Текст книги "Из чего всё сделано? Рассказы о веществе"
Автор книги: Любовь Стрельникова
Жанры:
Детская образовательная литература
,сообщить о нарушении
Текущая страница: 5 (всего у книги 11 страниц)
Надо отдать должное учёным – они справились с этой задачей. В 1954 году американская фирма «Дженерал электрик» сообщила, что её сотрудники получили алмазы искусственным путем при давлении 100 000 атмосфер и температуре 2600°С, то есть имитируя природные условия. Алмазы были мелкие, менее одного миллиметра (то есть весом менее 0,01 карат), и чёрные, но вполне пригодные для технических нужд. Технология была строго засекречена. Однако было уже ясно, что джин вырвался из бутылки. Через семь лет в России, в Институте физики высоких давлений, в лаборатории академика Леонида Федоровича Верещагина синтезировали первые русские алмазы.
Сегодня искусственные алмазы получают самыми разными способами. Например, сильно сдавливают и одновременно разогревают графит в специальных реакторах. Или воздействуют на графит взрывом, в момент которого давление и температура невероятно высоки. Или заставляют пары углерода кристаллизоваться на плоской поверхности в виде микроскопических кристалликов алмаза. Их твёрдость – важнейшая для технических применений характеристика – не уступает, а порой и превосходит твёрдость природных алмазов. Есть даже технологии, позволяющие делать чистые, прозрачные кристаллы, но они, естественно, обходятся намного дороже.
И хотя сегодня мы умеем делать алмазы, споры о том, как же они образуются в природе, продолжаются. Чтобы понять это, геохимики и минералоги исследуют метеориты, периодически прилетающие к нам из космоса. Оказывается, в своих каменных телах они содержат крупинки алмазов. Значит, механизм их образования работает не только в недрах земли, но и в недрах Вселенной. Возможно, вам предстоит поставить точку в этом споре, если вы посвятите себя химии или минералогии. А я расскажу вам историю про одного из таких пришельцев с алмазами.

Искусственные алмазы есть в каждом доме, или почти в каждом — например, алмазная пилка для ногтей. Если вы рассмотрите её под лупой, то вам удастся разглядеть отдельные кристаллы, как это показано на фотографии. Прекрасный абразивный инструмент!
Метеорит, который съели
Почти 130 лет назад, в сентябре 1886 года, возле деревни Новый Урей Пензенской губернии упал метеорит. Ну и шуму он наделал! Вот как рассказывает об этом учитель П.И. Барышников, выпускник Лесного института (Санкт-Петербург), который оказался в этих краях. Он не только описал сами события, но и прислал осколки метеорита в Санкт-Петербург для изучения.

Вот такие небесные гости прилетают к нам из космоса. Имя им – метеориты

Небесные пришельцы оставляют следы не только в небе, но и на Земле. Один из таких кратеров расположен на острове Саарема в Эстонии. Метеорита нет, а яма осталась
«Рано поутру несколько новоурейских крестьян верстах в трёх от деревни пахали свое поле... Вдруг совершенно неожиданно сильный свет озарил всю окрестность; затем через несколько секунд раздался страшный треск, подобный пушечному выстрелу или взрыву, за ним второй, более сильный. Вместе с шумом в нескольких саженях от крестьян упал на землю огненный шар; вслед за этим шаром невдалеке над лесом опустился другой, значительно больше первого. Всё явление продолжалось не более минуты.
Обезумевшие от страха крестьяне не знали, что делать, они попадали на землю и долго не решались сдвинуться с места... Наконец, один из них, несколько ободрившись, отправился к тому месту... и, к удивлению своему, нашёл неглубокую яму; в середине её, углубившись до половины в землю, лежал очень горячий камень чёрного цвета. Тяжесть камня поразила крестьян...
Затем они отправились к лесу разыскать второй, больший камень но все усилия их были напрасны. Лес в этом месте представляет много болот и топей, и найти аэролита им не удалось: по всей вероятности он упал в воду. На следующий день один из крестьян того же Урейского выселка отправился на своё поле посмотреть копны гречихи. Здесь совершенно случайно он нашёл такой же точно камень, какой принесли накануне его соседи. Камень тоже образовал вокруг себя ямку; часть камня была в земле...
Дальнейшие поиски крестьян в окрестностях Нового Урея не привели ни к чему. Следовательно, выпало всего три куска. Самый большой из них упал, без сомнения, в лесу в болото; второй по величине, упавший при крестьянах на пашне, приобретен мною и отослан вам для минералогического кабинета института, и, наконец, третий, найденный крестьянином в гречихе, съеден...
Крупинки аэролита считались положительно универсальным лекарством. Распространились нелепые слухи о «чудесном исцелении», требования на «Христов камень» усилились. Счастливый владелец метеорита пользовался случаем и продавал камешек чуть не на вес золота, выказывая при этом сноровку настоящего завзятого аптекаря. Приём «Христова камня» производился таким образом: пациент, купивши ничтожный кусочек метеорита, толок и растирал его в порошок и затем, смешав с водой, благоговейно выпивал, творя молитву и крестное знамение...»

