Текст книги "Из чего всё сделано? Рассказы о веществе"
Автор книги: Любовь Стрельникова
Жанры:
Детская образовательная литература
,сообщить о нарушении
Текущая страница: 8 (всего у книги 11 страниц)
Глава 6. Хвала синтезу!

Охота за веществом
Природа – величайший творец, которому пока нет равных. Она создала самое необыкновенное вещество – воду, благодаря которой появилась жизнь. Она создала мир запахов, красок и удивительных природных материалов, без которых невозможно представить этот мир. Природа ничего не делает зря. Всё, что она создаёт, необходимо для жизни. А значит – может быть полезно людям. Химики учатся у природы, стараются открыть её секреты и не только повторить, но даже и превзойти своего учителя. И это потрясающе интересно, хотя и непросто.
С чего начинается работа химика, как, впрочем, и любого другого исследователя? С вопроса. «Почему лепестки этого цветка красные?» – спрашивает себя химик и придумывает, как ответить на этот вопрос. То есть придумывает схему эксперимента. Первое, что надо сделать, – это выделить из лепестков то самое вещество, которое окрашивает цветок в красный цвет. И эта задача сама по себе невероятно сложна. Ведь в цветке содержится тысяча разных веществ! А надо выделить всего одно, а может быть, несколько.
К каким только ухищрениям не прибегают химики! Измельчают лепестки, а потом из получившейся массы вытягивают вещества, растворяя их в воде, а чаще – в каких-нибудь других веществах-растворителях, например в спирте или бензоле. Если раствор получился красный, значит, в него наверняка перешли красящие вещества, за которыми мы охотимся.
Но теперь вещества надо извлечь из раствора. И не просто извлечь, а очистить их, чтобы в руках оказалось совершенно чистое, индивидуальное соединение. Здесь химики чего только не делают! Фильтруют, выпаривают, растворяют остаток в горячем растворителе и вновь осаждают при охлаждении (химики называют этот перекристаллизацией), разделяют вещества на специальных приборах, называемых хроматографами, и многое-многое другое.
Наконец, тёмно-вишневые кристаллики неизвестного вещества у нас в руках. Хотя, это может быть и густая бордовая жидкость. А знаете, как проще всего убедиться в том, что это чистое вещество, а не смесь? Вот вам подсказка.
У каждого вещества, как и у людей, есть свои индивидуальные свойства. Мы отличаемся друг от друга неповторимым узором ушной раковины, рисунком радужной оболочки глаза или узором кожи на кончиках пальцев и на ладонях. Недаром криминалисты так любят отпечатки пальцев. Какие же индивидуальные черты есть у вещества? Например – температура плавления или кипения, измеренная с высокой точностью. Вода, например, кипит ровно при 100 градусах, а спирт – при 78,4 градуса, лёд плавится ровно при нуле градусов, а стеариновая кислота, из которой в основном состоят свечи, при 69,6 градуса.
Химики используют эту подсказку. Если полученное ими вещество – жидкость, то они наливают её в специальный стеклянный сосуд, называемый колбой, вставляют в неё термометр и начинают медленно нагревать, внимательно следя за жидкостью и температурой. Столбик термометра ползет вверх, но с жидкостью до поры до времени ничего не происходит.

На картине Чарльза Мейера Уэбба хорошо видны детали древней химической лаборатории. И хотя инструменты в то время были не бог весть какие, первые попытки экспериментально исследовать вещество заложили начала современной химии

А вот так выглядит современная химическая лаборатория, напичканная самым разным оборудованием. С таким арсеналом химики сегодня тратят гораздо меньше времени на исследование и синтез вещества, чем их древние коллеги
И вот она начинает кипеть, как вода в кастрюле, и постепенно испаряться. Но теперь уже со столбиком термометра ничего не происходит, он стоит как вкопанный на отметке, которая равна температуре кипения жидкости. И если вся жидкость в колбе испарится при этой температуре, значит, у нас было одно-единственное вещество без всяких примесей.
