412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Любовь Стрельникова » Из чего всё сделано? Рассказы о веществе » Текст книги (страница 9)
Из чего всё сделано? Рассказы о веществе
  • Текст добавлен: 1 июля 2025, 07:42

Текст книги "Из чего всё сделано? Рассказы о веществе"


Автор книги: Любовь Стрельникова



сообщить о нарушении

Текущая страница: 9 (всего у книги 11 страниц)

А теперь представьте себе, сколько надо накачать латекса из бразильской гевеи, чтобы полученного из неё каучука хватило бы на все шины и покрышки в мире, не считая сосок и шапочек для бассейна. Даже если мы всю землю покроем плантациями гевеи (хотя она растет только в субтропиках), то и тогда нам не хватит каучука. Всё это было ясно уже сто лет назад. Поэтому химики решили найти замену природному каучуку, который можно было бы производить сотнями тысяч тонн и не зависеть от бразильской гевеи. Но для этого неплохо было бы выяснить, как устроена молекула этого природного вещества.

О том, что молекула каучука состоит только из атомов углерода и водорода, знал ещё Майкл Фарадей. Даже с помощью довольно примитивных методов, которыми пользовались химики в начале девятнадцатого века, он сделал первый химический анализ латекса и каучука, о чём и сообщил миру в научной статье в 1826 году. Но как устроена молекула? Как атомы водорода и углерода соединены между собой? Об этом догадался немецкий химик Герман Штаудингер по прошествии целого века, в 1922 году. После долгих исследований он пришел к выводу, что молекула каучука состоит из постоянно чередующихся одинаковых звеньев, число которых может составлять десятки тысяч. Она очень длинная, поэтому каучук такой гибкий и эластичный.

После открытия Штаудингера довольно быстро, в 1928 году, появилась первая промышленная технология изготовления синтетического каучука. Её придумал русский учёный Сергей Васильевич Лебедев. Первый рукотворный каучук синтезировали совсем не тем способом, которым пользовалась природа. Исходным сырьём русским химикам служил обычный спирт, который в то время делали из разнообразного растительного сырья, например из картошки.

Первый в мире завод по производству синтетического каучука открылся в России в 1932 году. Немцы, испокон веков считавшиеся самыми искусными химиками, запустили своё производство четыре года спустя. С 1932 и до 1990 года наша страна производила этого вещества больше всех в мире. Сегодня почти всю резину, которая только подвернётся вам на глаза, изготавливают из синтетических каучуков. Они, конечно, сильно отличаются от того, что впервые сделал Лебедев. Теперь химики умеют делать десятки разных видов этого вещества с разными свойствами и для разных целей. И кстати, они создали точную копию природного каучука. Случилось это в 1950-х годах.

Мир по достоинству оценил заслуги Г. Штаудингера: в 1953 году ему вручили Нобелевскую премию по химии. А открытие полимеров и их исследования изменили внешний облик нашего мира, потому что человечество, поняв, что такое полимеры и какие выгоды они сулят, сделало на них ставку. Так цивилизация встала на полимерный путь развития.

«При чём же здесь одуванчики? Что у них общего с автомобилем?» – возмутитесь вы. Ах да, простите. Одуванчик, как и бразильская гевея, даёт белый млечный сок, стоит надломить его стебелёк. Так вот, в этом соке, если хорошо покопаться, можно найти крохи природного каучука. Вообще, на Земле обитает несколько сотен видов растений-каучуконосов. На Тянь-Шане растёт одуванчик кок-сагыз, сок которого содержит много каучука. Одно время его даже специально выращивали в России, на Украине и в Казахстане, засевали целые плантации, чтобы добывать каучук. Но вскоре стало понятно, что это пустая затея. Химическая промышленность научилась делать более дешёвый синтетический каучук, и делать много.


От полимеров некуда скрыться!

