Текст книги "Революция в физике"
Автор книги: Луи де Бройль
Жанр:
Физика
сообщить о нарушении
Текущая страница: 13 (всего у книги 20 страниц)
3. Работы Шредингера
Эрвину Шредингеру в его великолепной статье, увидевшей свет в 1926 г., выпала честь первому написать в явном виде волновое уравнение волновой механики и вывести из него строгий метод решения квантовых задач. Чтобы получить уравнение для волн, связанных с частицей, можно исходить из идеи о том, что с точки зрения новой теории старая механика эквивалентна приближению геометрической оптики. В теории Якоби траектории частиц рассматриваются как световые лучи, которые соответствуют поверхности, определяемой полным интегралом уравнения первого порядка второй степени в частных производных, названного уравнением Якоби. Мы уже отмечали (см. гл. II п. 2), что уравнение Якоби по форме совершенно аналогично основному уравнению геометрической оптики и что именно это обстоятельство – причина аналогии между теорией Якоби и теорией распространения волн в ее геометрическом приближении. Поэтому волновое уравнение волновой механики нужно записать таким образом, чтобы соответствующее уравнение геометрической оптики, справедливое в условиях, которые мы уже уточнили, совпадало с уравнением Якоби. Чтобы получить уравнение распространения, удовлетворяющее этому условию, Шредингер проделал следующее: прежде всего он установил соотношение, которое для данной задачи в классической механике давало бы энергию как функцию координат частицы и компонент ее импульса. Далее в этом выражении, которое носит в механике название гамильтониана, каждая компонента импульса в декартовой системе координат заменялась символом производной по соответствующей координате, умноженной на константу, пропорциональную постоянной Планка. Таким образом, гамильтониан был превращен в некий оператор, оператор Гамильтона. Теперь достаточно было применить этот оператор к волновой функции системы (которая обычно обозначается греческой буквой «КСИ») и приравнять полученный результат производной волновой функции по времени, умноженной на упомянутую константу.
Полученное таким образом уравнение можно принять в качестве волнового уравнения частицы, ибо в приближении геометрической оптики оно сводится к уравнению Якоби, которое можно написать для рассматриваемой задачи в классической механике.
Здесь следует сделать несколько замечаний по поводу полученного таким способом уравнения распространения связанных с частицей волн. Во-первых, это уравнение определяет волновую функцию как функцию скалярную, а не векторную. Это приводит к существенному различию между волной, связанной с частицей, и световой волной. Правда, известно, что волновая теория света также вначале исходила из того, что световые колебания описываются скалярной функцией. Такая точка зрения и сегодня может объяснить многие явления дифракции и интерференции. И только лишь при рассмотрении поляризации нужно учитывать векторный характер волновой функции. Итак, можно предположить, что в один прекрасный день скалярная волновая функция будет заменена волновой функцией нескольких компонент при соответствующем обобщении теории. Ниже мы покажем, что это предсказание подтвердилось рождением теории электрона Дирака. Как мы увидим, эта теория не одинакова для случаев электрона и фотона.
Следует сделать еще одно замечание по поводу уравнения распространения волн. Дело в том, что оно комплексно, т е. его коэффициенты не являются действительными числами, в них фигурирует величина (корень из –1). Это обстоятельство, на первый взгляд совершенно случайное, показывает, насколько трудно придать «КСИ»-волне волновой механики такой же физический смысл, какой приписывает волнам классическая физика. Действительно, в классической физике распространение волны связано с переносом свойств колеблющейся среды, существование которой либо совершенно очевидно, либо предполагается (последнее только в случае классической теории света). Они описывают действительные процессы и должны быть выражены действительными функциями. Если же, как это часто делают при описании оптических явлений, иногда полезно заменить указанные действительные функции комплексными величинами, действительной частью которых они являются, то это только вычислительный прием, без которого всегда можно обойтись.
В волновой механике все наоборот. Из-за мнимых коэффициентов в самом волновом уравнении комплексный характер «КСИ»-функции, по-видимому, является существенным. Он приводит к тому, что все попытки рассматривать волны волновой механики как физическую реальность, соответствующую колебаниям какой-то среды, оказываются несостоятельными. В ходе развития волновой механики функцию «КСИ» стали рассматривать как некую вспомогательную величину, значение которой позволяет вычислить другую величину. Эта последняя уже действительна, она имеет физический смысл, причем, как правило, статистического характера. Мы еще должны будем вернуться к этому пункту. Здесь же уместно было просто отметить, почему волновое уравнение волновой механики уже по своей форме вынуждает нас отказаться от идеи дать этим волнам непосредственное физическое толкование.
