355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Лёвин Гаврилович » Вероятность как форма научного мышления » Текст книги (страница 4)
Вероятность как форма научного мышления
  • Текст добавлен: 7 февраля 2021, 11:30

Текст книги "Вероятность как форма научного мышления"


Автор книги: Лёвин Гаврилович


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 4 (всего у книги 9 страниц) [доступный отрывок для чтения: 4 страниц]

С содержательной, качественной стороны сложные случаи причинения характеризуются отсутствием простой дедуктивной выводимости следствия из причины, так что здесь всегда налицо разрыв постепенности, некоторая иррациональность (по словам О.В. Сачкова, см. «Введение в вероятностный мир», с.167), связанная с порождением нового (нового качества, новых возможностей и т.д.).

Вместе с тем, важным признаком понятия «статистическая закономерность» многие авторы называют неоднозначность предсказания поведения системы. На этом основании строится дедукция, приводящая к утверждению, что за статистической закономерностью кроится иная, нежели за динамической закономерностью, форма причинной связи.[15] вероятностная природа статистических закономерностей истолковывается в данном случае как особая черта причинной связи, получающая свое выражение посредством понятия «возможность». Т.е. принимают во внимание следующее: при заданной причине следствие имеет ряд возможностей реализации. Вероятность тогда характеризует не что иное, как множественность путей реализации следствия.

При ближайшем рассмотрении выявляется, однако, что подобное истолкование не включает вероятность в структуру отдельной изолированной цепи причинения. Здесь вероятность служит качественным выражением неопределенности некоторой общей ситуации, в которой фиксируемому воздействию ставится в соответствие разброс или набор результатов. Известная упорядоченность этого набора результатов позволяет ввести количественную меру вероятности, которая способна выражать степень той или иной возможности реализации следствия. Причем, существенно учитывать, что введение степени такой возможности осуществимо на некотором обобщенном уровне, связанном с отказом от рассмотрения конкретных цепей причинения во всех их деталях и подробностях. В определенном смысле слова статистическое выражение изменений материальной системы делает неразличимым отдельные изолированные цепи причинности.

Если исходить из того, что в основе динамической закономерности лежит причинная связь простого типа (изолированная причинная цепь, имеющая непрерывный характер), тогда применимость динамической закономерности к сложным случаям изменений оказывается возможной при допущении суммативности действия причинных рядов. Математическое описание такого изменения реализуется с помощью системы дифференциальных уравнений. При этом предполагается однозначность перехода от одного распределения микросостояний к другому, так что все микросостояния, характеризующие макросостояния системы, становятся различимыми как в перспективном плане изменений системы, так и а ретроспективном.

Статистический подход, применяемый для описания связи состояния системы, зиждется на принципиально иной основе, в чем легко убедиться, обратившись к постановке задач статистической физики. Он опирается на ряд важных допущений, как то: выполнимость эргодической гипотезы, конечность времени релаксации и монотонность возрастания термодинамической вероятности (осуществимость второго начала термодинамики). Принятие этих условий делает излишним прослеживание всех распределений микросостояний статистической системы. Добавлю, что с позиций термодинамического равновесия (максимального значения энтропии) существенное значение приобретает лишь некоторое общее для каждого из этих распределений отношение к равновесному состоянию, определяемое вероятностной мерой. Но тогда данный подход можно рассматривать как способ обобщенного выражения изменений системы.

При этом важно подчеркнуть, что обращение к статистическим закономерностям является реализацией идеи упрощения в ее специфически системном смысле, когда на первый план выдвигается структурно-функциональный аспект сложности. Специфика здесь в том, что в ходе статистического исследования отказываются от рассмотрения уровня элементарных причинных рядов, характеризующихся непрерывной цепью звеньев переноса материи и движения, и сосредотачивают внимание не на процессивной стороне причинения, а на результативной.

Статистический подход есть особый способ схватывания дискретных результатов процесса, о чем свидетельствует приложимость его к событиям, реально разделенным во времени и в пространстве, т.е. к тем, для которых действительно налицо разрыв цепи причинения. Причем, язык статистического описания позволяет уловить отношение результатов микропроцессов в рамках некоторой общей обусловленности, что делает оправданной его характеристику как выражение особой детерминации интегрального типа.

