Текст книги "Вероятность как форма научного мышления"
Автор книги: Лёвин Гаврилович
Жанр:
Философия
сообщить о нарушении
Текущая страница: 3 (всего у книги 9 страниц) [доступный отрывок для чтения: 4 страниц]
Многими исследователями было показано что выявление некоторой типичной картины ее сложного поведения объектов должно включать в себя учет отклоняющегося результата в любой момент времени. Понятие вероятности и вероятностное описание оказываются как раз тем инструментом, который способен характеризовать такого рода ситуации. Данная способность обусловлена вхождением неопределенности в качеству существенного момента содержания понятия вероятности. В то же время аппарат теории вероятностей включает ряд ограничений для разброса вероятностей, что дает возможность сохранять определенность. Одним из обобщенных выражений подобного рода ограничений служит, например, закон больших чисел:
Следует отметить, что для некоторых областей можно, конечно, обойтись без вероятностного описания, хотя в каких-то отношениях оно могло бы оказаться полезным. Возьмем, к примеру, проводник тока. Естественно, что он находится в сети бесконечных взаимодействий, поскольку, вообще говоря, все материальные системы бесконечно сложны. Но, практически, всегда можно создать такие условия, в рамках которых длительное время будут отсутствовать возмущения характера течения тока. Здесь применим тогда однозначный детерминизм. Иной случай представляет, скажем, жизнь биологического индивида. Никак, к примеру, нельзя гарантировать его выживаемость в течение 10 лет. Очевидно, что тогда в самом аппарате описания надо учесть данное обстоятельство. Как следствие – обращение к статистике и вероятности.
Итак, вероятность как теоретическая форма послужила способом выражения определенности, моментом которой выступает неопределенность. Классическая наука использовала сильные идеализации, но одновременно и те объекты, с которыми она имела дело, позволяли опираться на однозначный детерминизм. Сложные объекты требуют поиска иных средств анализа. Для них удается сохранить детерминизм в описании поведения уже не на уровне отдельных событий, но на уровне вероятностей этих событий. Здесь налицо развитие классического описания, поскольку в отношениях вероятностей просвечивает детерминизм второго уровня.
Примечания:
1. Лаплас П.Опыт философии теории вероятностей. М„ 1908, с.15.
2. Бернулли Я-Ars conjectandi, 4.IV. Спб., 1913, с.23.
3. Лаплас П. Опыт философии теории вероятностей, с.11-12.
4. Чупров А.А. Очерки по теории статистики. М., 1909, с.155.
5. Rasch D. Zur Problematik statistischer Shclussweisen. -DZfPh, 1969, №5.
6. Лаплас П. Опыт философии теории вероятностей. М„ 1908, с.9.
7. Мелюхин С.Т. О соотношении возможности и действительности в неорганической природе. – В кн. Проблема возможности и действительности. М-Л., 1964, с.29-30.
8. В кн. Проблема возможности и действительности. М-Л., 1964, с.34.
9. Пятницын Б.Н., Метлов В.И. Философские проблемы вероятностных методов исследования. – В кн. Проблемы логики и теории познания. МГУ, 1968, с.277.
10. Хинчин А.Я. Учение Мизеса о вероятностях и принципы физической статистики. – УФН, 1929, вып.2.
11. Mises R.V. Wahrscheinlichkeit, Statistiks und Wahrheit. Wien, 1951, s.IV.
12. Мизес P. Вероятность и статистика. М-Л, 1930, с.16.
13. Там же, с.17-18.
14. Там же, с.31.
15. Weismann F. Logische Analyse des Wahrscheinlichkeitsbe-griffs. – "Erkenntnis", 1,1930/31, s.231-232.
16. Хинчин А.Я. Частотная теория Р.Мизеса и современные идеи теории вероятностей. – «Вопросы философии», 1961, №1, с.79.
17. Алешин А.И. и Метлов В.И. Характеристика основных подходов к определению понятия вероятность. – Уч. зап.Горьковского университета. Вып.96. Горький, 1969.
18. Постников А.Г. Арифметическое моделирование случайных процессов. – Труды Мат.ин-та им.В.А.Стеклова, т.57,1960.
19. Хинчин А.Я. Учение Мизеса о вероятностях принципы физической статистики. УФН, 1929, вып.2, с.153.