Мы объяснили, как Шредингер добился успеха в выводе для самого общего случая уравнения распространения связанной с частицей «КСИ»-волны. Однако при написании этого уравнения он исходил из формул ньютоновой механики. Поэтому его уравнение распространения не удовлетворяет требованиям теории относительности и естественно ожидать, что оно справедливо лишь для частиц, обладающих очень малой скоростью, т е. для волн не очень большой частоты. Теперь встал вопрос о том, чтобы найти уравнение распространения, имеющее релятивистский характер и содержащее уравнение Шредингера как первое приближение для низких частот. Уравнение такого типа, которое казалось естественным с точки зрения здравого смысла, было предложено почти одновременно несколькими учеными. Однако это релятивистское уравнение, будучи уравнением второго порядка по времени, приводило к ряду трудностей. Правильное релятивистское обобщение уравнения Шредингера было получено Дираком совсем другим путем.
Шредингер предложил также волновое уравнение (нерелятивистское), которое описывало систему, ансамбль взаимодействующих между собой частиц. Однако поскольку мы ввели новые понятия, требующие специального разбора, отложим изложение волновой механики систем частиц до главы XII.
Вооружившись своим волновым уравнением, Шредингер приступил к строгому решению задачи определения стационарных состояний квантовой системы, предположив в соответствии с приближенной теорией, что эти стационарные состояния соответствуют связанным с частицами стационарным волнам. Рассмотрим в качестве квантовой системы атом водорода. Мы знаем уравнение распространения волн, соответствующих этой системе. Естественно предположить, что, так как система ограничена некоторой областью пространства, «КСИ»-функция при удалении от центра системы быстро стремится к нулю. Если мы также предположим, как это обычно делают в математической физике, что «КСИ»-функция должна быть везде однозначна и непрерывна, то нахождение стационарных состояний сводится к отысканию монохроматических решений уравнения распространения, конечных и однозначных во всем пространстве и обращающихся в нуль на бесконечности. Шредингер, использовав известные методы анализа, блестяще решил эту задачу для нескольких типов квантовых систем. Он обнаружил, что монохроматические решения, удовлетворяющие наложенным условиям, существуют лишь для некоторых определенных значений частоты. Эти значения являются собственными значениями волнового уравнения в частных производных данной задачи с граничным условием обращения «КСИ» в нуль на бесконечности. Собственной частоте системы в соответствии с общим соотношением между свойствами волны и характеристиками частицы сопоставляется квантованное значение энергии частицы, которое получается умножением частоты на h. Таким образом, расчеты Шредингера позволили получить квантованные значения энергии и, следовательно, значения спектральных термов. В большинстве случаев точно такой же результат был получен в старой квантовой теории. Примером может служить, скажем, атом водорода, для которого были получены в точности боровские результаты. Однако в некоторых важных случаях полученные новым методом результаты отличались от выводов старой квантовой теории, причем новые решения лучше согласовались с экспериментом, чем старые. Самым замечательным примером этого оказался линейный осциллятор. Напомним, что квантование линейного осциллятора, с которым столкнулся в своей теории излучения Планк, послужило отправной точкой всего развития квантовой теории. Старый метод квантования предполагал, что квантованные значения энергии линейного осциллятора являются целыми кратными энергии кванта, полученной умножением собственной частоты механических колебаний осциллятора на постоянную Планка h. Однако физические задачи, в которых фигурировал квантовый осциллятор (например, полосатый спектр двухатомной молекулы), по-видимому, указывали, что квантованные значения энергии осциллятора должны быть равны произведениям не целых значений кванта энергии, а полу целых, т е. квант энергии умножается на 1/2, 3/2, 5/2… (2n + 1)/2. Новый метод квантования, отличаясь в этом пункте от старой квантовой теории, точно предсказывает именно такое квантование полу целыми долями. Итак, Шредингер вновь получил правильные результаты старой теории и уточнил другие результаты. Успех был полным.