Открытие полимеров, этих длинных, почти бесконечных молекул из повторяющихся фрагментов, буквально перевернуло наше представление о мире. Оказалось, что самое главное в природе – это полимеры. Белки, из которых построено всё живое, – это полимеры. Причём их синтезом командует молекула ДНК, спрятанная в самом сердце каждой клеточки нашего организма. А молекула ДНК – это тоже полимер. Целлюлоза, из которой построены остовы растений и их клеточные оболочки, – тоже природный полимер, и, пожалуй, самый распространённый. Синтез этого вещества, позволяющего расти траве, цветам и деревьям, идёт непрерывно. И объёмы этого природного производства куда больше, чем у промышленной химии.


Самый важный полимер, который умеет делать природа, – это молекула ДНК. В ней закодированы все инструкции, по которым работают клетки любого живого организма

Наверное, химики не ошиблись, когда начали строить параллельный природе мир из полимеров. И теперь от них просто некуда скрыться. Давайте заглянем на кухню или в ванную комнату. Тазики, плошки, контейнеры, бутылки, стаканчики, одноразовая посуда, пластмассовые электрические чайники, холодильник и микроволновка, линолеум и мебель, водонепроницаемые обои или водоэмульсионная краска – всё сделано из полимеров или содержит их. Я уж не говорю о том, что мы видели с вами в шкафу.

Когда химики поняли, как устроены полимеры, они сообразили, что главное теперь – научиться присоединять одинаковые молекулы друг к другу, пристраивая хвост одной к голове другой. И тогда они будут вытягиваться в длиннющие цепочки, эластичные, лёгкие и прочные. Но чтобы заставить молекулы выстраиваться в шеренги, намертво цепляясь друг за друга, надо было создать им подходящие условия. Да и не все молекулы годились для такого парада, их тоже надо было искать и отбирать. Этим и занялись химики в середине прошлого века. Их настойчивость быстро принесла щедрые плоды.

Человечество еще не успело оправиться от сенсационного открытия синтетического каучука, как химики подбросили ему следующее рукотворное чудо – синтетический полимер по имени найлон. Его получил в 1935 году американский химик Уоллес Карозерс. К этому времени он уже несколько лет работал в исследовательской лаборатории компании «Дюпон». Ради этой исследовательской работы Карозерс отказался от блестящей карьеры преподавателя в Гарвардском университете. Он хотел полностью сосредоточиться на исследованиях. Лаборатория компании «Дюпон» была буквально напичкана самым современным на то время оборудованием. Но Карозерс понимал, что никакая, даже супероснащённая лаборатория, не может конкурировать с природой.

Поэтому надо искать обходные пути. Он искал и находил, даже когда другие отступались. Через четыре года после его изобретения компания «Дюпон» пустила первый в мире завод по производству найлона.

Полимер, полученный Карозерсом, состоял из четырёх разновидностей атомов: углерода, водорода и, в меньших количествах, азота и кислорода. Нить из него получалась прочнее самой прочной, тонкой, блестящей, прозрачной, поэтому из найлона начали незамедлительно делать чулки (точнее, из разновидности найлона – капрона) и рубашки. Женщины сразу же выкинули из своих гардеробов фильдеперсовые хлопчатобумажные чулки и обрядились в тончайшие и прозрачные капроновые, а мужчины – в найлоновые рубашки. Ради моды они даже готовы были мириться с тем, что найлоновая ткань плохо пропускала воздух, плохо поглощала влагу и потому была жаркой и душной.

Конечно, найлоновые волокна больше подходили для технических изделий, потому что были невероятно прочны. Из них и делали ткань для парашютов, корд для автомобильных покрышек и даже бронежилеты, состоящие из двух десятков слоёв найлоновой ткани. Но в судьбу найлона и других синтетических волокон вмешалась экономика. Синтетика легче конкурирующих с нею природных материалов. Из килограмма шерсти можно изготовить 4,25 квадратного метра ткани, из килограмма хлопка – 7,25, из килограмма вискозы – 9,5. А из килограмма найлона получается почти 15 квадратных метров ткани! И даже если поначалу само волокно было дороже природного, ткани из него получались дешевле.