Допустим, мы убедилось, что полученное вещество чистое. Но как оно устроено? Из каких атомов собраны его молекулы и какова их структура? Чтобы ответить на этот вопрос, в прежние времена химики подвергали вещество самым разным испытаниям. Смотрели, в чём оно растворяется, а в чём нет, при какой температуре плавится и кипит, проводит ли ток и притягивается ли магнитом, как взаимодействует с другими веществами и что при этом получается. Сотни экспериментов, десятки реакций и годы работы, чтобы понять структуру молекулы одного-единственного вещества. Не забыли, что на разгадывание, как устроена молекула индиго, Адольф Байер потратил 18 лет? Так вот это далеко от рекорда. На то, чтобы выделить витамин В12 и расшифровать структуру его молекулы, понадобилось 36 лет. Но результат стоил потраченных усилий. Ведь этот витамин очень важен для работы нашего мозга, без него он отказывается понимать умные книги. Кстати, Дороти Ходжкин, которая поняла, как устроена молекула витамина В12, была удостоена за это Нобелевской премии по химии.
Ещё один пример. Великий английский учёный Майкл Фарадей первым выделил и описал знаменитое вещество бензол. Это случилось в 1825 году. Но лишь через 40 лет немецкий химик Фридрих Август Кекуле догадался, как устроена его молекула. А ведь на первый взгляд – ничего сложного, молекула бензола состоит всего из двенадцати атомов, шести атомов углерода и шести атомов водорода.
Сегодня расшифровка структуры неизвестного вещества занимает гораздо меньше времени. Нынешнему химику, пожелавшему установить формулу индиго, не придётся тратить 18 лет, как А. Байеру. Теперь в его распоряжении есть множество самых разных хитроумных приборов, которые помогут быстро решить задачу. Перемещаясь от одного прибора к другому, исследователь для начала установит, что в состав молекулы индиго входят шестнадцать атомов углерода, десять атомов водорода, два – азота и два – кислорода. А затем выяснит, какой узор выложен из этих атомов, в какой последовательности они соединены между собой. И потратит на это не больше недели.
Здорово? Быстро? Да. Вот только этот выигрыш во времени получился за счёт... химии. Ведь в такого рода исследованиях ценность представляет не только конечный результат, но и путь, который прошел учёный.
Адольф Байер, пока бился над структурой индиго, попутно установил строение десятков новых веществ и придумал множество новых реакций, которыми сегодня пользуются все химики. Неудивительно, что он получил Нобелевскую премию по химии – её дают за большой труд.
Играем в шахматы с природой
Вам когда-нибудь приходилось разбирать старый механический будильник на части? Наверняка вы это делали. Интересно же знать, почему ходят стрелки, почему он тикает и звенит. И вообще – как он устроен внутри. Оказывается, сколько же в нем самых разных винтиков, шестерёнок, осей! Даже есть крошечный молоточек, который бьёт по звонкому куполу, когда вы поставили будильник на определённое время, чтобы он разбудил вас.
А удавалось ли вам когда-нибудь решить обратную задачу – собрать из этих деталей тот самый будильник, который вы только что распотрошили? И чтобы при этом ещё и стрелки двигались? Готова поспорить, что нет, если только вам не помогал папа. Потому что разбирать на части гораздо проще, чем собирать. Хоть будильник, хоть дом, хоть молекулу.
Первая мысль, которая приходит в голову любому настоящему химику, только что установившему структуру молекулы неизвестного вещества, очень проста – как её сделать самому? Как повторить природу? Собрать нужное количество разных атомов в колбе и хорошенько встряхнуть, чтобы получилось желаемое вещество, не получится – атомы не существуют сами по себе, они всегда связаны с другими, они живут внутри молекул разнообразных соединений. Значит, надо брать разные вещества и заставлять их взаимодействовать друг с другом. Затем получившееся вещество запускать в реакции с другими. И так, шаг за шагом, приближаться к цели. Ведь мы должны получить вполне определённую молекулу со своим неповторимым узором, где каждый атом стоит на заданном месте в окружении других, строго определённых атомов. Мы должны собрать будильник, который будет работать.
