355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Майкл Кремо » Деволюция человека: Ведическая альтернатива теории Дарвина » Текст книги (страница 50)
Деволюция человека: Ведическая альтернатива теории Дарвина
  • Текст добавлен: 10 сентября 2016, 02:02

Текст книги "Деволюция человека: Ведическая альтернатива теории Дарвина"


Автор книги: Майкл Кремо



сообщить о нарушении

Текущая страница: 50 (всего у книги 54 страниц)

Энергия связи E (эпсилон)

Энергия связи – еще один фактор, который ощутимо влияет на характеристики нашей вселенной (Rees. 2000. Pp. 43–49). Она определяет формирование атомов и то, как проходят ядерные реакции. Безусловно, все это влияет на существующие формы жизни.

В атомах разных уровней разная энергия связи. Для нас самое большое значение имеет энергия связи молекул гелия. Согласно исследованиям астрофизиков, первое поколение звезд превращает водород в гелий. Ядра атома водорода содержат один протон. Ядра дейтерия, изотопа водорода, содержат один протон и один нейтрон. Когда соединяются два атома дейтерия, образуется один атом гелия с двумя протонами и двумя нейтронами. Масса ядра атома гелия равна 0,993 (99,3%) массы двух протонов и двух нейтронов. В процессе реакции 0,007 (0,7%) массы превращается в энергию, в основном, в тепло. Это число 0,007 и есть энергия связи ядра атома. Она связана с ядерной силой, которая удерживает вместе протоны атома. Рис пишет: «количество освобожденной в процессе реакции энергии зависит от силы, которая „склеивает“ те частицы, из которых состоит ядро» (Rees. 2000. P. 48). Чем больше энергия связи, тем больше ядерная сила. Протоны в ядрах заряжены положительно, а положительные заряды должны отталкивать друг друга. Но сильное ядерное взаимодействие преодолевает это разнонаправленное движение и удерживает протоны вместе. Мы не чувствуем этих сил, поскольку все они проявляются только на уровне атомов.

Если бы значение E[8]8
  Имеется ввиду греческая буква эпсилон. – Примечание автора электронной версии.


[Закрыть]
 было немного другим, атомная структура была бы совсем другой. Например, если бы значение е было равно 0,006 вместо 0,007, это бы означало, что ядерная сила была бы меньше, чем сейчас. Этого было бы достаточно, чтобы не дать возможности появиться элементам более тяжелым, чем водород. Более тяжелые элементы формируются с помощью новых протонов в ядре атома. Водород, в ядре которого один протон, является самым легким элементом. У железа 26 протонов. Но путь к железу и к более тяжелым элементам лежит через водород и гелий. В ядре гелия обычно два протона и два нейтрона. Значит, переход от водорода к гелию требует еще одного шага, – превращения водорода в дейтерий, ядро которого состоит из одного протона и одного нейтрона. Потом два ядра дейтерия соединяются и образуют одно ядро гелия с двумя протонами и двумя нейтронами. Сила энергии связи протонов и нейтронов в ядре атома гелия высвобождает некоторое количество энергии. Итак, если эта энергия связи была бы 0,006 общей массы протонов и нейтронов вместо 0,07, ядерная сила была бы меньше и не дала бы нейтрону соединиться с протоном. Тогда не смогло бы образоваться ядро дейтерия, и, следовательно, не было бы и ядра гелия. Атомы водорода продолжали бы сгущаться в плотные массы, и эти массы бы нагревались. Но реакций бы не происходило, и звезд бы не было. Никаких других элементов бы не возникло. Не было бы ни жизни, ни планет в том виде, в каком они есть сейчас.