Открытие Карозерса как будто прорвало плотину. Новые полимеры стали сыпаться, как из рога изобилия. Как вы думаете, из чего сделана пластиковая бутылка, в которую наливают любимую вами кока-колу или любимую мною питьевую воду «Николинская»? Из полиэтилентерефталата. А еще из этого полимера можно вытягивать волокна, которые у нас называют лавсаном. Это слово сложилось из первых букв Лаборатории высокомолекулярных соединений Академии наук, где его создали в 1949 году.

То же самое волокно, изготовленное в других странах, и называется по-другому: в Великобритании – терилен, в США – дакрон, во Франции – тергал, в Германии – полиэстер. Хотя во всех случаях состав волокон одинаков. Молекулы лавсана сложены из трех разновидностей атомов – углерода, водорода и кислорода, чьи повторяющиеся комбинации выстроены в гигантские по длине цепочки. Вот и получается, что названий волокон больше, чем самих волокон, если говорить об их химической сути.

Сегодня полиэтилентерефталат – один из самых популярных полимеров в мире, каждый год его производят больше, чем весит всё население нашей страны. Из его волокон делают ткань для плащей и зонтов, тюль для занавесок и кружева, разный трикотаж. Этот полимер идёт на изготовление плёнок, упаковочного материала, бутылок, контейнеров, канатов, парусов, рыболовных сетей, щёток, струн для ракеток и застёжек «молния». Он хорош для изготовления хирургических нитей и протезов сердечных клапанов, сосудов, сухожилий и связок.

Боюсь, эти перечисления вас уже утомили. А ведь мы ещё и словечком не обмолвились о кевларе, нить которого в десять раз прочнее стальной нити такого же веса. О лайкре и спандексе, которые умеют растягиваться, как резинка, и возвращаться к исходному размеру. О тефлоне, самом скользком полимере, из которого, например, получаются отличные покрытия для сковородок. А ведь есть ещё полимеры, из которых не тянут волокна, а просто используют для изготовления самых разных вещей и материалов, – полиэтилен, полипропилен, поливинилхлорид, полистирол, полиуретан, поликарбонат...

Нет, определённо пора остановиться. Мы и так уже поняли, что от полимеров действительно некуда деться. И всё благодаря химикам. Впрочем, разнообразные полимеры – не единственное, чем химики порадовали человечество. Есть не менее важные вещества, которые найдутся в каждом доме.



Мойдодыр

Вы уже догадались, что сейчас мы поговорим о мыле. Никто не знает, кто и когда придумал это удивительное вещество. Известно только, что появилось оно на свет раньше пороха и бумаги. Но тайна его рождения не раскрыта до сих пор. Есть разные версии. Кто-то полагает, что в перечне открытий человечества мыло стоит на следующем месте после шашлыка. И в этом есть логика. Жир, стекающий с мяса, падал на горячую золу в костре. Вещества, входящие в состав жира, реагировали с веществами, содержащимися в золе (её ещё называют щёлоком). А высокая температура только облегчала их взаимодействие. И получалось то, что мы сегодня называем мылом.

Правда, есть и другая гипотеза. У некоторых народов в давние времена, тысячелетия назад, было принято по праздничным дням смазывать волосы благовонными маслами, а в дни скорби – посыпать голову пеплом. И очень может быть, что однажды в праздничный день внезапно объявили траур. В результате на головах смешались масло и зола, которые вдруг запенились, когда обладатели голов решили их помыть. Это больше похоже на миф, чем на правду, но кто знает...

Как бы то ни было, но мы обрели это удивительное вещество, с которого начинается каждый день и каждая трапеза. Впрочем, так было не всегда. Давайте мысленно перенесёмся в Испанию или Францию на пятьсот лет назад. Тогда, в Средние века, вроде бы и мыло уже было известно. Но какая же вонь стояла в Европе! Люди не мылись месяцами. Испанская королева Изабелла Первая не стеснялась заявлять, что в своей жизни она мылась всего лишь два раза – когда родилась и когда выходила замуж. Страдая от неприятного запаха при дворе, французский король Людовик Четырнадцатый приказал придворным использовать крепко пахнущие духи, чтобы как-то перебить зловоние. С этого началась всемирная слава французских духов.