Получение желаемого вещества из других, имеющихся в нашем распоряжении, называют синтезом. Знаменитый американский химик, нобелевский лауреат по химии Роберт Вудворд сравнивал это увлекательное занятие с игрой в шахматы с природой. Химик делает свой ход – проводит реакцию между двумя веществами. Природа отвечает ему, выдавая продукт реакции, порой неожиданный. Химик шевелит мозгами и делает следующий ход – запускает только что полученное вещество в новую реакцию. Природа отвечает... Эта шахматная партия может длиться годами. Случается, она заходит в тупик – химик получает мат. И всё приходится начинать сначала. И снова – десятки и сотни ходов, пока не будет найден кратчайший путь получения того заветного вещества, ради которого и разыгрывалась партия.
В случае с ализарином «партия» длилась 43 года и завершилась в 1869 году. Уже через два года заводы начали производить этот знаменитый красный краситель. Роберт Вудворд приступил к синтезу витамина В12 с очень сложной, большой молекулой в начале 1960-х годов и бился над ним одиннадцать лет, притом что в работе ему помогали швейцарский коллега Альберт Эшенмозер и около ста студентов и аспирантов Гарвардского университета. Оказалось, что кратчайший путь к витамину В12 включает сто различных последовательных реакций! А синтез хлорофилла, того самого вещества, которое окрашивает листья и траву в зелёный цвет, потребовал четырёх лет и включал в себя около сорока последовательных реакций.
Случается и так, что химик задумывает одно, а получает совсем другое – так диктуют законы природы и непредвиденные обстоятельства. В 1856 году восемнадцатилетний англичанин Уильям Генри Перкин решил из каменноугольной смолы синтезировать природное вещество хинин. Оно содержится в коре хинного дерева. Если жевать эту кору, то можно излечиться от малярии. Деревьев на всех не напасёшься, поэтому нужно было придумать, как сделать это вещество в обход природы, из подручных веществ. Перкин экспериментировал в домашней лаборатории. Он уже спланировал последовательность своих действий, то есть схему синтеза, как скажут химики. Но тут вмешался случай.
Исходные вещества, которые использовал молодой студент, были не очень чистыми, в них содержалось некоторое количество постороннего вещества – анилина. И реакция пошла так, как сочла нужным природа, – вместо желанного хинина неожиданно получилось вещество красивого фиолетового цвета, доселе неизвестное. Перкин назвал его мовеином. Это был первый синтетический краситель, которого нет в природе.
Перкин сумел по-хозяйски распорядиться своим открытием. Уже через год заработала его фабрика, производящая мовеин, и он стал богатым человеком. К чести Перкина, он не забросил после этого занятия наукой, а принялся за исследования с удвоенной энергией. И передал свою любовь к химии сыну, тоже Уильяму Генри Перкину, которого, чтобы не путать с отцом, называют младшим. Тот тоже стал известным химиком.
А хинин, кстати, удалось синтезировать лишь в 1944 году, спустя 88 лет после задумки Уильяма Генри Перкина-старшего. Как вы думаете, кто это сделал? Роберт Вудворд! Вот уж кто был великим синтетиком.
Химия как искусство
Большинство молекул природных веществ, за которыми химики неустанно охотятся, удивительно красивы. Структурные формулы их молекул похожи на изысканные кружева. Синтез такого вещества – это акт творения, сравнимый с созданием шедевров живописи, скульптуры и архитектуры. Подобно художнику, накладывающему на полотно мазок за мазком, химики по законам природы строят молекулы, шаг за шагом складывая кружевной узор. Поэтому химию часто сравнивают с искусством. Вот что по этому поводу говорит лауреат Нобелевской премии по химии Роальд Хоффман: «Создание молекул сближает химию с искусством. Мы собственноручно творим те объекты, которые потом воспринимаем и изучаем. В точности то же самое делают писатели, художники и композиторы. По существу, именно этим химики отличаются от любых других учёных».