В каком же отношении находится этот тип детерминации к причинности? В философско-методологической литературе по данному вопросу нет единства мнений. Ряд авторов склоняются к признанию непосредственно причинного содержания статистических закономерностей (Баженов Л,Б., Готт B.C. и др.). Для обоснования такой позиции привлекалось представление о сложном характере реального причинения, содержащего массу различных оттенков, включая и снятие противоречия между определенностью и неопределенностью. Высказывалось также утверждение о важности учета в категории причинности диалектики необходимости и случайности.[16]

Противоположная точка зрения отрицает причинный смысл статистических закономерностей. Почвой для такого отрицания служил, например, тезис об ориентированности последних на описание случайностей и в этом смысле об их противоположности необходимости. Подобная мысль ясно выражалась, скажем, Н.А.Князевым, утверждавшим одновременно, что статистическая закономерность не является одним из видов причинной связи. [17]

Наличие ряда подходов, подчас исключающих друг друга, наметившихся в трактовке разбираемой проблемы, явилось признаком ее остро дискуссионного характера. Дискуссия не дала каких-то окончательных выводов. Вместе с тем, как я полагаю, в отношении достаточно определившихся крайних позиций можно высказать некоторые принципиальные соображения.

Основная слабость подхода, отрицающего причинный характер статистических закономерностей на базе представлений о безусловно необходимой и однозначной причинности, состоит по нашему мнению в односторонней трактовке природы вероятности и соответственно, статистической неопределенности. Вряд ли правильно без тщательного анализа связывать вероятность лишь со случайностью и неопределенностью. Уже тот факт, что математическое понятие вероятности приобретает смысл в рамках некоторого распределения, свидетельствует в пользу момента определенности, органически входящего в содержание вероятности. В силу этого содержание статистических закономерностей не может быть истолковано только на базе категорий случайности и неопределенности. В свою очередь, данное обстоятельство открывает возможности для более тонкой характеристики соотношения статистических закономерностей и причинности.

Другой подход, отождествляющий причинность и статистическую закономерность, опирается на тезис об ослабленной определенности причинно-следственной связи. Оправданием данной позиции могло бы служить обоснование вероятностного характера причинности. По нашему мнению, и об этом уже шла речь выше, в настоящее время отсутствуют достаточно убедительные аргументы в пользу вероятностной причинности.

Здесь можно добавить, что попытки включить момент неопределенности в содержание причинной связи характеризуется обычно стремлением учесть процессивный момент реального причинения. На данное обстоятельство указывал, например, Б.С.Украинцев. [18] Он по существу утверждал, что строгая определенность требует некоторой абсолютной системы отчета. Если под системой отчета понимать начальное состояние причинного фактора и сопутствующих условий, то эти состояния не могут еще выступать в роли собственно причины. Необходимым признаком последней называется момент действования, перехода причины в следствие. А подобный переход, как подчеркивал Б.С.Украинцев, не может иметь точных количественных критериев. Однако он утверждал наличие вполне определенных качественных рамок такой подвижности, выявляющих себя в качестве тенденции или некоторой нормы в массе отклоняющихся результатов.[18]

Необходимо между тем отметить, что процессуальный характер причинения, а вместе с тем сложное переплетение и переходы причинности и других видов связей и зависимостей, нельзя абсолютизировать. Диалектическое истолкование причинности обязывает встать также на точку зрения опосредования, результативности причинной связи. На это, как известно, указывал В.И.Ленин.[19] Такая позиция ориентирует на признание интегрального характера выражения причинной определенности.

Возвращаясь к вопросу о природе статистической закономерности, отмечу, что статистическое описание как форма выражения такой закономерности, будучи ориентированной на воспроизведение результативного момента, не порывает полностью с собственно причинным описанием в его традиционной форме. В известном смысле, первое есть абстракция от абстракции, если иметь в виду, что обращение к статистическим закономерностям связано с отказом от учета процессуального момента непосредственным образом. Однако следует подчеркнуть, что косвенным образом данный момент все же присутствует, когда используют статистическую форму описания. Дело здесь в ее способности выражать неопределенность, выступающую существенной стороной любого реального процесса изменения.

Итак, грань между вероятностно-статистическим и причинным описанием не является жесткой и непроходимой. Проведение идеи определенного совпадения причинного и статистического способов описания имеет особый смысл, в связи с тем, что в литературе иногда проводится тезис о чисто функциональной природе статистических закономерностей. При этом имеется в виду отвлечение статистического исследования от непосредственного выявления причин изменения совокупностей и ориентированность его на фиксацию лишь отношений между состояниями объектов совокупностей.