Возможно, неприятие мыла было отчасти связано с тем, что долгие века его варили из отходов переработки животных жиров. Поэтому мыло тех времен омерзительно пахло. Белое же мыло, похожее на нынешнее туалетное, впервые изготовили в Германии лишь в 1843 году – из белого сала с кокосовым маслом.

Так что же такое мыло как вещество? Молекула мыла – это образец компромисса и примирения. Ведь в ней сосуществуют две противоположности, тянущие её в разные стороны. Если представить молекулу гусеницей, то её голова будет всегда стремиться к воде, а всё остальное длинное тельце будет стараться её избежать. Такие «гусеницы» при попадании в воду поведут себя забавно: головы нырнут в воду, а тельца встанут вертикально над водой, как частокол.

Почему так получается? Свою голову «гусеницы» унаследовали от щёлока, который любит воду. А тельце досталось от жирных кислот, входящих в состав масла и жиров. Они воду терпеть не могут. В этом легко убедиться. Возьмите стакан с водой и капните туда немного подсолнечного масла. Убегая от ненавистной воды, оно соберется на её поверхности единым слоем – ведь оно легче воды. Теперь энергично разболтайте или перемешайте содержимое стакана. Масло разобьется на мельчайшие капельки, которые будут метаться в воде, но довольно быстро поднимутся к поверхности и сольются в один слой – дальше просто некуда бежать.

А теперь добавьте в этот стакан совсем немного мыла и перемешайте. Никакого слоя масла на поверхности не образуется. Дело в том, что на мельчайшие капельки жира набросились тысячи молекул мыла. Их длинные тельца впились в масляные капельки, а водолюбивые головы остались в воде. Поэтому капелька жира, окруженная сплошной шубой из молекул мыла, спокойно болтается в воде и не стремится подняться на поверхность. Такую смесь, когда капельки жира равномерно распределены в воде, учёные называют эмульсией. А вещества, которые удерживают капельки в толще воды, – поверхностно-активными веществами.

То же самое происходит, когда мы моем грязные и жирные руки. Молекулы мыла обволакивают частицы грязи и жира и тем самым растворяют их в воде. А вода уносит грязь в канализацию. Кстати, мыло удаляет не только видимую грязь. В цепкие объятия молекул мыла попадают даже невидимые глазом загрязнения, например бактерии и вирусы. Так что мойте руки с мылом перед едой!

Однако у этого чудесного вещества есть недостатки – оно перестает мылиться в жёсткой воде, о которой я уже немного рассказывала в предыдущей главе. Жёсткая вода содержит соли кальция и магния, они образуют с мылом нерастворимые соединения – вот мыло и перестаёт мылиться. Хотите убедиться? Попросите маму купить в аптеке сухую морскую соль. Растворите её в воде, а потом попробуйте в этой воде намылить руки – ничего не получится. Мыло не даёт пену. Капните туда подсолнечного масла – оно будет как ни в чём не бывало плавать на поверхности и размазываться по стенкам сосуда.

Это создавало большие проблемы для домохозяек. Дело в том, что в разных реках и озерах, в разных подземных источниках и водопроводных кранах на Земле течёт разная вода. Где-то мягкая, в которой мыло хорошо мылится, а где-то жёсткая. В ней ни голову помыть мылом, ни бельё постирать.

И тут на помощь домохозяйкам пришли химики...