20. Хинчин А.Я. Метод произвольных функций и борьба против идеализма в теории вероятностей. – В кн. Философские вопросы современной физики. М., 1952.
21. Reichenbach Н. Wahrscheinlichkeitslogik. -«Erkenntnis», 5,1935, s.38-39.
22. Reichenbach H. Kausalitat und Wahrscheinlichkeitslogik. – «Erkenntnis», I, 1930/31, s.171.
23. Там же, s.172, 187.
24. Рассел Б. Человеческое познание. М. 1957, с.403-404.
25. Reichenbach Н. Kausalitat und Wahrscheinlichkeitslogik. – «Erkenntnis», 1,1930/31, s.188. ..
26. Амстердамский С. Об объективных интерпретациях понятия вероятности. – В кн. Закон. Необходимость. Вероятность. М.,1967, с.82.
27. Колмогоров А.Н. Теория вероятностей. – В кн. Математика, ее содержание, методы и значение. М., 1957, т.2, с.271.
28. Колмогоров А.Н. Основные понятия теории вероятностей. Гл.1. М-Л., 1936.
29. Там же, с.Ю.
30. Маркс К. Математические рукописи. М., 1968, с.199,209.
31. В отношении ряда физических понятий это показано, например, в статье: Бляхер Е.Д., Волынская Л.М. Генерализация физической картины мира, как момент исторического движения познания. – «Вопросы философии», 1971, №12, с.106-107.
32. Birkhoff G. and Neuman J. von. The Logic of Quantum Mechanics. – «Annals of Mathematics», v.37, 1936.
33. Ойзерман Т.И. Марксистский детерминизм и экзистенциалистская концепция свободы. – НДВШ. «Философские науки», 1972, №5, с.10.
34. Баженов Л.Б. Причинность в квантовой теории. §3 гл.V – В кн. Философия естествознания. Вып.1. М., 1966.
35. Баженов Л.Б. Причинность и законы сохранения. -«Вопросы философии», 1971, №4, с.94.
36. Там же, с.101.
37. Бранский В.П. Философское значение «проблемы наглядности» в современной физике. Л., 1962, с.124,150.
38. Попытки такого рода предпринимали, например, А.Эйнштейн, Луи де Бройль, Д.Бом, Ж.П.Вижье, Ж.Лошак и др.
39. Ленин В.И. ПСС, т.29, с.143.
40. В той или иной форме эта точка зрения представлена в работах Аскина Я.Ф., Бунге М., Кедрова Б.М., Кузнецова И.В., Рузавина Г.И. и др.
41. Суворов О.А. О соотношении закономерности и случайности в теории детерминизма и причинности. – В кн. В.И.Ленин и естествознание. М., 1969, с. 61.
42. Колмогоров А.Н. Основные понятия теории вероятностей. М., 1936.
ГЛАВА 2. О природе
статистических закономерностей
2.1. Понятие о статистических закономерностях
Выше было показано, что в истории науки XX столетия была признана возможность, опираясь на обобщенный смысл детерминизма органически включать неопределенность в круг идей об определенности явлений действительности. Важнейшим средством такого включения выступила статистическая форма описания массовых событий. Более того, выяснилось, что существует особый статистический тип определенности, устойчивости и, соответственно, необходимости и закономерности. Признание же статистического типа необходимости и закономерности переводит проблему соотношения вероятности и детерминизма на новый уровень – уровень законов.
В самом общем плане это означает, что статистическая форма описания явлений должна была получить еще свое оправдание в существенных чертах и признаках закономерности. В такой постановке данная проблема касается по существу вопроса о статусе вероятностно-статистических закономерностей, разработка которого до настоящего времени носит весьма дискуссионный характер. [1]
Как показал исторический ход длительной дискуссии, значительная часть выступлений ограничивалась сравнительно узкой постановкой вопроса, а именно: элиминирует ли статистический тип закономерности традиционно признаваемый классической наукой динамический тип закона? В тесной связи с этим вопросом ставился также другой: является ли однозначность атрибутивной характеристикой закона вообще? Их взаимозависимость выявляется, скажем, в том обстоятельстве, что из тезиса об однозначности и строгой определенности закономерности нередко выводилось отрицание объективного и универсального содержания статистических закономерностей.