Наверное, этот юный следопыт думает, что нашёл метеорит, и сторожит его. Увы, это всего лишь каменный валун, который притащил с собой надвигающийся ледник десятки тысяч лет назад. Их у нас в России много
Прощай, градусник!
Я смотрю, поиски природных материалов в квартире вас захватили. И вы просто молодец, что нашли градусник. Этот удивительный маленький прибор, который учёные называют термометром, сделан из стекла, о котором мы уже кое-что знаем, и самого необычного металла в природе, ртути. Именно серебристый ртутный столбик легко бежит за вашей температурой, потому что расширяется при нагревании. Ртуть тоже добывают из природных минералов.
Между прочим, учёные долго спорили, считать ли эту блестящую жидкость металлом. Но, поразмыслив, согласились, что она конечно же металл: блеск у неё самый что ни на есть металлический и она хорошо проводит тепло и электрический ток, как настоящий металл. А уж если охладить её до минус 39 градусов, то она станет твёрдой и её можно ковать. Поэтому, кстати, с помощью ртутного термометра вам не удастся зимой определить температуру воздуха в Якутии, ведь там бывает еще холоднее.
Ртуть легко испаряется, особенно при нагревании. Это свойство используют, чтобы добыть её из соответствующей руды. Ведь под землей нет чистых ртутных озёр. А есть, например, киноварь, соединение ртути с серой, красивейший минерал ярко-красного цвета с названием под стать: киноварь в переводе с арабского означает «кровь дракона». Итак, берут эту руду и – в печь. При температуре 700-750 градусов сера, можно сказать, выжигается из руды, а чистая ртуть испаряется. Горячие пары загоняют в специальные холодные аппараты, где пары превращаются (или конденсируются, как скажут химики) в жидкий серебристый металл.
От ртути очень много пользы и в технике, и в промышленности. Но нам и одного термометра достаточно. Если в каждой семье есть термометр, то сколько же этой ртути надо добыть!
Однако здесь есть проблема. Термометры частенько бьются. Какой же бывает в доме переполох, когда кто-то разбил градусник! Мама начинает обзванивать своих знакомых: что делать?! Папа залезает в Интернет в поисках советов, а бабушка требует вызвать МЧС. Переполох, конечно избыточный, но имеет основания. Ртуть – ядовитый металл. Опасность усугубляется ещё и тем, что ртуть испаряется и её незаметные пары могут причинять вред. Другое дело, что в градусниках её мало.
Правда, сейчас бытовые ртутные термометры почти не выпускают, а в европейских странах они и вовсе запрещены. Но в прежние времена со ртутью обращались более чем легкомысленно, потому что не знали о её губительных свойствах. А если и догадывались, то не знали, как защититься.
Когда в Санкт-Петербурге возводили Исаакиевский собор, то потребовалось позолотить его большие купола. Покрывали их листами из меди. А вот как нанести золото тонким слоем на медь, да чтобы ещё держалось крепко, тогда не знали. Точнее, знали единственный, но чудовищный, с точки зрения современного химика, способ. И связан он был со ртутью.