Мыльная пена при ближайшем рассмотрении выглядит изысканным архитектурным сооружением


Густая пена в жёсткой воде

Химики придумали новые моющие средства – синтетические. Но прежде надо было понять, как устроена молекула мыла. Первым её строение установил французский учёный Мишель Эжен Шеврёль. Случилось это в начале девятнадцатого века. А вот первые синтетические поверхностно-активные вещества появились меньше ста лет назад. Сегодня эти вещества делают из продуктов переработки нефти. И делают в огромных количествах, потому что в каждом доме нужны стиральные порошки, которые позволят стирать в любой воде. Повторите эксперимент с «морской водой». Только на сей раз бросьте в неё щепотку стирального порошка и взболтайте. Всё правильно – появилась пена. И капля масла исчезла, как положено.

Уж коль мы всерьёз занялись экспериментами, давайте попробуем сделать настоящее мыло. Правда, для этого нам потребуется сода, но не пищевая, которая стоит на кухне, а стиральная, или кальцинированная. Её, если поискать, можно найти в магазинах. И заодно уж попросите папу купить стеариновую свечку (именно стеариновую, а не парафиновую!), она нам тоже пригодится, и пригласите его принять участие в вашем эксперименте, папы это любят.

Итак, в небольшое количество кипящей воды добавляйте, помешивая ложкой, столько соды, сколько вода сможет растворить. Потом слейте горячий раствор в стакан или кружку и добавляйте к нему по каплям растительное масло до тех пор, пока оно не перестанет растворяться. Сделали? Теперь оставьте раствор охлаждаться и возьмите другую кружку. Налейте в неё горячий раствор соды и капайте в этот раствор стеарин с горящей свечки, а папа пусть перемешивает раствор, чтобы капельки растворялись. Потом добавьте щепотку обычной поваренной соли из солонки и оставьте остывать. После охлаждения в первой кружке вы получите жидкое мыло, а во второй – твердое, оно само всплывает наверх. А как убедиться, что это именно мыло, вы уже знаете.

Интересно, а природа умеет делать такие вещества? Да, разумеется. Если бы не они, то мы никогда бы не пили молоко. Ведь молоко – это эмульсия жира в воде. А капельки жира удерживают в объёме жидкости именно природные поверхностно-активные вещества, называемые фосфолипидами. Да что молоко! Эти вещества есть в каждой клетке любого живого организма, в том числе и нашего, – из них построены оболочки клеток.

Фосфолипиды – отличные эмульгаторы. Поэтому, когда готовят майонез, в смесь всегда добавляют куриные желтки: в них особенно много фосфолипидов. Смесь взбивают, фосфолипиды обволакивают капельки жира и превращают смесь в ту самую белую эмульсию, которую мама добавляет в салат оливье.

Было бы несправедливо в рассказе о мыле не вспомнить о мыльных пузырях. Наверное, вы пускали их десятки раз и любовались этими радужными прозрачными шарами. Дело в том, что часть света отражается от верхней поверхности пузыря, а другая часть проходит сквозь его тонкие стенки и отражается от нижней границы мыльного слоя. И в результате такого расхождения потоков света на пузыре появляется радуга. Причём она как будто живая, все время меняется и двигается. Это потому, что и сам пузырь, как живой, его стенки постоянно истончаются, толщина плёнки меняется, вот он и играет всеми цветами радуги.

Чтобы выдуть большой и устойчивый пузырь, нужен правильный раствор. А знаете, какой правильный? Сейчас я вам открою секрет. Правда, это не мой секрет. Рецепт идеального раствора для пузырей придумал английский учёный Чарльз Бейс в начале прошлого века и даже написал целую книгу про мыльные пузыри. Просто представить невозможно, сколько он выдул этих пузырей за свою жизнь.

Итак, раствор должен быть не только мыльным, но и вязким. А вода для раствора должна быть максимально чистой. Но мы-то с вами уже умеем делать чистую воду с помощью холодильника. Правда, для мыльных пузырей сгодится и просто кипяченая вода. В ста граммах (полстакана) тёплой чистой, дождевой или кипяченой, воды растворите два грамма тонко наструганного сухого «Детского» мыла и десять граммов чистого глицерина. Когда раствор остынет, добавляйте в него нашатырный спирт (он, возможно, есть в домашней аптечке), пока раствор не станет прозрачным и не начнёт сильно пахнуть аммиаком.