Если бы значение е было равно 0,008 вместо 0,007, ядерная сила стала бы, соответственно, немного больше, чем есть. Тогда бы возникла другая проблема в процессе возникновения элементов. Как мы уже поняли, ядерная сила необходима, чтобы удержать протоны вместе. В нашей реальности эта сила не настолько мощна, чтобы стабильно удерживать два протона рядом. Два протона вместе называются дипротон. Во вселенной нет стабильных дипротонов. Это объясняется тем, что сила взаимного отторжения двух положительно заряженных протонов больше, чем энергия связи ядра. Однако этой энергии с числовым значением 0,007 достаточно для того, чтобы привязать протоны к нейтронам, и таким образом получить дейтерий. А уже из двух атомов дейтерия получается атом гелия. Это возможно благодаря тому, что нейтроны дают недостающую энергию связи для удержания двух протонов. Поскольку нейтроны несут нулевой электрический заряд, им не нужна вспомогательная сила отторжения. Давайте теперь посмотрим, что было бы, если бы е было равно 0,008. Тогда два протона смогли бы слиться, получился бы дипротон, изотоп гелия с двумя протонами и без нейтронов. Это значит, что все атомы водорода (в которых по одному протону) в самом начале появления вселенной сформировались бы в дипротоны. В нашей реальности только некоторые атомы водорода становятся атомами дейтерия и гелия, и для этого требуется довольно много времени. Таким образом, во вселенной остается и водород, поскольку он необходим для существования жизни. Барроу и Типлер рассуждали следующим образом: «Если и без того сильное взаимодействие было бы немного сильнее, дипротоны стали бы устойчивыми, и это привело бы к катастрофе – весь водород во вселенной преобразовался бы в гелий на ранней стадии развития вселенной, и сегодня бы не существовало ни водорода, ни постоянных звездных систем. Если бы существовали стабильные дипротоны, – нас бы не существовало!» (Barrow, Tipler. 1996. P. 322). Без водорода не существовало бы и воды, а, следовательно, – и жизни. Постоянные звездные образования так же не смогли бы существовать, потому что водород нужен им как топливо.

Превращение гелия в углерод также может происходить лишь при тех условиях, что существуют в нашей вселенной – и никаких иных (Barrow, Tipler. 1996. Pp. 250–253). Как утверждают современные специалисты по космологии,первые поколения звезд сжигают ядра атомов водорода, и в процессе реакции появляются атомы гелия. Когда в звезде кончается водород, гелиевая сердцевина звезды становится все плотнее. Поднимается температура внутри звезды, и в определенный момент гелий превращается в углерод. У гелия в ядре 2 протона. У углерода же – 6. Теоретически, 3 ядра атома гелия могут превратиться в ядро атома углерода. Но на практике получается по-другому, поскольку очень маловероятно, что 3 ядра атомов гелия могут в одно мгновение столкнуться именно так, чтобы произвести ядро атома углерода. Происходит другой процесс. Сначала 2 ядра атомов гелия в процессе реакции образуют ядро бериллия с 4 протонами. Потом ядра атомов бериллия сливаются с другими атомными ядрами гелия и образуют атомное ядро углерода. Проблема в том, что атомное ядро бериллия нестабильно и довольно быстро разрушается обратно в атомное ядро гелия. Поэтому, казалось бы, углерода должно производиться совсем мало, – значительно меньше, чем те количества, в которых он реально существует во вселенной. Но английский астроном Фрэд Гойл доказал, что у атомных ядер углерода есть определенный уровень резонансной энергии, который находится чуть выше, чем общий уровень энергий бериллия и гелия. Бериллий и гелий получают дополнительную энергию из тепла солнечного ядра и поднимают атомы бериллия и гелия на нужный уровень, и тогда они быстрее могут превращаться в атомы углерода. Возможно, что весь, таким образом произведенный, углерод мог бы сразу превращаться в кислород, если бы атомные ядра углерода сливались с атомными ядрами гелия. Но уровень резонансной энергии атомов кислорода ниже, чем совместная энергия углерода и гелия. Благодаря такому стечению обстоятельств, реакции между углеродом и гелием не происходит. Таким образом, у нас есть достаточное количества углерода для того, чтобы могла существовать жизнь. Рис отмечал: «Эти „случайные“ совпадения в ядерной физике допускают образование углерода, но на следующей стадии, где должен, по идее, формироваться кислород, этого не происходит. Скорость реакции сильно зависит от силы ядерных взаимодействий. Сдвиг даже на 4% значительно уменьшил бы количество образующегося углерода. Поэтому Гойл доказывает, что наше существование было бы под угрозой, даже если бы значение e уменьшилось на несколько процентов» (Rees. 2000. P. 50). Говоря о точно выверенных резонансах, которые допускают образование более тяжелых элементов в звездной среде, Гойл пишет: «Я не верю, что какой-либо ученый, который изучал факты, мог не понять, что все законы физики были тщательно продуманы со всеми вытекающими из них последствиями и теми результатами, которые они производят в звездах» (Barrow, Tipler. 1996. P. 22).