Вот он, старый добрый градусник. Настоящий, со столбиком жидкой ртути. Сейчас такой уже и не найти. Опасную ртуть в этом полезном устройстве теперь заменяют на менее ядовитый металлический сплав галлия с индием – он тоже жидкий при комнатной температуре

Ртуть получают из очень красивого минерала по имени киноварь. Кстати, вот вам еще один древний источник красного пигмента
Дело в том, что ртуть легко растворяет в себе золото и многие другие металлы, образуя так называемые амальгамы. Если на золотое колечко попадёт капелька ртути, то она мгновенно «впитается» в драгоценный металл. И ничем её не отодрать – ни щетками, ни мылом, ни шкуркой. Есть единственный способ – нагреть кольцо, чтобы ртуть просто испарилась. Вот это свойство ртути и взяли на вооружение мастера прошлого. Слитки золота растворяли в чанах со ртутью, затем эту жидкую амальгаму разливали тонким слоем по медному листу, а потом на открытых кострах медные листы нагревали. Ртуть испарялась, а на меди оставался намертво приросший тонкий слой золота. Надо ли говорить, что люди, которые занимались этим опасным делом, дышали ядовитыми парами ртути, заболевали и быстро умирали от отравления организма.
Конечно, сейчас такие варварские технологии не используют. Но потребовалось много времени, пока не была обучена и подготовлена армия химиков, которые занялись изучением веществ, накопили знания и создали технологии с минимальными рисками для человека.
Интересно, если ртуть растворяет разные металлы и образует амальгамы, то в чём же её хранят и перевозят? Отличный вопрос, вопрос будущего технолога. Дело в том, что некоторые металлы, в частности железо, кобальт и никель, не поддаются ртути. Поэтому её перевозят в ёмкостях из простой стали. А особо чистую ртуть – в стеклянных, керамических или пластмассовых банках.
На вашем месте, я бы припрятала подальше этот градусник. Кто знает, может, лет через двадцать-тридцать он будет настоящей ценностью, раритетом, место которому – в музее.
Кривое и прямое зеркало
Кажется, охота за веществами в своем доме у нас получается удачная, потому что вы держите в руках зеркало. Да, этот предмет тоже сделан с использованием природных материалов, почерпнутых из земли.
Понятно, что зеркала в привычном для нас виде появились тогда, когда люди научились изготавливать плоское стекло. Отражающий слой у первых таких зеркал делали из амальгамы олова, то есть металла олова, растворённого в ртути. Тонкий слой этой амальгамы, нанесённый на стекло, застывал и становился твердым.