Ну вот, раствор готов. Теперь можно выдувать пузыри. И лучше всего это делать с помощью стеклянной палочки с расширяющимся концом. С таким раствором и такой палочкой вы всегда будете занимать первое место на конкурсе выдувальщиков мыльных пузырей – больших и долгоживущих. А мы тем временем продолжим рассказ о важных веществах, которые есть в каждом доме и которые придумали химики.


Выдуть гигантский мыльный пузырь – для химика дело простое, потому что он знает рецепт специального мыльного раствора


Почему шипит аспирин?

Прежде чем мы ответим на этот вопрос, давайте разберёмся, что такое аспирин. Лекарство, скажете вы, которое есть в каждой аптечке. Правильно. Причём одно из самых популярных лекарств в мире. В Америке его принимают почти по любому поводу. Голова заболела, простуда одолела и поднялась температура, суставы заломило – скорее глотать это универсальное средство. Он действительно помогает во всех перечисленных случаях. Хотя этот препарат популярен ещё и потому, что относительно дёшев и купить его можно без рецепта врача.

Из чего же сделан аспирин и кто его придумал? На самом деле аспирин – это индивидуальное вещество, у которого есть химическое название – ацетилсалициловая кислота. Так и пишут на упаковке этого лекарства. Впервые его получил молодой немецкий химик Феликс Гофман в 1897 году, когда он работал в компании «Байер». Так что возраст этого препарата перевалил уже за сто десять лет.

Почему вдруг Гофман решил синтезировать именно это вещество? Да очень просто – Феликс был хорошим сыном и очень хотел помочь отцу, которого мучили боли в суставах. В то время артрит лечили солями салициловой кислоты. Однако не каждый пациент мог принимать это лекарство: у чувствительных людей он разъедал желудок и грозил бедой. Вот Феликс и подумал, что надо как-то обезвредить молекулу агрессивной салициловой кислоты, прицепить к ней ещё что-нибудь. Так на свет появилась ацетилсалициловая кислота.

По сути, её молекула состоит из двух частей, что и звучит в названии. Одна из них – целебная салициловая кислота, вторая – ацетил, или часть молекулы уксусной кислоты. Это вещество уже не столь едкое, его может принимать каждый. Но аспирин надо хорошенько измельчать, чтобы его крупинки не прилипали к стенкам пищевода и желудка – кислота всё-таки. А стоит аспирину пройти этот путь и попасть в кишечник, как его молекулы начинают разваливаться на составные части, выделяется салициловая кислота, которая попадает в кровь и лечит. Что уж она делает, учёные пока в деталях не выяснили, но – лечит! Как говорится, медицинский факт.

Вообще-то если долго хранить аспирин, то он будет постепенно разлагаться на составные части. Ограниченный срок его хранения связан именно с этим. А давайте-ка проведём с вами химический опыт. Для этого нам понадобится старый аспирин, у которого срок годности истёк, – наверняка такой завалялся в семейной аптечке. Можно, конечно, взять и новый, дешёвый, в таблетках. Но лучше уж лекарство использовать по назначению.

Сначала таблетки надо истолочь, а затем залить небольшим количеством горячей воды, чтобы он растворился, теперь раствор нужно довести до кипения и кипятить на слабом огне полчаса. Только никакой самодеятельности! Все организационные вопросы решайте с мамой или папой – какую посуду взять, кто включит плиту.

Во время нагревания аспирин довольно быстро распадается, и вместо аспирина теперь в растворе находятся салициловая и уксусная кислоты. Убедиться в этом очень просто – раствор стал пахнуть уксусом. А теперь осторожно слейте горячий раствор в небольшую плошку, лучше стеклянную и прозрачную, и оставьте охлаждаться. По мере того как температура раствора будет падать, в нем начнут образовываться красивые игольчатые кристаллы салициловой кислоты, которые будут оседать на дно. Когда их наберётся заметное количество, зовите всех домашних, чтобы похвалиться своими химическими успехами. Уверяю вас, что никто из них никогда в жизни не видел кристаллы салициловой кислоты. Это будет для них сюрпризом.