Любопытное совпадение натолкнуло Шредингера на мысль, которая привела его к самым замечательным открытиям. Незадолго до этого Гейзенберг сформулировал свою квантовую механику. Его новый метод, внешне совершенно отличный от волновой механики, дал точно такие же результаты для квантованных значений энергии атомных систем, что и метод Шредингера, тем самым подтвердив и уточнив результаты старой квантовой теории. Шредингер интуитивно чувствовал, что это совпадение не случайно. Ему мастерски удалось показать, что квантовая механика Гейзенберга, несмотря на совершенно иной внешний вид представляет собой всего лишь математическую перефразировку волновой механики.
Важность эффекта Зеемана и его электрического аналога, эффекта Штарка, хорошо известна. Шредингер попытался с помощью волновой механики развить теорию этих явлений. С этой целью он разработал прекрасный метод возмущений, волновой вариант классического метода небесной механики. Действительно, магнитные и электрические поля, которые мы можем создавать, ничтожно малы по сравнению с электромагнитными полями, действующими внутри атомных систем. Чтобы получить эффект Зеемана или Штарка, на атомы воздействуют однородным магнитным или электрическим полем, и это поле можно рассматривать как очень малое возмущение собственного поля атомной системы. Если нам уже известны квантованные значения энергии данной системы в отсутствие внешнего поля, то необходимо лишь учесть очень слабое изменение этих величин, которое вызывается возмущающим полем.
Шредингер, применив свой метод возмущений, решил эту задачу и получил таким образом детальную теорию эффектов Зеемана и Штарка. Что касается эффекта Штарка, то результаты полностью совпали с предсказаниями старой квантовой теории. В некоторых отношениях теория, по-видимому, оказалась более точной. В случае эффекта Зеемана снова в согласии со старой квантовой теорией получаем результат Лоренца. Это вполне удовлетворительно, поскольку в данном случае явление протекает в основном так, как его предсказал Лоренц (нормальный эффект Зеемана).
Однако кроме нормального эффекта Зеемана, предсказанного Лоренцом, в некоторых случаях обнаруживается более сложный аномальный эффект. Ни классическая, ни старая квантовая теории не способны были объяснить эти явления. В руках Шредингера волновая механика добилась в этом пункте не большего успеха. Для объяснения аномального эффекта Зеемана понадобилось ввести еще одну характеристику – спин электрона.
4. Дифракция электронов
Итак, мы показали, как идеи автора этой книги о связи между волнами и частицами и о необходимости создания новой механики волнового характера приобрели к 1926 г. благодаря превосходным работам Шредингера необычайную полноту и точность. Однако какими бы замечательными ни были руководящие идеи и основные методы, какими бы точными ни казались подтверждения, которые были получены благодаря правильным предсказаниям атомных явлений, прямое экспериментальное доказательство этих представлений все же отсутствовало. Такое доказательство принес 1927 г., когда Дэвиссон и Джермер открыли явление дифракции электронов.
Поскольку движение частиц неразрывно связано с распространением волны, было бы очень странно, если бы материальные частицы, например электроны, не проявляли интерференционных и дифракционных свойств подобно тому, как это происходит с фотонами и изучением которых занимается физическая оптика. Чтобы выяснить, какие из этих явлений можно реально наблюдать, нужно было прежде всего оценить длину волн, связанных с электронами. Формулы волновой механики немедленно дают ответ на этот вопрос: длина волны, связанной с электронами, при обычных условиях всегда очень мала, порядка длины волны рентгеновских лучей. Поэтому можно было надеяться наблюдать у электронов те явления, которые происходят с рентгеновскими лучами.
Известно далее, что фундаментальное явление физики рентгеновских лучей – это дифракция на кристаллах. Необычайно малая длина волны рентгеновских лучей почти исключает возможность использования для наблюдения их дифракции приборов, сделанных руками человека. К счастью, сама природа позаботилась о том, чтобы создать годные для этих целей дифракционные решетки – кристаллы.
Действительно, в кристаллах атомы и молекулы расположены в правильном порядке и образуют трехмерную решетку. Причем оказалось, что расстояние между частицами в кристалле как раз порядка длины волны рентгеновских лучей. Направляя пучок рентгеновских лучей на кристалл, можно получить дифракционную картину, совершенно аналогичную картине дифракции обычного света на трехмерной точечной решетке.
