – установить не удалось, и поэтому повторить нечаянную удачу было невозможно. Лаборатория начала исследование «нечаянно-хороших» пластинок.

Изучение соседних галактик замедлилось. Тайна их центральных сгущений осталась нераскрытой.

Через некоторое время качество пластинок было улучшено, но центральные области ближайших галактик попрежнему выглядели сгустками раскаленной материи и на звезды не разделялись.

И вот это-то несовершенство астрономических фотопластинок позволило Джинсу создать свою гипотезу о происхождении звезд.

По мысли Джинса Вселенная была в начале всех начал заполнена Хаосом, состоящим из холодной пыли и газов. Потом какая-то сверхестественная сила разделила Хаос на огромные облака, размером во много раз большим чем величайшая из галактик.

Эти облака стали сгущаться вокруг своего центра тяжести и при этом разогревались. Их вращение ускорялось. От быстрого вращения облака раскаленной пыли и газов сплющивались и принимали форму спортивного диска.

Джинс произвел необходимые расчеты и доказал, что звезды, обладающие чрезмерно большими массами, неустойчивы. Поэтому облака не могли превратиться в сверхгигантские звезды, они, утверждал Джинс, разделились на отдельные струи. Эти струи вырывались из центрального ядра, закручивались вокруг него спиралями и распадались на звезды.

Наблюдая галактику Андромеды, мы видим процесс образования струй и рождение звезд.

Так образовывались галактики – звездные острова, состоящие из миллиардов солнц.

Джинс нарисовал грандиозную картину Мироздания – дикий и неустроенный Хаос, образование из Хаоса гигантских туманностей и целых звездных систем-галактик.

По его мнению, все звезды Млечного Пути возникли сразу и почти одновременно, подобно тому как образуются кристаллы в переохлажденном растворе.

В течение миллиардов лет звезды будут светить, постепенно угасая. В конце концов, растратив свою энергию, они одна за другой остынут. Вселенная будет освещаться только тусклыми догорающими звездами, потом угаснут и они. Вселенная погрузится во мрак.

Галактика в Треугольнике.

В холодном пространстве будут носиться, подобно черным призракам, мертвые шары угасших солнц. И это будет конец света.

Гипотеза Джинса похожа на гипотезу Канта, но в ней уже нет гордых слов – «дайте мне материю и я из нее построю мир».

Эту гипотезу безоговорочно и без всякой критики признали буржуазные ученые. Она соответствовала их религиозным убеждениям, и никого не смущало, что гипотеза Джинса построена не на знании, не на точных, проверенных фактах, а на незнании, на недостатке фактов, на слабости телескопов, на недостаточной чувствительности фотопластинок.

Печальна судьба науки, опирающейся на невежество и на несовершенство средств познания.

В 1944 году ученые сфотографировали центральную область галактики Андромеды и убедились, что никакого сгустка первобытной и раскаленной материи там нет. Центральная область заполнена обыкновенными звездами. Эти звезды ярче и массивней Солнца, но все же они – только звезды.

Гипотеза об одновременном зарождении звезд оказалась обычным идеалистическим вздором, созданным для укрепления религии. Она вела к безвыходному тупику. Передовая наука от нее отказалась.

Ученые продолжали разведку звездного мира, начатую задолго до появления ошибочной гипотезы Джинса.

Среди звездного леса

Чтобы понять, как развивается дуб, нет необходимости ждать, когда желудь, сбросив свою шапочку, выпустит росток и из него разовьется во всей красе зеленый старейшина наших лесов. Для этого достаточно пойти в лес – там найдутся и желуди, из которых высовывают носики первые листочки, и молодые дубки, и зрелые деревья, и трехсотлетние дуплистые великаны, готовые рухнуть от сильного порыва ветра, и трухлявые стволы поверженных деревьев, которые своими остатками удобряют почву для новых поколений дубков.

В лесу внимательный наблюдатель за несколько часов познает всю многовековую историю дерева.

Длительность «жизни» звезд исчисляется миллиардами лет. Жизнь человека коротка. Проследить как возникают, развиваются и гибнут звезды невозможно не только для одного астронома, но и для многих поколений ученых. Но в этом нет особой необходимости. Перед нашими глазами открывается обширнейший звездный «лес». Среди звезд, мерцающих в ночном небе, несомненно найдутся звезды, только что выбравшиеся из космической колыбели, и «взрослые» звезды, которые прожили большую часть жизни, есть и одряхлевшие «старики», тихо угасающие на склоне лет.

Солнце по сравнению с белым гигантом Ригелем, а рядом Ригель по сравнению со звездами-сверхгигантами.

Главное, что нужно исследователю звездного мира, это найти или угадать признаки юности и старости звезд, то есть научиться отличать молодую звезду от старой.

Поисками этих признаков ученые заняты уже много десятилетий, и это не легко: мир звезд велик и разнообразен.

Любуясь звездным небом, мы видим, что звезды отличаются друг от друга блеском. Одни выглядят яркими точками, другие же кажутся мельчайшей серебристой пылью. По блеск звезд, то есть их видимая яркость на небе, обманчив. Он ничего не может сказать нам об истинных размерах и о действительной яркости звезд.

Звезды находятся на разных расстояниях от нас. Расстояния скрадывают подлинные размеры удаленных предметов. Звезды кажутся не такими, какие они есть в действительности. Маленькая, но близкая к нам, звезда выглядит больше и ярче, чем крупная, но далекая звезда.

Поэтому простое разглядывание звездного неба не дает верного представления об окружающих нас светилах. Нужны длительные, кропотливые исследования, годы наблюдений, разнообразные и совершенные инструменты. И тогда разведка далеких миров принесет людям удивительные сведения о звездах и их особенностях.


    Ваша оценка произведения:

Популярные книги за неделю