Такое истолкование характера статистического описания присутствовало, например, в книге М.А.Парнюка «Детерминизм диалектического материализма».[20] В этой работе обосновывался следующий тезис: «Статистический закон представляет собой распределение детерминации по группам совокупности в соответствии с числовыми характеристиками состояния отдельных вещей».[21] В другом месте автор подчеркивал, что смысл статистического закона состоит в раскрытии связи отдельного и совокупного, причем эта связь устанавливается на уровне отношений между количественными значениями параметров некоторой выборки и всей совокупности. М.А.Парнюк выделяет статистический тип детерминации, под которой понимает зависимость между состояниями статистической совокупности. [22]

Между тем, если полностью игнорировать причинное содержание статистических законов, тогда чрезвычайно затруднительным оказывается отмежевание от тезиса об их чисто эмпирической природе. Понимая под статистическим законом количественное отношение между классами наблюдаемых значений параметров совокупности объекты, не трудно усмотреть в них простые классификации, описывающие, например, сосуществующие классы. Их существенное отличие от динамических законов проводится тогда по линии индивидуального / отдельного/ и коллективного /многого/. Подобное основание для различения между двумя типами законов выдвинул еще М.Планк. [23] Не вдаваясь в специальное обсуждение вопроса о правомерности использования такого основания, замечу лишь, что абсолютизация количественного критерия различения статистических и динамических законов приводит к трудности выделения собственной сферы действия первых по объективному признаку. Дело заключается в том, что в силу дискретности материальных образований любой индивидуальный объект может быть представлен как некоторая совокупность (как многое) и при известных дополнительных условиях исследоваться статистически.

Кроме того, динамическая закономерность, если ее понимать как тенденцию, также имеет сферой своего действия многое. И это говорит о необходимости усиления количественного критерия показателями иного рода. Данное обстоятельство уже отмечалось в литературе. [24]

По-видимому, опора на идею классов в статистических законах имеет иной смысл, нежели чисто количественное упорядочивание совокупности объектов. Достаточно очевидной является большая информационная емкость статистической формы описания поведения некоторой материальной системы в сравнении с соответствующей динамической формой. С гносеологической точки зрения именно в этом плане следует истолковывать, например, переход к статистической форме в теории теплоты. В ее рамках эмпирически наблюдаемые тепловые параметры получили объяснение как возникающие на более глубоком уровне беспорядочного в известном смысле молекулярного движения. Тем самым была показана субстанциальная природа тепловых явлений, трактуемых в классической теории в феноменальном плане.

Приведенный здесь факт свидетельствует также о том, что статистические законы могут служить средством теоретического овладения миром, поскольку они используются для построения гипотетических конструкции и вывода из них эмпирически проверяемых следствий. Так, например, обращение к классической статистике Максвелла-Больцмана позволяет предвычислить универсальную газовую постоянную в уравнении Менделеева-Клапейрона, теплоемкости газов.

Вместе с тем, мысль о функциональной природе статистических законов имеет определенные основания. Дело в том, что обращение к статистическим зависимостям не способно непосредственно выразить взаимодействие причинного фактора и его результата. Эти зависимости не включают в свое содержание конкретные вещи или свойства как взаимодействующие компоненты, но берут во внимание совокупность отношений, оцениваемых метрическим значением вероятности. Можно согласиться здесь с высказанным в свое время мнением А.С.Кравца, что лишь в исключительных случаях вероятностным функциям (как формальным выражениям статистического закона) может быть придан непосредственно субстанциальный смысл. Например, при умножении вероятностных функций на некоторые нормировочные множители они получают смысл потока энергии, интенсивности действия и т.д. [25]

Однако в свете высказанных выше соображений нам не представляется убедительным утверждение этого автора, что вероятностная зависимость в большинстве случаев имеет чисто функциональную природу. В естественнонаучной области отношение причинного и статистического описания друг к другу является более сложным, чем простое взаимоисключение либо полное совпадение. Скорее всего, следует вести речь о косвенном выражении с помощью статистических законов сложного причинения. Здесь как будто налицо тот случай, когда абстрагирование, отвлечение от ряда характеристик причинной связи является отступлением, чтобы вернее попасть, полнее охватить соответствующий аспект действительности.

Иными словами, соглашаясь с А.С.Кравцом в том, что в вероятностном законе учитываются не непосредственно причинные отношения между явлениями (событиями), но структурные, следует подчеркнуть, что структурно-функциональный подход, осуществляемый в рамках статистического описания, дает известное совпадение с причинным подходом. Факт такого относительного совпадения обнаруживается хотя бы во взаимозависимости этих двух форм описания, на что указывал в своей книге А.С.Кравец.