И заодно поразите их рассказом, почему при простуде пьют чай с малиновым вареньем. Малина – одна из немногих ягод, которая содержит салициловую кислоту, вот эти самые полученные вами бесцветные кристаллики. Попил горячего чаю с вареньем – и взмок до пяток, потому что температура упала и сосуды расширились. Всё равно, что выпил аспирин.

Может быть, вы уже догадались, почему шипит большая таблетка растворимого аспирина, который продают в аптеках? Фармацевты придумали её специально, чтобы не заставлять пациента толочь таблетку, а быстренько и легко растворить её. Делают это, добавляя в аспирин немного обычной пищевой соды и лимонной кислоты. Если у вас дома есть и то, и другое, то можно провести интересный опыт.

Я слышу ваш радостный крик: «А мы уже делали такой опыт! Капали сок лимона на соду! Как шипело!» Действительно, такой опыт мы уже делали, но ведь в нем мы использовали сок лимона, то есть раствор лимонной кислоты в воде. А сейчас мы возьмём чистую лимонную кислоту – мелкие бесцветные кристаллы из пакетика.

Итак, сначала смешайте чайную ложку соды и столько же лимонной кислоты и посмотрите, что произойдёт. Правильно, ничего не произойдёт. Два кристаллических вещества будут равнодушны друг к другу. Но стоит эту смесь высыпать в стакан с водой, как начнётся бурная реакция – вода забурлит, её толщу наполнят пузырьки, стремительно вырывающиеся наружу. В воде кристаллики соды и лимонной кислоты растворились, разъединились на молекулы и начали взаимодействовать друг с другом. В результате такой бурной реакции выделяется углекислый газ.

Если бросить в воду таблетку шипучего аспирина, то произойдёт то же самое. Сода и лимонная кислота, растворяясь, будут взаимодействовать друг с другом. А пузырьки углекислого газа, стремящиеся вверх, будут разрывать таблетку аспирина на мельчайшие части. Вот и весь секрет. Остается только добавить, что и питьевая сода, и лимонная кислота, как и продукты их взаимодействия, безвредные пищевые вещества.

Человечеству нужно много аспирина, ведь простужается каждый, да и с суставами у многих проблема. В мире производят 40 тысяч тонн аспирина в год, или более 80 миллиардов таблеток, по 14 таблеток на каждого жителя Земли.

А есть ли рядом с нами ещё какие-нибудь необычные вещество, которые сделали химики? Конечно, есть. Например, вещество, на которое вы смотрите каждый день по многу раз, – жидкие кристаллы.



Что общего у малины и аспирина? И та, и другой содержат салициловую кислоту. Именно она сбивает высокую температуру во время простуды


То, чего не может быть

Бывают ли жидкие кристаллы? Для тех, кто вдумывается в смысл слов, ответ не так очевиден. Так как же ответить?

Попробуйте задать этот вопрос папе. Скорее всего, он незамедлительно и уверенно ответит: «Конечно же нет!» А потом, после короткого замешательства, столь же уверенно скажет: «Конечно, бывают! Вот же они!» – и покажет на дисплей своего компьютера или вашего мобильного телефона.

Папино замешательство легко объяснимо. Ведь кристалл – это что-то твёрдое, с упорядоченной структурой, где каждый атом или молекула сидят на своих местах, как привязанные. А жидкость – это текучий хаос, её молекулы не удерживаются на своих местах, а всё время бегают. Можно, конечно, кристалл нагреть и расплавить, чтобы он превратился в жидкость. Но либо одно, либо другое. Жидкий кристалл – это то, чего не может быть.