Явление дифракции рентгеновских лучей было открыто в 1912 г. фон Лауэ, Фридрихом и Книппингом, и теперь оно служит основой широкого развития рентгеновской спектроскопии. Исходя из всего этого, можно было ожидать, что совершенно аналогичное явление можно наблюдать для электронов. Взяв пучок электронов с заданной кинетической энергией, мы должны были бы наблюдать явление дифракции, такое же, как дифракция рентгеновских лучей. Поскольку структура кристаллов, применяемых в экспериментах такого типа, хорошо изучена различными методами, главным образом с помощью рентгеновских лучей, мы могли бы из полученной при дифракции электронов картины вычислить длину волны, связанную с электронами, и, следовательно, подтвердить правильность соотношения, которое волновая механика предполагает для движущихся частиц и связанных с ними волн.
Дэвиссону и Джермеру, сотрудникам лаборатории «Белл-телефон» в Нью-Йорке, выпала честь открытия дифракции электронов на кристаллах. Бомбардируя кристалл никеля пучком моноэнергетических электронов, они твердо установили, что электроны дифрагируют как волны, и показали, что длина этих волн в точности совпадает с той, какую дают формулы волновой механики. Так было установлено существование этого тонкого явления, предположение о котором за несколько лет до этого вызывало удивление и недоверие физиков.
Повторенное почти одновременно в Англии Дж. П. Томсоном, сыном Дж.Дж. Томсона, применившим совершенно иной метод, явление дифракции электронов вскоре стали наблюдать почти во всех странах. Это явление в разных условиях и при различной постановке опытов изучали Понт во Франции, Рупп в Германии, Кикучи в Японии и многие другие. Вскоре стали известны все его детали. Постепенно было устранено большинство мелких трудностей объяснения этого явления, которые вначале возникли. Этого удалось добиться, когда приняли во внимание, что внутри кристалла показатель преломления волн, связанных с электроном, отличен от единицы. Дифракцию электронов удалось получить и на обычной решетке, использовав почти касательное падение (Рупп), как это было ранее проделано с рентгеновскими лучами (Комптон, Тибо). Таким путем можно прямо сравнить длину волны, связанной с электроном, с шириной линий, нанесенных на металлической поверхности механическим способом.
Как это часто бывает, явление дифракции электронов, как вначале казалось, очень трудно наблюдаемое и требующее высокого искусства экспериментатора, теперь стало относительно простым и повседневным. Приборы для наблюдения явления дифракции стали настолько совершенными, что сегодня это явление можно демонстрировать студентам на лекции. Наконец, условия этих экспериментов варьировались в таких широких пределах, что справедливость основной формулы, выражающей соотношение между свойствами волны и характеристиками частицы, можно считать теперь доказанной во всем интервале энергий от нескольких электрон-вольт до миллиона электрон-вольт. Для больших значений энергии необходимо учитывать релятивистские поправки. Таким образом, косвенно подтверждаются и результаты теории относительности.
Справедливость формулы для длины волны, связанной с частицей, считается сегодня настолько очевидной, что явление дифракции электронов используется уже не для подтверждения этой формулы, а для изучения структуры некоторых кристаллических или частично ориентированных сред. Однако это уже технические применения. Ограничимся замечанием, что эксперименты по дифракции электронов дали великолепное прямое подтверждение представления о связи волн и частиц, которое послужило исходным пунктом для создания новой механики.
Заканчивая этот параграф, уместно отметить, что была получена дифракция не только электронов, но и других частиц. Так же, как и электроны, явление дифракции испытывают протоны и атомы. Подобные эксперименты очень сложны и не столь многочисленны, однако установлено, что даже здесь подтверждаются формулы волновой механики. Это не должно нас удивлять. Связь между волнами и частицами – это, по-видимому, великий закон природы, причем такой дуализм тесно связан с существованием и внутренней сущностью кванта действия. Нет никаких причин считать, что только электроны обладают такими свойствами. Неудивительно, что мы встречаемся с дуализмом волна – частица при изучении всех физических объектов.