U (омега) и баланс сил в космосе

Современные космологи утверждают, что на начальной стадии были возможны три сценария развития вселенной. 1) Сила гравитации могла быть больше силы расширения, и вселенная бы очень быстро свернулась обратно, до того, как могли появиться галактики и звезды. 2) Сила расширения могла перевесить силу гравитации, и вселенная бы развернулась слишком быстро для того, чтобы могли появиться звезды и галактики. 3) Силы гравитации и расширения могли быть уравновешены, и вселенная расширялась бы именно с той скоростью, которая необходима для формирования звезд и галактик и их долговременного существования.

Таким образом, судьба всей вселенной зависит от критической средней плотности материи. Критическая плотность – это 5 атомов на кубический метр. Если она будет больше 5 атомов на кубический метр, гравитация станет настолько сильной, что вселенная свернется. Если плотность будет меньше этой цифры, вселенная станет расширяться слишком стремительно.

Число омега – это соотношение критической плотности и фактической плотности (Rees. 2000. Pp. 72–90). Если критическая плотность и фактическая плотность равны, соотношение будет равно 1, то есть U[9]9
  Имеется ввиду греческая буква омега. – Примечание автора электронной версии


[Закрыть]
 (омега) = 1. Такое соотношение позволит вселенной медленно расширяться в таком темпе, при котором смогут появляться звезды и галактики, как это происходит в нашей вселенной. Однако в нашей вселенной фактическая плотность видимой материи значительно меньше критической плотности. Если учесть всю видимую материю, звезды, межзвездный газ, то фактическая плотность составит 0,04 критической плотности. Но, наблюдая за движениями видимой материи, ученые убедились, что во вселенной есть вещество, которое условно назвали темной материей. Например, спиралевидные галактики похожи на вертушку, у которой два или больше закрученных потока звезд, которые начинаются из яркого центрального ядра. Когда астрономы смотрят на спиралевидные галактики, они видят, что там нет достаточного количества обычной видимой материи, чтобы эти потоки так изгибались и шли так близко к центрам таких галактик. Согласно законам притяжения, эти потоки должны были быть менее искривленными. А галактикам, чтобы сохранять существующую форму, нужно иметь в десять раз больше материи, чем в них есть по подсчетам ученых. Получается, что в них есть другая материя, «недостающая». В каком же виде она может находиться? Некоторые астрофизики предполагают, что темная материя может состоять из нейтрино, странных частиц с очень маленькой массой, которые появились в результате Большого взрыва или же из мириадов черных дыр с очень большой массой. Рис пишет: «К сожалению, более 90% вселенной остаются непонятными нам – но еще более обидно, что мы не можем даже представить, из чего состоит темная материя – то ли из частиц массой 10(**(–33)) грамм (нейтрино), то ли из частиц массой до 10**39 грамм (черные дыры)» (Rees. 2000. P. 82). Когда к видимой материи присоединяется темная материя, фактическая плотность материи во вселенной становится равна примерно 0,30 от критической плотности. Если сейчас положение дел именно таково, то через миллиарды лет роста вселенной, соотношение фактической и критической плотности материи во вселенной должно быть очень близко к единице. По словам Риса, «Наша вселенная была создана с невероятной точностью, практически идеально точно для того, чтобы сбалансировать уменьшающуюся силу притяжения. Это примерно то же самое, что сидеть на дне колодца и подбрасывать вверх камень – он остановится в самой верхней точке. Точность просто поразительная: через секунду после Большого взрыва R не могла отличаться от единицы больше чем на значение 1/Х, где Х – миллион миллиардов (1/(10**15)) – и поэтому сейчас, через 10 миллиардов лет, вселенная продолжает расти, и значение U не сильно отошло от единицы» (Rees. 2000. P. 88).

L (лямбда): гравитация и левитация?

Если бы гравитация была единственной силой, которая играет роль в расширении вселенной, астрономы могли бы увидеть, что расширение постепенно прекращается. Гравитация должна снижать темп, с которым все объекты во вселенной удаляются друг от друга. Другими словами, мы должны наблюдать замедление роста вселенной. Сила гравитации зависит от общей плотности вещества. Чем больше плотность, тем больше гравитация. Чем больше гравитация, тем больше замедление. В зависимости от плотности того или иного объекта во вселенной, темп замедления будет быстрее или медленнее, но замедление все же должно быть, поскольку сила притяжения больше силы расширения. Однако же вместо этого ученые заметили видимое ускорение темпа расширения. Это было довольно неожиданно, поскольку говорило о том, что помимо силы гравитации есть еще какие-то фундаментальные силы природы, которые скорее отталкивают, чем притягивают. То есть, помимо гравитации, должна быть еще и антигравитация.