Только очень гладкое зеркало с хорошим отражающим слоем может точно передать эту красоту. Такие зеркала, которые теперь есть в каждом доме, научились делать всего-то 150 лет назад
Самые первые зеркала, как и все новинки, стоили очень дорого. В царских дворцах, скажем, в летнем дворце Петра Первого в Летнем саду в Санкт-Петербурге, небольшие по размеру зеркала в дорогих рамах и с бантами вешали на стенах высоко, выше человеческого роста, так что увидеть своё отражение было невозможно. Но эти зеркала были просто очень дорогим украшением, символом достатка и роскоши. К тому же у них была ещё одна функция – они отражали свет свечей, и в помещении становилось намного светлее. А смотреться в них, пожалуй, даже и не стоило. Тогда ещё не умели идеально полировать стекла. А малейшие неровности и бугорки на поверхности искажали изображение, и чаще всего не в лучшую сторону. Зеркала получались по-настоящему кривыми.
Полировать стекла до почти идеальной ровности научились довольно быстро, и даже изобрели специальную полировальную машину. А вот с опасной ртутью были проблемы – надо было чем-то её заменить. Но чем?
Этим чем-то стало серебро. Сто семьдесят пять лет назад немецкий химик Юстус фон Либих изобрел серебрильный раствор, то есть способ, позволяющий высаживать серебро из водного раствора его соединений тонким сплошным слоем на стекло. Важнейшим компонентом раствора помимо соединения серебра был... обыкновенный сахар. Ещё через двадцать лет французский химик Ш. Птижан сделал технологию получения зеркал более совершенной, и она практически без изменений дожила до наших дней. Когда вы будете изучать химию в старших классах, то вместе с учительницей сможете сами провести эту знаменитую реакцию «серебряного зеркала».
Даже и представить себе невозможно, как же люди жили без зеркал пока не было ни стекла, ни амальгам, ни серебрильных растворов. Но если оглядеться и подумать, всегда что-нибудь найдётся. Поначалу они изучали своё отражение в воде. А потом, когда появилось золото, стали до зеркального блеска полировать его пластинки и смотреть на своё отражение. Плохое, конечно, жёлтое и мутное, но хоть что-то. Потом люди изобрели бронзу – сплав меди и олова. Бронза тоже отлично полировалась, но изображение по-прежнему было жёлтым, не очень четким, а сама бронза, в отличие от золота, быстро темнела – окислялась на воздухе, как скажут химики. Так что ничего не оставалось, как изобрести стеклянные зеркала с серебром.
Более того, технологи научились делать зеркала, которые обманывают вас (а может, радуют?), потому что делают вас красивее в отражении. А хитрость проста. Стекло для зеркала должно иметь неуловимый розовый оттенок. Оно дает столь же четкое изображение, как и обычное зеркало, но скрадывает мелкие недостатки кожи. Лицо в этом зеркале кажется свежим и молодым.
Но зеркала созданы не только для того, чтобы в них любоваться или ужасаться. Со временем у зеркал нашлось много другой важной работы. Они отражают свет в фарах автомобилей, установлены в маяках, в тех самых машинах времени – телескопах, о которых мы с вами уже говорили, и во многих других приборах. Одним словом, очень полезная вещь.
Силиконовая долина
А это что за игрушка? Игровая приставка «Плейстейшн»? Спасибо, что показали, я теперь хоть знаю, как она выглядит, во времена моего детства таких игрушек не было. Как и любимой папиной «игрушки» – персонального компьютера. И маминой – мобильного телефона, с которым она не расстаётся ни на минуту. А из чего сделана начинка всех этих электронных устройств, процессоры и чипы, флешки и сим-карты? Я уже слышу, как вы кричите: «Из вещества!» Правильно. Всё сделано из вещества. Только вот из какого в данном случае?
Имя этому веществу – кремний. Именно этот элемент, который вместе с кислородом образует песок (тот, что на пляже), лежит в основе всей современной электроники и даже всей нашей цивилизации. Кремний – символ высоких технологий, и неслучайно место в Калифорнии, где сосредоточены главные американские фирмы в области хай-тека, называется Силиконовой, или Кремниевой, Долиной. Можно сказать, что мы живём в каменном веке.
Для того чтобы получить кремний, который удовлетворит электронщиков, химикам пришлось крепко потрудиться. Мало того что он должен быть суперчистым, то есть содержать строго определённые примеси в количестве не более одного атома примеси на миллион атомов кремния. Но кроме этого, всё электронное устройство должно быть собрано на одном цельном кристалле кремния.

Силиконовая долина — это всего лишь точка на географической карте штата Калифорния в США. Это городок, в котором живут и работают ученые, придумывая нам на радость всякие электронные штучки. Здесь ничего не добывают. Здесь производят знания и технологии