Правда, А.С.Кравец не ставил вопроса о степени эквивалентности данных форм описания и границах их взаимозависимости. Более того, он по существу склонялся к точке зрения дополнительности причинного и вероятностного описания. При этом имелось в виду, что находясь в рамках одного, мы вынуждены отойти от другого. Задавая, скажем, вопрос о причине отдельного явления (события), надо перестать мыслить в вероятностных категориях, поскольку в каких-то других рамках можно указать строго однозначную материальную связь, ведущую именно к этому отдельному событию. [27]

Но если принимать идею дополнительности в такой форме, то чрезвычайно затруднительно, как мне кажется, найти какие-то рациональные основания отмеченной выше взаимозаменяемости причинного и вероятностного описаний. Не трудно заметить также, что А.С.Кравец противопоставлял вероятностное описание причинному описанию индивидуального события, как структурное (т.е. имеющее отношение ко всей системе). Он исходил по существу из предположения о возможности выделения индивидуальных причинных рядов. Однако для сложного случая причинения как раз такое выделение и становится если не возможным, то, по крайней мере, весьма трудным делом.

Уже из самого характера сложной причинности следует, что противопоставлять индивидуальную причинную цепь структуре массового явления – это значит вырывать индивидуальное событие из целостной системы взаимоопределяющих факторов и включать его в другую жестко детерминированную систему. Оставаясь же в рамках статистической системы, необходимо признать, что вероятностное описание касается индивидуальных событий, а структуру вероятностных отношений следует рассматривать в ряду детерминирующих факторов для этого события. Именно в этом и состоит, думается, основной смысл вероятностного описания как приема работы со сложными системами – найти специфическую для них форму выражения детерминации.

2.2.2. Необходимость и случайность

Отмеченный в предыдущем изложении момент относительного, частичного совпадения причинного и вероятностно-статистического описания свидетельствует, очевидно, о том, что на базе категории причинности нельзя дать исчерпывающего раскрытия природы статистических закономерностей. Косвенным подтверждением тому могут служить многочисленные попытки истолкования их содержания посредством других категорий. Чаще всего эти попытки связаны с обращением к категориям «необходимость» и «случайность». Такие попытки в известное время представлялись вполне естественными. Существовала определенная традиция соотнесения категорий «закон» и «необходимость».

Свою главную задачу в исследовании природы статистических закономерностей на базе данных категорий большая часть авторов усматривала в решении вопроса о правомерности приписывания закону двух атрибутов одновременно: необходимости и случайности. Дело здесь в том, что классическая наука демонстрировала лишь одну форму закономерности, которая не знала исключений и выражала строгую определенность, истолковываемую как необходимость. Причем, строгий характер этой определенности не ставился под сомнение даже при учете несовпадения эмпирически наблюдаемых результатов с теоретически вычисляемыми. Такое расхождение объяснялось неточностью измерений, которая в принципе считалась устранимой.

Иная картина наблюдается в отношении статистических законов. Их содержание таково, что допускаются исключения или отклонения (вплоть до весьма значительных) во всей статистической совокупности или отдельных ее частях от теоретически предсказываемых устойчивых значений тех или иных параметров данной совокупности. В применении к физическим явлениям, скажем, закон первого типа звучит так: в солнечной системе орбита Земля является строго определенной (пусть даже в некоторых рамках точности), так что нельзя представить себе движение Земли по любому произвольному направлению. Статистический же закон утверждает нечто другое. Например, в термодинамике говорят: теплое тело нагревает холодное тело, потому что слишком невероятно, чтобы холодное тело охлаждало теплое. В иной формулировке это звучит так: наиболее вероятен переход тепла от тела с высшей температурой к телу с низшей температурой. Приводя этот пример, А.Эддингтон справедливо добавлял, что обратный случай, хотя не является полностью невозможным, но он невероятен. [28]

В свою очередь, невероятность, исключения обнаруживает себя достаточно строго в тех случаях, когда имеют дело с большим числом элементов. Данное обстоятельство служит часто основанием для утверждения, что статистический закон, рассматриваемый в плане необходимости, характеризует не уровень отдельных элементов, а уровень массовости. Что касается случайности, то ее истолковывают, тогда как характеристику отдельного элемента.