Антигравитацию открыли ученые, пытавшиеся посчитать, сколько же во вселенной всего темной материи (Rees. 2000. Pp. 91–95). Видимая материя во вселенной составляет всего 0,04 критической плотности. А критическая плотность – это точное количество материи, необходимой для того, чтобы вселенная могла просуществовать очень долго с относительно стабильными звездными образованиями и галактиками. Материи должно хватить для того, чтобы замедлить темпы расширения вселенной, чтобы вся материя в ней не превратилась в газ безо всяких характеристик. Но при этом материи должно быть ровно столько, чтобы предотвратить расширение вселенной, а не ускорить процесс сворачивания ее в черную дыру. Ученые предположили существование темной материи, которая, хотя и невидима, обладает гравитационным полем, поскольку видимая материя распространяется по вселенной способом, который противоречит всем законам притяжения. Учитывая силу притяжения этой темной материи, можно объяснить и распространение видимой материи. Но все же, если сложить и видимую, и темную материю, фактическая их плотность составит всего лишь 0,30 от критической плотности. Кое-кто из ученых предположил, что устройство вселенной как она есть сейчас, можно объяснить, если фактическая плотность материи будет очень близка критической плотности, и тогда их соотношение (W) будет один к одному (W=1). Но для этого понадобилось бы больше темной материи. Поэтому ученые решили, что, возможно, в природе есть еще некоторое количество темной материи, которая равномерно распределяется по вселенной. В отличие от скоплений темной материи, которые воспринимаются как черные дыры, равномерно распределенная материя практически не влияет своей силой притяжения на отдельные галактики, и поэтому она никак не проявляется в виде аномалий внутри и среди галактик. Но при этом такая темная материя вполне может оказывать влияние на темп расширения вселенной.

Чтобы проверить свои догадки, ученые решили измерить красное смещение определенных типов сверхновых звезд: «Редкий тип сверхновых звезд, известный под названием «тип 1a», – это внезапный ядерный взрыв в центре умирающей звезды, когда большая часть ее массы (или даже вся) сбрасывается в пространство, а оставшаяся центральная часть сворачивается, – говорит Рис. – По сути, это ядерная бомба со стандартным тротиловым эквивалентом… Важно то, что звезды типа 1а можно расценивать как эталонный источник света, достаточно яркий, чтобы его можно было различить с больших расстояний. По их яркости можно предположить расстояние до них, а измерив красное смещение, можно соотнести скорость расширения и изменение расстояний за прошедшую эру. Космологи надеялись, что такие измерения помогут отличить медленное снижение темпов расширения (которого нужно ожидать, если предположить, что была учтена вся темная материя) от более высокого темпа, если – как считали многие теоретики – во вселенной еще достаточно темной материи, чтобы соотношение фактической и критической плотности было один к одному» (Rees. 2000. P. 93). Исследователи были весьма удивлены, когда обнаружили, что их измерения красных смещений сверхновых звезд не выявили никакого замедления вовсе. Вместо этого они увидели, что темп расширения вселенной немного увеличивается. Это означало две вещи: во-первых, во вселенной не существует достаточного количества темной материи, а во-вторых, чтобы объяснить рост темпа расширения, ученым пришлось предположить присутствие еще одной силы – антигравитации.

Идея об антигравитации встречалась еще у Эйнштейна. В 1920-х годах великий ученый предположил, что вселенная статична. Но по его вычислениям получалось, что вселенная не может существовать статично. Сила притяжения вынуждает всю материю во вселенной сопротивляться ей. Чтобы сбалансировать эту силу, Эйнштейн ввел в свои формулы «космологическую постоянную» L[10]10
  Имеется ввиду греческая буква лямбда. – Примечание автора электронной версии


[Закрыть]
(лямбду). Когда космологи согласились с тем, что вселенная расширяется, они забыли о космологической постоянной, поскольку она ассоциировалась с теорией о статичной вселенной. Но сейчас оказывается, что модель растущей вселенной требует присутствия этой константы. Что же именно измеряет L ? Только не саму силу какой бы то ни было материи. Ученый формулирует ее функцию так: L измеряет энергию пустого пространства» (Rees. 2000. P. 154).