Микрочипы и сейчас очень маленькие, размером с муравья. Но они будут еще меньше по мере того, как химики создадут новые необычные материалы
Как вырастить такой кристалл? Сначала получают чистый кремний. В принципе получить кремний просто, достаточно смешать песок с углем – два природных, широко распространённых вещества – и нагреть до 1800°С. Углерод оторвет кислород от кремния и улетит с ним в виде углекислого газа. Но в таком кремнии будет множество примесей, поэтому химики придумали другую технологию. Кремний в результате получался чистым, но это был порошок, состоящий из мелких кристалликов.
Чтобы превратить их в один кристалл, порошок загружают в большую ёмкость, сделанную из кварца, расплавляют, затем в расплав опускают в качестве затравки небольшой кристаллик кремния и при небольшом охлаждении начинают медленно вытягивать его из расплава. Кремний из расплава постепенно осаждается на поверхности растущего кристалла и в конце процесса превращается в один, практически идеальный кристалл. Диаметр этого кристалла доходит до 40 сантиметров, а длина – до полутора метров
Но это только полдела. Ведь кристалл ещё нужно разрезать на пластины толщиной менее одного миллиметра. Это делают с помощью, например, стальной проволоки, покрытой алмазной крошкой, а потом пластины тщательно полируют.
Затем на этой пластине начинают собирать транзисторы – вы, несомненно, слышали это слово. Транзистор – это такое устройство, которое способно запомнить букву или цифру, складывать эти буквы в слова, а цифры в числа, делать с ними разные вычисления или превращать их в звук или картинку. Так сейчас и говорят: цифровые плееры, цифровые фотографии, цифровое телевидение.
Как вы думаете, сколько транзисторов размещается на одном квадратном сантиметре современных чипов? Более ста миллионов! А размер самого транзистора настолько маленький, что его невозможно разглядеть в самый лучший оптический микроскоп. Как же технологи ухитряются собирать такие маленькие устройства? Это очень интересно, но об этом вы прочитаете в других книгах, когда немного подрастёте.
Кстати, а как устроен кристалл кремния? Точно так же, как кристалл алмаза. Эх, жаль, что большие алмазы нельзя делать, вытягивая маленький кристаллик алмаза из расплава графита. Одна из причин заключается в том, что графит не плавится. Такая вот сложная наука химия! У каждого вещества – свой характер.

И тогда обычные компьютеры мы все дружно понесём на свалку. Впрочем, она уже давно заполняется
Миллион за синий свет
Что-то засиделись мы с вами за разговорами. За окном уже стемнело, поздно, пора спать. Надо выключать свет. Стоп – лампочка! Как же мы забыли про неё? Из чего она сделана? Это зависит от того, какая лампочка светится в вашем торшере или ночнике. Скорее всего – лампа накаливания. Она сделана из круглой стеклянной колбы, а внутри у неё находится тонкая спираль из металла по имени вольфрам. Включая лампочку, мы пускаем по спирали ток. Он разогревает металл, металл раскаляется добела и испускает свет. Вот почему эти источники света называют лампочками накаливания. Правда, большая часть электричества уходит на разогрев спирали, поэтому лампочка такая горячая, если она долго была включена. (Только не надо проверять мои слова, можно обжечься!) И лишь малая часть энергии превращается в свет. Поэтому про такие лампочки специалисты говорят, что они неэкономичные: энергии едят много, а света дают мало.
Но с недавних пор всё переменилось, потому что учёные подарили людям светодиоды. По сути, это минералы, которые начинают светиться, как вольфрам, если через них пропускать ток. Только они совсем не разогреваются и почти всю электрическую энергию преобразуют в свет.
О том, что минерал можно превратить в источник света, впервые сообщил миру русский физик Олег Владимирович Лосев. В 1923 году он заметил, что если через кристалл карборунда, или карбида кремния, состоящего из атомов кремния и углерода, пропускать электрический ток, то в местах контактов появляется слабое зеленоватое свечение. Так оказалось, что минералы, обладающие свойствами полупроводника, могут светиться. Их и назвали светодиодами.
Спустя сорок лет светодиоды уже вовсю мигали красными и жёлтыми огоньками на разных пультах управления и в световых индикаторах. Одно плохо – не было светодиодов синего, зелёного и белого света. И ждать их создания, по меркам нашего времени бурного технического прогресса, пришлось довольно долго.
Лишь в 1990 году профессор Сюдзи Накамура придумал, как выращивать тончайшие и безупречные по качеству плёнки из вещества под названием нитрид галлия (состоит из атомов галлия и азота). Чем тоньше такая плёнка, чем меньше в ней дефектов, тем ярче и чище свет она дает.
А потом из таких плёнок, начинённых добавками индия, С. Накамура сумел приготовить слоёный пирог, который физики называют гетероструктурой. Кстати, одним из первых такие структуры получил российский физик Жорес Иванович Алфёров, за что в 2000 году ему присудили Нобелевскую премию по физике. И оказалось, что в зависимости от чередования слоёв, такой «пирог» при прохождении тока дает яркий синий или зелёный свет. А когда С. Накамура нанёс на синий светодиод тонкий слой фосфора, диод засветился ярким белым светом. С тех пор вся светодиодная «радуга» была в сборе.