У каждого шедевра, например, в живописи и скульптуре, есть автор – Леонардо да Винчи, Микеланджело Буонарроти, Марк Антокольский, Диего Веласкес, Валентин Серов, Эдуар Мане, Василий Кандинский и многие другие. В химии то же самое. Только здесь имена создателей присваивают реакциям – тем самым маленьким актам творения, которые позволяют построить тот или иной фрагмент молекулы или получить нужное вещество. Именных реакций – сотни. Реакция Арбузова, Гриньяра, Фаворского, Гофмана, Бутлерова, Кучерова, Несмеянова, Вёлера, Байера, Виттига... Бывает, что одному химику принадлежит несколько именных реакций. Например, у Адольфа Байера их аж восемь, а у Эмиля Фишера – девять!

Природа умеет создавать для своих нужд самые разные волокна. Например – белковые, которые производит паук и плетёт из них паутину
Химики очень дорожат такой славой. И знаете почему? Имя создателя закрепляется за реакцией стихийно, безо всякой официальной процедуры. То есть авторство признают коллеги-химики по всему миру. А коллеги, они же соперники, в таких делах весьма взыскательны и никогда не подарят бессмертие тому, кто его не заслуживает.
Счастлив тот химик, которому удалось раскрыть тайны природы и расшифровать формулу природного вещества. Ещё более счастлив тот, кто смог синтезировать это вещество в лаборатории из подручных реактивов и попутно открыть именную реакцию. Ведь благодаря его труду мы можем не тревожить природу, не брать у неё лекарства, красители, витамины и волокна, а делать их сами. Но безмерно счастлив тот, кто сумел синтезировать вещество, которого нет в природе, но которое так нужно людям. Благодаря таким исследователям химики и технологи создают параллельный мир, так похожий и так не похожий на природу. Об этом – наш дальнейший рассказ.
Инспекция в шкафу
Параллельный мир начинается в шкафу, где хранится одежда. Давайте-ка в него заглянем и изучим этикетки, которые торчат из швов с изнаночной стороны рубашек, брюк, кофточек и платьев. Ну и что вы разглядели? Что там написано? Наверняка, вам попались слова «хлопок», «лён», «шерсть», «шёлк», «вискоза», «полиамид», «полиэфир» (ПЭ), «полиакрилонитрил» (ПАН), микрофибра и другие мудрёные названия. Так называют волокна, из которых сделаны ткань или трикотаж.
С хлопком всё понятно. Вы ведь наверняка знаете, что есть такое растение хлопчатник, которое любит солнце и тепло и потому растёт в южных странах. Его плоды напоминают коробочки, именно так они и называются. Когда плоды созревают, коробочки раскрываются и становятся видны семена, окружённые пушистым клубком белого волокна, похожего на вату. Оно состоит из природного вещества с названием «целлюлоза», да-да, того самого, из которого сложены стволы и ветви деревьев.

А хлопчатник изготавливает белые пушистые волокна из чистейшей целлюлозы. Их мы называем хлопком

Похожие белковые волокна прядёт гусеница тутового шелкопряда и строит из него вокруг себя кокон. Эти волокна мы называем шёлком
Напомню, что молекулы целлюлозы похожи на длинные ажурные нити, состоящие из повторяющихся фрагментов, как нитка бус с одинаковыми бусинками. «Бусинок» в молекуле целлюлозы может быть очень много, от трёх-четырёх сотен до десяти тысяч. Такие длинные молекулы с повторяющимися звеньями химики называют полимерами.