5. Физическое объяснение волновой механики
Попытаемся теперь показать, что можно извлечь из знания волновой функции системы. Старая механика соответствует приближению геометрической оптики, и все представления и понятия, которыми она пользуется, должны быть отброшены, когда мы выходим за пределы этого приближения. Поэтому мы уже не можем применять, во всяком случае безо всяких предосторожностей, понятия положения, скорости и траектории частицы. Мы снова должны рассмотреть эти понятия и исследовать, что можно сказать, зная волновую функцию, о величинах, характеризующих частицу. Те постулаты, которые мы сформулируем, должны удовлетворять важнейшему условию: они должны вновь приводить к понятиям и результатам старой механики, как только «КСИ»-волна станет удовлетворять законам геометрической оптики.
Интерпретация волновой механики носит вероятностный характер. Какие же постулаты приходится принять физикам, чтобы пользоваться уравнениями волновой механики?
Прежде всего, поскольку «КСИ»-функция существенно комплексна, она непосредственно не пригодна для изображения физических колебаний. Однако можно попытаться образовать с помощью «КСИ»-функции действительные выражения, которые уже имеют физический смысл. Одно из них, которое в первую очередь, естественно, приходит в голову, это квадрат модуля комплексной величины «КСИ», который получается умножением волновой функции на комплексно сопряженную величину. Эту величину можно рассматривать как квадрат амплитуды «КСИ»-функции, т е. ее интенсивность в обычном смысле теории колебаний. Чтобы понять, какой смысл следует приписать этой важной величине, мы снова должны вернуться к теории света, которая нам так часто служила путеводной звездой, и выяснить с ее помощью, что означает интенсивность световых волн, если предположить существование фотонов.
Рассмотрим классический опыт по дифракции или интерференции света. Волновая теория определяет (и мы знаем, с какой огромной точностью) положение светлых и темных полос на экране. Это делается при помощи расчета интенсивности световых волн в каждой точке экрана в предположении, что энергия световых волн распределена в пространстве пропорционально их интенсивности.
Эту гипотезу, которая подтверждается различным образом в различных теориях света, упругих и электромагнитных, можно рассматривать в качестве постулата – принципа интерференции.
Теперь введем понятие фотона. Луч света можно рассматривать как поток фотонов. Тогда эксперименты по интерференции и дифракции света представляются как опыты, в которых фотоны под воздействием приборов распределяются в пространстве неравномерно, уходя из темных мест и концентрируясь в светлых. Поскольку предсказания теории подтверждаются очень точно, можно сказать, что интенсивность волн, рассчитанная по этой теории в каждой точке, пропорциональна плотности фотонов.
С другой стороны, мы уже говорили о таких удивительных экспериментах, которые обнаруживают возможность получения картины интерференции с помощью необычайно слабых световых потоков. В этих опытах интерференция происходит даже, когда фотоны проходят через интерферометр поодиночке. Поэтому для объяснения картины обычной интерференции, которая получится после большой экспозиции, нужно предположить, что интенсивность волны, связанной с каждым фотоном, в каждой точке представляет собой вероятность того, что фотон находится в этой точке. Таким образом, от статистической точки зрения мы приходим к вероятностной. Принцип же интерференции оказывается принципом, определяющим вероятность локализации фотонов. Если теперь вернемся к теории частиц, то увидим, что и здесь мы должны ввести точно такой же принцип, ибо дифракция электронов на кристалле происходит совершенно таким же образом, как дифракция фотонов той же длины волны. Таким образом, и в этом случае интенсивность волны, связанной с электронами, определяет вероятность их локализации в пространстве. Итак, мы приходим к следующему утверждению: квадрат модуля «КСИ»-функции в каждой точке и в каждый момент времени определяет вероятность того, что соответствующая частица будет наблюдаться в этой точке в тот же момент времени.Не следует закрывать глаза на то, сколько изменений вносит подобный постулат в наши представления.
Так как «КСИ»-функция, вообще говоря, отлична от нуля в целой области пространства, то частицу можно найти в любой точке этой области. В данный момент времени частице нельзя приписать точное положение в пространстве. Можно только сказать, что ее можно найти в данной точке с такой-то вероятностью. Вместе с отрицанием понятия строго определенного положения в пространстве исчезают и понятия скорости и траектории. Во всяком случае, они становятся весьма смутными. Вообще все достоверные представления старой механики становятся вероятностными. Здесь мы приоткрыли завесу над важным изменением метода, который наука использует для описания и предсказания явлений природы, изменением, заключающим в себе глубокие философские следствия.