Синий светодиод сравним по размеру со спичечной головкой

Профессор Сюдзи Накамура в 2006 году получил премию «Миллениум» (миллион евро) за создание синих и белых светодиодов. В руках он держит указку, работающую на синем светодиоде
Светодиоды всех цветов уже несут свет человечеству в панелях автомобилей, самолётов и бытовых приборов, в светофорах и уличных фонарях, в больших рекламных уличных экранах и ёлочных гирляндах, во вспышках камер и мобильных телефонов. Вот и мой ноутбук подмигивает мне ярко-синими и зелёными светодиодами, напоминая о профессоре Накамуре и нашей с ним встрече.
Случилась она в 2006 году, когда С. Накамуре вручали премию «Миллениум» размером в миллион евро. Эту международную премию присуждают каждые два года. Предыдущим лауреатом был англичанин Тим Берненс-Ли, создатель Всемирной паутины – Интернета. Вообще, эта премия предназначена тем учёным, кто создал технологии, изменившие жизнь человечества к лучшему. На церемонии награждения, которая проходила в Хельсинки, мы познакомились, и у меня была возможность поговорить с профессором.
Прежде всего я поинтересовалась, знает ли он, что идея светодиодов родилась в России, в лаборатории Лосева. Оказалось, что профессор ничего не знает об этом. Он с интересом выслушал мой рассказ и поблагодарил за это «открытие». А потом, в конце разговора, я поинтересовалась, почему он выбрал профессию учёного. И выяснилось, что все дело в комиксах! «Когда мне было десять-двенадцать лет, я читал комиксы, которые назывались «Астробой», – рассказал С.Накамура. – Астробой – это такой робот, которого сконструировал учёный, доктор Отяномицу для борьбы с плохими мальчишками и тёмными силами. И вот тогда я очень захотел стать таким же учёным, как Отяномицу, чтобы делать таких же роботов для борьбы со злом».
Не знаю, сколь успешна борьба профессора Накамуры со злом, но вот его белые светодиоды побеждают сегодня лампы накаливания по всем статьям. Они работают в сто раз дольше обычной лампы накаливания, которая быстро перегорает. Они не содержат никаких подвижных частей, стекла, нитей накаливания. Они маленькие – стандартный размер пять миллиметров, и для работы им требуется всего лишь батарейка в три вольта (значит, они могут питаться от солнечных батарей). Они не греются и не содержат никаких токсичных компонентов вроде ртути. А главное, они преобразуют электричество в свет с 90%-ной эффективностью в отличие от ламп накаливания, у которых коэффициент полезного действия, как у паровоза, – пять процентов.
В США планируют к 2020 году полностью заменить обычные лампы накаливания на светодиоды. Это должно принести колоссальную экономию электроэнергии. Значит, уменьшатся потребление нефти, компоненты которой сжигают на тепловых электростанциях, чтобы получить электричество, и выбросы диоксида углерода в атмосферу, который образуется при сжигании топлива. А в основе всего лежат относительно простые вещества, получаемые из минералов, взятых в земле.
Ну что ж, давайте подведём итог. Веществ, которые человек заимствует у земли, конечно, гораздо больше, чем мы описали в этой главе. Но и этих примеров достаточно, чтобы лишний раз убедиться в величии природы. Какой же она всё-таки фантастический, виртуозный химик! Как она умеет, растворяя и смешивая, сдавливая и разогревая, испаряя и кристаллизуя, комбинировать разные атомы и молекулы и создавать невероятный по богатству набор веществ. Даже одно вещество она умеет приготовить в разных видах. Углерод является нам в облике графита, сажи и алмаза, карбонат кальция – в облике известняка, мела и мрамора, оксид алюминия – в виде глины и россыпи драгоценных камней, рубинов и сапфиров, диоксид кремния – в виде обычного песка, кварца, горного хрусталя, опала, халцедона, агата, яшмы... А мы берём все это беззастенчиво, перерабатываем и украшаем свою жизнь, делаем её комфортной и удобной.