Итак, коробочки с хлопком собирают, волокно вынимают, очищают от семян, мнут, расчёсывают и прядут из него тонкие мягкие нити. А потом из этих нитей ткут ткани, которые нередко раскрашивают в разные цвета (спасибо химикам за красители!). В прежние времена нити из хлопка пряли на самодельных прялках и ткани тоже ткали вручную на маленьких станках – утомительно и долго. Первые прядильные и ткацкие машины появились в Англии сравнительно недавно, немногим более 200 лет назад. И вот тогда стало возможным делать много хлопковой ткани, цена на неё упала, и её смогли покупать люди с разным достатком. Из хлопковых тканей можно сделать что угодно – хоть рубашки и блузки, хоть ночные сорочки и трусы, хоть постельное бельё и полотенца. Этот чудесный природный материал приятен телу. Вот поэтому мама и бабушка предпочитают кофточки из хлопка. Да и папа любит хлопковые рубашки.
Лён – это тоже понятно. Возможно, вы даже видели это симпатичное растение с мелкими синими цветочками. Когда оно цветёт, поля льна становятся похожими на сине-зелёную морскую гладь, по которой ветер гоняет волны. Стебли льна собирают, замачивают в воде и треплют, чтобы отделить связки волокон от коры. А дальше – как и с хлопком – прядут льняные нити, а из них делают ткани, которые очень ценятся во всём мире. Состав льняных волокон тот же, что и у хлопка. Только молекулы целлюлозы у льна длиннее и сплетаются в более толстые волокна, поэтому льняная ткань прочнее хлопковой и лучше впитывает влагу. Из льна всегда получались самые прочные канаты и лучшие полотенца в мире.

Ещё один кладезь природных целлюлозных волокон – лён, голубые поля которого похожи на море
Природные волокна, из которых можно делать ткани и одежду, мы берём не только у растений. Животные тоже мастера по этой части. Остриг барана, отмыл шерсть, расчесал, и пряди нити, сколько хочешь. А уж из шерстяных нитей можно связать всё, что угодно, – шапочки и варежки, носки и шарфики, свитера и рейтузы, пончо и палантины. Можно даже сделать красивую шерстяную ткань для мужского костюма.
А из чего сделана шерсть? Тоже из целлюлозы? – спросите вы. Нет, животные, в отличие от растений, производят другой строительный и защитный материал – белки. Это тоже длинные, гибкие молекулы. Но если целлюлозные молекулярные нити сложены из одинаковых фрагментов, то белковые нити сконструированы из двадцати разных «бусинок», которые называют аминокислотами. Они могут чередоваться в разной последовательности, их может быть разное количество. Представляете, сколько комбинаций аминокислот можно составить? Много! Бесконечно много! Вот почему мир белков невероятно богат и разнообразен. И вот почему шерсть бывает разная: у овцы – одна, у козы – другая. Да и овцы бывают разные: сегодня на пастбищах по всему миру гуляют более двухсот видов овец, выведенных учёными.
Между прочим, шёлк – это тоже белковое волокно. Только производит его червячок по имени тутовый шелкопряд. Он питается листьями тутового дерева, поэтому выращивать его можно лишь в тёплых странах, где такие деревья растут. Природа так придумала, что червяки шелкопряда должны превращаться в куколку, из которой вылупляется бабочка. Потом бабочка отложит яйца, из них вылупятся червячки, и все начнётся сначала.
Подросшие и сытые червяки в нужное время начинают плести кокон. Они выдавливают из себя тончайшую белковую нить (подобно паукам, которые из этой нити плетут паутину) и опутываются ею от хвостика до головы. Длина этой нити может доходить до километра! В результате червячки оказываются внутри цельного, плотного, белого кокона, похожего на маленькое и очень лёгкое яйцо или футляр для киндерсюрприза. Червячки работают быстро – через два-три дня кокон готов. Но, говорят, в этой работе им мешает шум. Поэтому люди, выращивающие тутового шелкопряда, ходят едва ли не на цыпочках, когда червячки возводят вокруг себя домики без окон и дверей.