Подобная трактовка природы статистических законов получила довольно широкое распространение. Однако резкое разделение уровней так называемой случайности и необходимости приводит к ряду трудностей. В первую очередь возникает вопрос о механизме складывания необходимости, «фундаментом» которой является «чистая» случайность. Отвечая на него, говорят о нейтрализации случайностей, их взаимном погашении и т.п. Но такой ответ неявно предполагает взаимодействия и взаимовлияние между объектами совокупности, между тем как уже самый смысл случайности состоит здесь в признании независимости между микрообъектами. Об этом явно говорил, например, Ю.В.Сачков. Он писал: «...статистические совокупности не есть, так сказать, целостные системы, где состояние одних частей системы существенным образом влияет на состояние ее других частей, где положение отдельных частей определяет структуру целого, наподобие тому как атомы, входящие в состав некоторой молекулы, определяют строение и свойства молекулы». [29]

Примерно также высказывался А.С.Кравец, когда указывал, что подчеркивание массового характера статистических закономерностей фиксирует лишь их внешнюю сторону, поскольку не отражает специфику явлений, подчиняющихся этим законам. Остается неясным, скажем, почему в одном случае сквозь массу явлений просвечивает закон жесткой детерминации, а в другом – закон статистической детерминации.[30]

Способ истолкования статистической неоднозначности, использующий идею двух различных уровней – необходимости и случайности – имеет кроме того тот недостаток, что по существу не порывает с ориентацией, идущей от классической механики: закон должен быть «очищен» от случайности и содержать лишь необходимость.[31] Однако собственное содержание статистических законов вряд ли можно вписать в рамки такого истолкования, поскольку им свойственна принципиально вероятностная природа. Если же настаивать на том, что случайность, в конечном счете, должна быть элиминирована из содержания закона, тогда, как подчеркивал Ю.В.Сачков, возникают сомнения относительно полноценности вероятностных методов и статистических закономерностей.[32] Соответственно, при подобной трактовке возникают трудности доказательства объективного содержания статистических теорий и их самостоятельной значимости. Такой характер обоснования статистических законов и свойственной им неоднозначности трудно согласовать с широким внедрением вероятностно-статистических методов в естественнонаучные теории, если исходить из признания объективного содержания и значимости последних.

Я полагаю, что все это заставляет исходить из более широкого толкования необходимости и случайности, именно из учета их диалектической природы и, тем самым, из их взаимопроникновения и взаимопереходов.

Специфическое переплетение необходимости и случайности находит свое отражение в понятии «вероятность». В самом деле, описание массовых случайных явлений посредством аппарата теории вероятностей позволяет приписывать определенные значения вероятностей как отдельным элементам всего множества случайных событий, так и различным его подклассам. Значение же вероятности выступает как важнейшая характеристика случайной величины, входя составным компонентом в распределение этой величины. Следовательно, установление вероятности (даже и единичного явления) означает включение его некоторым образом в класс необходимых связей, но не на уровне его конкретных (скажем, физико-химических) свойств, а на уровне вероятностей.

Здесь надо иметь в виду, что элементы статистической совокупности, находят свое выражение в количественных отношениях. Статистическая же закономерность выявляет устойчивый, инвариантный аспект этих отношений. Своеобразие данного инварианта состоит в том, что его нельзя непосредственно приложить к элементам, т.е. он не дает какого-либо правила перехода от одного объекта статистической совокупности к другому.

Налицо, таким образом, обобщенный, интегральный характер статистической необходимости, в рамках которой случайность утрачивает специфическую черту изолированности и самостоятельности, но выступает как лабильный момент упорядоченной связи, обусловливания двух уровней – массовости и отдельных элементов. Иными словами, обращение к вероятностям позволяет отразить своеобразным способом некоторую абстрактно-общую природу элементов, и данное обстоятельство свидетельствует в пользу наличия в такой связи момента необходимости.

Вместе с тем, в силу самого определения вероятности, с данным понятием всегда связан момент случайности, иррегулярности, так что применимость вероятности к уровню массовости свидетельствует о соотносимости присущих ему характеристик со случайностью. Более того, даже значение вероятности, близкое к единице или равное единице, не выводит данный класс явлений за рамки влияния случайности, что и выражается, например, в широко известном физическом принципе флуктуации (используемом в статистической физике).

В этой связи уместно остановиться на утверждении, звучащем: строго говоря, всякая закономерность является статистической. Иная формулировка этой же мысли такова: всякая динамическая закономерность является статистической с вероятностью осуществления, близкой к единице. [33] Вероятностный смысл динамической закономерности, равно как и статистической, обосновывается тем самым введением представления о степени ее реализуемости. Последняя ограничивается со стороны неисчерпаемости вглубь любого материального образования, а также со стороны незамкнутости любой материальной системы от внешних воздействий. В свете этих ограничений представление о динамических законах приходится рассматривать как отвлечение от реальных моментов сложности, как чрезмерную идеализацию, упрощающую действительную картину поведения системы. Иными словами, сложность, свойственная любой связи или обусловливанию, при описании с помощью динамических закономерностей просто игнорируется (и элиминируется таким грубым образом).