А между тем они есть. Впервые их обнаружил в далеком 1888 году австрийский ботаник Фридрих Рейнитцер, изучавший свойства холестерина. Наверняка, бабушка и дедушка поминали его – холестерин, конечно, – недобрым словом. А может быть, и мама с папой. Дело в том, что это вещество, содержащееся, например, в жирной пище, осаждается на стенках наших кровеносных сосудов и закупоривает их. Когда такое случается, люди начинают задыхаться и хвататься за сердце. Поэтому мама, заботясь о здоровье всей вашей семьи, старается покупать продукты, в которых мало холестерина.

Однако холестерин необходим всем живым организмам, потому что именно он делает стенки клеток прочными. Это и побудило Рейнитцера заняться его изучением. К удивлению для себя, он обнаружил, что у холестерина есть как бы две точки плавления и соответственно два разных жидких состояния – мутное и прозрачное. Именно это «мутное» состояние, промежуточное между кристаллом и жидкостью, впоследствии назвали жидкокристаллическим. А сегодня известны уже десятки тысяч природных и синтезированных химиками веществ, проявляющих такие свойства.


Вот так загадочно и красиво выглядят жидкие кристаллы в поляризованном свете, если их рассматривать в микроскоп. Ещё раз повторю: они – жидкие

Что у всех у них общего? Форма молекул, которая бывает сильно вытянутой или похожей на диск. Первые напоминают карандаши с квадратным сечением, а вторые – монеты. Давайте сделаем мысленный эксперимент: возьмём коробку такого размера, чтобы карандаши или монеты легли в неё максимально плотно. Понятно, что карандаши в таком случае лягут ровными рядами, а монеты – колоннами. Если мы потрясём коробку, то ни один карандаш, ни одна монета не сдвинутся со своих мест. По сути, мы получили модель твёрдого кристалла.

А теперь давайте мысленно немного раздвинем стенки коробки. Это похоже на нагревание вещества, при котором оно расширяется. Если мы теперь потрясём коробку, то прежний идеальный порядок нарушится. Карандаши начнут скользить туда-сюда и вдобавок вращаться вокруг собственной оси. То же и с монетами, столбики которых мгновенно рассыплются. Они заполнят свободный объём коробки и будут течь, повинуясь нашим движениям, то есть будут вести себя подобно жидкости. Но при этом они сохранят и определенный порядок: карандаши лягут строго в одном направлении, а монеты переместятся строго в своей плоскости. Наш мысленный эксперимент весьма точно отражает то, что происходит в настоящих жидких кристаллах.

Чем же они так интересны? Дело в том, что взаимное расположение молекул этих веществ в пространстве сильно зависит от внешних условий, например от температуры. В свою очередь, от «упаковки» этих молекул зависит цвет вещества. Зависимость эта настолько сильная, что позволяет на глаз определить изменение температуры на десятые доли градуса. Где это можно использовать? Правильно, в термометрах. В 1963 году американец Дж. Фергюсон получил патент на обнаружение тепловых полей с помощью жидких кристаллов.

Но у жидких кристаллов есть и более важное и широкое применение. Оказалось, что цвет тонкой плёнки жидкого кристалла можно изменять при помощи электрического поля. Именно так на дисплеях наших мобильных телефонов и компьютеров, на плоских экранах телевизоров и табло в аэропортах, на панелях микроволновых печей и холодильников появляются цифры, буквы и картинки. А в 1968 году в США впервые был продемонстрирован принципиально новый индикатор: к разным частям тонкой жидкокристаллической плёнки прикладывали электрическое поле, и на ней возникало изображение букв, цифр, геометрических фигур, образованное прозрачными и непрозрачными участками плёнки.

Сегодня мы живём в окружении жидких кристаллов, сами того не замечая. А химики без устали синтезируют всё новые жидкие кристаллы, чтобы цвета были более насыщенными, а сами дисплеи служили дольше. Говорят, что каждое пятое новое органическое вещество, синтезированное химиками, обладает свойствами жидких кристаллов.


    Ваша оценка произведения:

Популярные книги за неделю