Согласно легенде, китайская императрица Хен-Линг-Чи нечаянно уронила кокон в чашку с горячим чаем и увидела, как он распушился и от него отделились шёлковые нити. Случилось это четыре с половиной тысячи лет назад. С тех пор разматыванием коконов, размягчённых в горячей воде, занимаются во многих странах мира. Из получающейся тончайшей нити ткут восхитительные, лёгкие, красивые ткани.
Да, эти природные волокна, которыми с нами делится природа, хороши, нет слов. Но где же взять столько хлопка, льна, баранов с козами и тутового шелкопряда, чтобы одеть каждого жителя планеты в одежду из природных волокон? Ведь нас уже больше шести миллиардов.
Вискоза, или Чем заменить хлопок и шёлк
Когда возникает проблема такого рода, на помощь зовут химиков. И правильно. Ведь «наука должна служить для пользы народной». Так говорил великий русский учёный Дмитрий Иванович Менделеев.
Итак, нужны волокна для одежды. Такие же, как природные, или похожие на них. Где их взять? Или как их сделать? Видимо, химики 170 лет назад рассуждали так. Раз мы берём растительные волокна из хлопка и льна, то наверняка такие же волокна есть и в деревьях, из древесины которых делают бумагу. Тогда ещё химики не знали о полимерах, но уже умели получать целлюлозу, вываривая древесину и отделяя целлюлозу от других веществ, содержащихся в стволах и ветках деревьев.
В 1832 году французский химик Анри Браконно обнаружил, что если древесную целлюлозу обработать азотной кислотой, то получатся волокна, которые сгорают в мгновение ока. Так появился на свет искусственный материал нитроцеллюлоза, или нитроклетчатка. Через сорок лет его начали производить на многих заводах.
Лучшую нитроцеллюлозу получали все же из хлопка, именно её использовали в качестве бездымного пороха, потеснившего классический, известный ещё с тринадцатого века чёрный порох – смесь угля, серы и селитры Нитроцеллюлоза из древесины тоже нашла своё применение – из неё делали материал целлулоид, из которого, в свою очередь, изготавливали фотоплёнку и шарики для настольного тенниса. Говорят, что и теперь самые лучшие шарики для этой игры – из целлулоида.
А химики продолжали экспериментировать с целлюлозой. В 1889 году французский учёный Гильер де Шардоне сделал из неё первое искусственное волокно. Он растворил целлюлозу в смеси специальных химических веществ и получил вязкую массу, похожую на сгущённое молоко или на клей. А затем он продавил эту массу через очень маленькую дырочку. Тонкая струйка падала в ванну, наполненную кислотой, и под её действием превращалась в гибкую, твёрдую, блестящую нить. Это волокно назвали вискозой, произведя имя от латинского слова, означающего клей или вязкий. А ещё де Шардоне сделал из нитей вискозы первую искусственную ткань, названную искусственным шёлком. Спустя восемь лет вискозное волокно начали производить на заводах в Англии.

Красный бархатный занавес тоже сделан из вискозы. Вообще, вискозное волокно, если его обрабатывать разными способами, может быть жестким и мягким, блестящим и матовым. Вот почему из вискозы сегодня делают такие разные ткани

Прозрачный и шуршащий целлофан, в который заворачивают цветы и конфетки, – это вискоза, первое искусственное волокно, которое химики научились делать из древесины
Можно сказать, что синтез вискозы подтвердил блестящее предположение знаменитого английского физика Роберта Гука, которое он высказал более чем за двести лет до создания этого первого искусственного волокна. В 1655 году он опубликовал трактат, в котором сделал вот такое заявление: «Возможно, по-видимому, найти пути искусственно получать клейкую массу, аналогично тому, как она образуется у шелковичного червя, или даже ещё лучше. Если такая масса будет найдена, то, по-видимому, более лёгкой задачей будет найти путь вытягивания этой массы в тонкие нити. Я не буду указывать на пользу этого изобретения – она совершенно очевидна...»