Именно, и только, в плане стремления выразить некоторым образом универсальный характер неопределенности следует, по моему мнению, понимать приписывание динамическим закономерностям значение вероятности близкое единице.

Однако в строгом смысле слова приведенное выше использование понятия и метрического значения вероятности содержит элементы вольности и его нельзя, как мне представляется, понимать буквально. Например, математическое понятие вероятности допускает в данном случае и сопряженное значение вероятности, равное нулю, для нереализуемости динамического закона. Дело здесь в том, что вероятность есть математическая характеристика распределения и вне такового она не имеет строгого математического смысла. Даже простейший случай, когда вероятность р=1, имеет смысл в связи с дополнительным значением вероятности противоположного события q=0. Причем, класс событий, сопутствующих этой вероятности, не может быть пустым.

В применении к вопросу о вероятностном характере динамических закономерностей это означает, что в некоторых однородных условиях, необходимых для реализации данного типа закона, можно иметь случай его нереализуемости. Но тогда, очевидно, подрывается самый смысл закономерности. Из сказанного следует, что необходим более осторожный и строгий подход к выработке средств, характеризующих неопределенность в рамках динамических закономерностей.

Не вдаваясь в обсуждение таких средств, замечу лишь, что формальный перенос соответствующих характеристик со статистических закономерностей на динамические оказывается в данном случае неприменимым. Вместе с тем, это обстоятельство может служить одним из свидетельств в пользу качественного своеобразия каждого из названных типов законов и их несводимости друг к другу.

Одновременно подчеркну, что не оправдывается и то представление, которое соотносит вероятность только со случайностью. И дело здесь не в том, что в ряде вероятностных концепций исключается возможность приписывания вероятности отдельному, случайному (в массе) событию. Известно, скажем, что вопрос о применимости понятия вероятности к отдельному событию получил особую значимость в свете становления идей и аппарата квантовой механики. Причем, большинство ученых считали, что теоретико-вероятностные методы используются для описания закономерностей поведения и свойств отдельных микрообъектов. Не вдаваясь в детали дискуссии по этому вопросу, скажу, что его решение связано обычно с признанием новых аспектов вероятности, выражаемых, например, в категориях «возможность» и «действительность».

Главный мотив таких поисков состоял в стремлении найти рациональный фундамент для объяснения индивидуальной случайности, лабильности, иррегулярности. Для той обстановки, которая сложилась в квантовой механике, такого рода разработки, по-видимому, вполне обоснованы. Однако я в сформулированном выше тезисе имею в виду нечто другое. Сам способ вероятностного описания позволяет устанавливать вероятностную меру отдельному событию, правда, при условии отнесения его к некоторому классу. Но посредством такого отнесения вероятность жестким образом связывается с этим случайным событием, что вряд ли можно объяснить исходя лишь из случайной природы вероятности.

В свете сказанного важно уточнить соотношение понятий необходимости и определенности, характеризующих существенные стороны закономерности. Такое уточнение имеет особый смысл для раскрытия форм детерминации, отвечающих задачам исследования сложных систем.

Известно, что давняя философская традиция связывает необходимость со строгой определенностью (Демокрит, Спиноза, Гольбах, Лаплас и т.д.). В этом плане своеобразно продолжал традицию Г.В.Плеханов. Он писал: «Случайное есть нечто относительное. Оно является лишь в точке пересечения необходимых процессов». [34]

Относительность случайности получила здесь смысл возможности перехода к строгой необходимости, если брать более широкую систему связей явления. С этих позиций определялся в последствие идеал науки как установка на преодоление и элиминацию случайности. Эта установка уже подвергалась основательной критике. Между тем точка зрения на необходимость как строгую определенность имеет и сейчас своих сторонников. Характерна в этом отношении, например, позиция М.А.Парнюка.

По мнению названного автора, необходимость – это такая характеристика действительных связей, отношений, которая раскрывает себя как неизбежность, обязательность именно данного события, результата, процесса и т.д. Случайность же, в отличие от необходимости, не имеет обязательного характера в силу того, что с ней связано нечто в данном отношении недетерминированное или частично детерминированное. [35]


    Ваша оценка произведения:

Популярные книги за неделю