Оставляя за собой право вернуться к этим вопросам в дальнейшем, сформулируем здесь второй принцип, который физики вынуждены принять в их интерпретации волновой теории. Впервые этот второй принцип, насколько нам известно, был сформулирован Борном, когда он начал свое блестящее исследование методами волновой механики задачи о столкновениях частиц. Этот принцип можно назвать принципом спектрального разложения.
Чтобы понять природу этого нового постулата, рассмотрим сначала простой случай частицы, движущейся в отсутствии внешнего поля. Если волна, связанная с частицей, является плоской монохроматической волной, то мы знаем, что энергия частицы строго определена и равна произведению частоты волны на постоянную Планка h. Однако с точки зрения волновой механики «КСИ»-волна не обязательно будет монохроматической. Но ее можно с таким же успехом записать в виде суперпозиции плоских монохроматических волн, образующих волновой пакет. При этом она также будет удовлетворять линейному волновому уравнению. Какова же будет энергия соответствующей частицы в этом случае? Ответить на данный вопрос затруднительно, ибо «КСИ»-волна состоит теперь уже из волн множества различных частот.
Борн предложил разрешить эту трудность, вновь обратившись к вероятности. Согласно теории Борна частица не обладает определенной энергией. Она может иметь одну из энергий, соответствующую одной из частот «КСИ»-волны. Более точно это означает, что при определении энергии частицы можно найти одну из этих величин, не зная a priori, какую именно. Единственно, что можно сказать a priori, это какова вероятность обнаружить то или иное из возможных значений энергии. В этом заключается введенный Борном новый принцип.
В сущности утверждение, что волна, связанная с частицей, представляет собой суперпозицию плоских монохроматических волн, означает, что «КСИ»-функция математически изображается в виде суммы членов, каждый из которых описывает монохроматическую волну. Каждый из этих членов характеризуется коэффициентом, который можно назвать парциальной амплитудой этой монохроматической компоненты спектрального разложения «КСИ»-волны. Квадрат модуля этой амплитуды будет определять соответствующую парциальную интенсивность. Принцип, сформулированный Борном, состоит в утверждении, что вероятность того, что измерение энергии частицы даст определенную величину, соответствующую одной из монохроматических компонент «КСИ»-волны, дается соответствующей парциальной интенсивностью в спектральном разложении этой волны. Этот принцип снова находится в полном согласии с положениями оптики.
Действительно, предположим, что на призму или дифракционную решетку падает немонохроматическая световая волна. После прохождения луча через прибор оказывается, что различные монохроматические компоненты волны отделяются друг от друга. Очевидно, вероятность того, что фотон первичного луча попадет в тот или иной отклоненный луч, пропорциональна интенсивности соответствующей монохроматической компоненты в спектральном разложении падающей волны.
Этот вопрос можно рассмотреть также с более общей точки зрения. Примененный к квантовым атомным системам, этот принцип дает ключ к разрешению трудности, о которой уже говорилось. В квантовом атоме существует набор частот, соответствующих стационарным значениям квантованной энергии. Однако для такой системы, как и для колеблющейся струны, можно легко представить себе, как некоторое состояние образуется суперпозицией стационарных состояний. В самом деле, взяв в качестве «КСИ»-функции сумму подходящих колебаний, можно снова получить решение волнового уравнения, поскольку оно линейно. Правда, о состоянии атома, которое описывается этой «КСИ»-функцией, уже нельзя сказать, что оно стационарно. Оно представляет собой нечто вроде нескольких стационарных состояний в один и тот же момент времени. Совершенно непонятно, что это означает с классической точки зрения.
Принцип спектрального разложения позволяет разрешить эту трудность совершенно неожиданным образом: атом в рассматриваемом состоянии может иметь любое из квантованных значений энергии, которые соответствуют спектральному разложению его «КСИ»-волны, с вероятностью, пропорциональной интенсивности соответствующих спектральных компонент. Здесь это снова означает, что эксперимент, позволяющий нам приписать атому определенную энергию, дает ее значение, соответствующее спектральному разложению. Вероятностный характер этой трактовки позволяет вновь почувствовать ту совершенно новую форму, которую должна принять физическая теория.
Сопоставление только что установленных двух принципов ведет к соотношениям неопределенности, связанным с именем Гейзенберга. Изучение этого важнейшего вопроса будет более уместным в разделе, который посвящен вероятностной трактовке новой механики.