Как вы думаете, что общего между бархатом, шуршащей, прозрачной бумагой, в которую заворачивают цветы, и кирзовыми сапогами? И то, и другое, и третье сделано из вискозы. Она может притвориться тончайшим и лёгким хлопком, а может – блестящим шёлком. Из неё получаются великолепные атласные и бархатные ткани. А если вязкий раствор продавливать не через круглое отверстие, а через длинную узкую щель, то получится плёнка – целлофан, наряд для красивых букетов. Сегодня под именем «вискоза» скрывается множество разных волокон. Ведь химики умеют добавлять в исходную массу всякие компоненты, чтобы получить материал с нужными свойствами. Но всех их роднит одно – вискозные волокна по своему строению близки к природной целлюлозе. Только природное волокно ворсистое и неровное, а вискозная нить – гладкая, блестящая и полупрозрачная.
Конечно, людям очень понравилось это волокно. Его имя мы до сих пор встречаем на этикетках, прикреплённых к одежде. Не говоря уже о том, что для его производства требовалось бросовое сырьё – опилки, отходы от обработки древесины и изготовления бумаги. Но вот что интересно. Химики долгое время работали с веществом, не зная, как оно устроено! Его химическую структуру определили лишь в 1934 году, когда заводы и фабрики уже много лет производили миллионы километров вискозной нити и тканей из неё. Потому что о том, что такое полимеры, в том числе и природные, мир узнал совсем недавно, по историческим меркам, чуть меньше ста лет назад. И это отдельная история, о которой стоит рассказать.
Одуванчик и автомобиль
Что общего у одуванчика и автомобиля? И тех, и других очень много, скажете вы. Но такой ответ не принимается, потому что, в отличие от автомобилей, одуванчики никто никогда не пересчитывал, да и вряд ли это возможно. Тогда что же? Можно, конечно, спросить папу, но как раз сейчас он подкачивает спустившееся колесо своего автомобиля во дворе. Хотя это и есть ответ на наш вопрос – колесо! Точнее, вещество, из которого сделана его оболочка.
Из чего же сделана шина автомобильного колеса и защищающая её покрышка? Из резины, скажете вы. А из чего сделана резина? Из очень интересного вещества, имя которого – каучук.
Впервые о каучуке узнали американские индейцы сотни лет назад. Колумб вернулся домой, в Испанию, из открытой им в 1492 году Америки не с пустыми руками. Он привез с собой множество всяких неизвестных «сокровищ». Говорят, что среди них был эластичный мяч, сделанный из древесной смолы, который высоко отскакивал от земли. Такие мячи индейцы делали из сока бразильской гевеи – вечнозелёного дерева, произраставшего на берегах Амазонки. Этот сок назывался «каучу» – «слёзы млечного дерева» по-индейски. А испанцы назвали его латексом, что означает сок по латыни, а вещество, содержащееся в латексе, – каучуком.
Получали каучук просто. На дереве делали надрез, и из него начинал сочиться белый сок (латекс), похожий на молоко, который собирали в разные плошки. Кстати, сходство с молоком здесь не только внешнее. Как и молоко, латекс представляет собой водную эмульсию. Так химики называют смесь воды с веществом, которое в ней не растворяется и плавает в виде мельчайших шариков. Поэтому смесь такая белая, а не прозрачная. В молоке это шарики жира и белков, в латексе – каучука.

Белый густой сок, стекающий из надреза на дереве гевеи, химики называют латексом. Именно из него извлекают натуральный каучук, из которого в свою очередь делают резину для воздушных шариков и покрышек
Если капельку латекса рассмотреть под микроскопом, то можно увидеть малюсенькие частицы размером от одного до пяти микрон – в несколько десятков раз меньше, чем толщина вашего волоса. Они мечутся в разные стороны, как живые. Да-да, это то самое броуновское движение, о котором мы с вами уже говорили в первой главе.