Значение L также очень важно. «Если бы лямбда имела большее числовое значение, притяжение было бы преодолено еще раньше, на том этапе, когда элементы были более плотными, – говорит Рис. – Если бы значение лямбда начало преобладать еще до того, как из расширяющейся вселенной появились галактики, или если сила отторжения была бы достаточно мощной, чтобы разрушить их, галактик бы не было. Поэтому для нашего существования необходимо не очень большое значение лямбда» (Rees. 2000. P. 99).

Q

По теории Большого взрыва, наша вселенная появилась как плотное шаровидное образование очень горячего газа. По мере расширения она остывала. Если этот шар был абсолютно ровным, то по мере его расширения атомы газа должны были распространяться равномерно. Для того, чтобы образовались звезды, галактики, скопления галактик, – шар должен был иметь неровности, некоторые его участки должны были быть плотнее других. В этих более плотных участках атомы притягивались друг к другу силой гравитации и постепенно превращались в звезды и галактики. Рис объясняет это так: «Самые заметные формации в космосе – звезды, галактики, скопления галактик – обязаны своим существованием силе притяжения. Мы можем измерить силу их связующую или, что то же самое, сказать, сколько энергии понадобится, чтобы разъединить их, – пропорционально их общей энергии собственной массы (mс**2). Для самых крупных образований в нашей вселенной – скоплений галактик – эта цифра будет равна примерно одной стотысячной. Это чистое число – соотношение двух энергий, которое мы называем Q» (Rees. 2000. P. 106). Иными словами, чтобы преодолеть силу притяжения, которая удерживает вместе атомы галактик, нужно не такое уж большое усилие. Q обязательно соотносится с изначальной плотностью горячего шара на ранних стадиях Большого взрыва. Если бы шар был однородным по плотности, материя распространялась бы во вселенной равномерно, и никаких скоплений вещества на отдельных участках бы не было. Итак, согласно известному значению Q (10**(–5)), изначальные колебания энергии вселенной были не больше, чем одна стотысячная ее радиуса. Ученые надеялись подтвердить это данными со спутников, которые очень точно измеряют минутные колебания в микроволновом фоновом излучении, которое, как принято считать, является остатками газового шара.

Оказывается, что существующее значение Q (10**(–5))является единственно возможным для нашей вселенной с ее постоянно существующими звездами и населенными планетами. Что, если бы Q было меньше чем 10**(–5)? Рис писал, что «тогда галактики были бы нежизнеспособны, формирование звезд шло бы крайне медленно, а „отработанный“ материал бы улетал из галактики, а не шел на формирование новых звезд и планет» (Rees. 2000. P. 115). Если бы значение Q было меньше, чем 10**(–6), «газ бы никогда не сконденсировался в подобные структуры на основе силы притяжения, и вселенная навсегда бы осталась темной и безжизненной» (Rees. 2000. P. 115). А что было бы, будь значение Q больше 10–5? Рис утверждает, что в такой вселенной вся материя бы мгновенно погрузилась в огромные черные дыры и любые оставшиеся звезды «находились бы слишком близко друг к другу, чтобы оставаться стабильными системами» (Rees. 2000. P. 115). Но, несмотря на то, что значение Q критично для нашего существования, никто не знает, почему оно именно такое. По словам Риса, «Причина, определяющая значение Q… остается весьма неясной» (Rees. 2000. Pp. 113–114).

Несмотря на веру ученых в то, что звезды и галактики образуются «сами по себе», согласно законам природы, путем конденсации межзвездного газа, – они при этом не смогли смоделировать этот процесс с помощью компьютера. Рис отмечал, что «никто еще не смог смоделировать зарождение вселенной от появления одного облака газа до формирования звезд и созвездий» (Rees. 2000. P. 110). То есть наличие факта «точной настройки» физических констант вкупе с неумением ученых смоделировать процесс появления звезд и галактик приводит нас к выводу, что в этом процессе задействовано что-то еще, помимо материи, которая преобразуется по физическим законам. Активное вмешательство высшего разума становится неизбежностью. Богу не обязательно следить за выполнением каждой мелочи, но являться первопричиной и осуществлять контроль общего хода развития может только Он.


    Ваша оценка произведения:

Популярные книги за неделю