В соке гевеи меньше половины приходится на долю каучука. Остальное – вода. Чтобы выделить латекс, индейцы поступали точно так же, как и мы с молоком, когда хотим получить из него творог. Если в настоящее деревенское молоко добавить немного кислоты (лимонного сока, например), то молоко «свернётся». Дело в том, что из-за кислоты капельки жира и белков начнут слипаться, эмульсия – разрушаться, и на дно осядут белые слипшиеся крупинки – творог. Так и с латексом. Если в него добавить немного органических кислот, уксуса или того же лимонного сока, то он разделится на густой слой каучука и воду, которую можно просто слить. А можно нагревать латекс на медленном огне с тем же результатом. Только не забывать при этом постоянно перемешивать.
Из получившегося липкого каучука, который затвердевал на воздухе и темнел, но по-прежнему оставался эластичным и прыгучим, индейцы и делали свои знаменитые мячи, первые в мире галоши и сосуды для воды. Им пропитывали ткани, чтобы сделать их непромокаемыми. Европейцы обратили внимание на это удивительное вещество лишь в 1736 году, когда Французская академия наук занялась его исследованием. Тогда же начали придумывать, как его использовать.
В 1791 году англичанин Сэмюэль Пил взял патент на пропитку ткани каучуком, то есть запатентовал способ, которым давно пользовались индейцы. В 1823 году шотландец Чарльз Макинтош придумал другую непромокаемую одежду: между двумя полотнами ткани делали каучуковую прослойку и из полученного материала шили плащи. В честь изобретателя их назвали макинтошами, которые очень быстро вошли в моду.
И всё бы ничего, да вот только природный каучук оказался капризным. В холод – затвердевал и трескался, в жару становился липким и вонючим. Поэтому восторги по поводу новых материалов, содержащих каучук, быстро угасли. Может, мы и забыли бы навсегда об этом веществе, если бы не открытие американца Чарльза Нельсона Гудьира (часто его фамилию произносят как Гудиер). Он не сомневался, что из каучука можно сделать что-то полезное и хорошее, поэтому несколько лет возился с этим веществом. С чем он только его не смешивал! Говорят, что и с солью, и с перцем, пока, наконец, не добрался до серы. Оказалось, что если смешать каучук с серой и немного нагреть, то он превращается в твёрдый материал, который и в жару, и в холод сохраняет свою эластичность и упругость.
Так, в 1839 году на свет появилась резина. А процесс, который изобрёл Гудьир, назвали вулканизацией в честь Вулкана – древнеримского бога огня. Это было действительно изобретение века. Потому что быстро выяснилось, что резина нужна всем и везде. Соски для малышей и шланги для воды, резинки для белья и подтяжки, подмётки и сапоги, воздушные шары, транспортёрные конвейерные ленты, электроизоляция, герметики и клеи, детали и прокладки для кранов и механизмов, которые установлены в автомобилях, тракторах, самолётах, кораблях... И конечно же шины и покрышки.
Первый патент на пневматическую велосипедную шину получил шотландец Джон Данлоп в 1888 году. А вскоре началась эра автомобилей. Первыми, кто стал использовать пневматические резиновые шины на автомобилях, были французы Андре и Эдуард Мишлен. Случилось это в 1895 году. Гудьир, Данлоп, Мишлен – фамилии этих изобретателей по сей день звучат в названиях крупнейших фирм-производителей «обуви» для транспортных средств.
Кстати, знаете, почему автомобильные шины чёрные? Потому что кроме серы, которая превращает вязкий и липкий каучук в твёрдую и упругую резину, в него добавляют ещё черную сажу, которая увеличивает прочность резины и делает её более долговечной.