В дальнейшем изложении я покажу более конкретный характер обсуждения поставленных здесь вопросов. Как это часто принято в теоретическом познании, автор намерен обратиться прежде всего к тем исходным идеализациям, которые используются при формировании закономерностей того и другого типа, и сопоставить последние под углом зрения их направленности на решение задач системного анализа.
С формальной стороны различие между динамическими и статистическими законами состоит в том, что математическое выражение статистических закономерностей опирается на понятие вероятности. Тогда как динамические законы описываются в форме дифференциальных уравнений либо однозначных функциональных зависимостей. Учитывая это обстоятельство правомерно говорить о поэлементном подчинении динамическим законам всех объектов некоторой рассматриваемой совокупности. В качестве таких элементов часто рассматривают состояния изменяющего во времени материального явления или процесса. Кроме того, в случае динамических законом говорят о жестко детерминированном, строго определенном характере этого подчинения.
В абстрактно-математическом плане статистическая форма зависимости для некоторой упрощенной ситуации также может быть выражена в виде функции. Однако таковая обладает рядом специфических особенностей, важнейшие из которых, например, в свое время М.Смолуховский определил следующим образом. Если статистический закон представить как функцию y=f(x), то должны выполняться такие указания: 1) небольшие изменения «X» в общем вызывают большие изменения «У»; 2) совокупности таких группировок «X», которым, приблизительно, соответствует одна и та же группировка значений «У», неизмеримо более многочисленны, чем совокупность группировок «X», которым соответствует заметно отклоняющееся распределение значений «У». [2]
Очевидно, что первое из названных свойств выводит данную функцию из класса таких, для которых приложим принцип: ограничение приращения аргумента ограничивает область изменения функции. Следовательно, статистическая зависимость не может быть описана в дифференциальной форме, поскольку здесь неприложимо математическое понятие предела. Второе же свойство подчеркивает новый тип устойчивости, обнаруживаемый у данной функции, для выражения которой необходимо учитывать массовость рассматриваемого явления.
Отмеченный здесь характер соответствия между изменениями аргумента «X» и функции «У» совпадает, по существу, с требованием непрерывности вероятностной функции распределения начальных данных. На этот признак указывали, например, А.Пуанкаре и Г.Рейхенбах. [3] Смысл названного требования состоит в том, что при общей устойчивости некоторого комплекса начальных условий реализации данного явления из него нельзя исключить факторы, обуславливающие вариации отдельных элементов массового явления. Ибо эти факторы невозможно изолировать или проконтролировать. [4]
Тем самым, в своем качественном содержании уже простейшая теоретическая модель статистической закономерности ориентирована на принципиальную неизолированность изучаемого явления. А это представление в свою очередь сопряжено с отказом от поэлементного рассмотрения цепей подчинения, т.к. признание требования непрерывности вероятностной функции распределения начальных данных делает излишним поиск, выделение какого-либо отдельного возмущающего фактора, приводящего к разбросу значений элементов совокупности. Все такие факторы из группы возможных оказываются равновероятными.
В XX столетии развитый аппарат представления статистической закономерности формировался на базе понятия «распределение», которое относилось к так называемой «случайной величине». «Распределение», взятое в этом смысле стало своеобразной математической формой выражения закона. В ее рамках задаются всевозможные значения случайной величины. Причем, такое задание осуществляется путем установления «веса» каждого из значений, характеризуемого посредством численной меры вероятности. В своей абстрактно-математической форме статистическая закономерность описывает зависимость одних распределений от других и их изменение во времени. Инструмент такого описания дают теория вероятностей и математическая статистика, теоремы и правила которых как раз позволяют осуществлять сложные переходы от одних распределений к другим.
Какие же особенности и свойства вероятностного распределения позволили рассматривать его в качестве формы выражения закона? Если признавать существенность таких характеристик закона, как устойчивость и обобщенность, тогда естественно попытаться обнаружить соответствие свойств распределения выделенным здесь признакам закона.
На мой взгляд, устойчивость на уровне распределения обнаруживается прежде всего в достаточно строгой фиксированное™ значений вероятностей, сопоставляемых с выделенными по какому-либо признаку группировками значений случайной величины. Метрическое задание значений вероятностей позволяет в таком случае характеризовать любое вероятностное распределение как выражение устойчивого количественного отношения между определенными параметрами множества случайных явлений. Такие формы связи широко выделяются с помощью аппарата теории вероятностей в рамках статистической физики (классической и квантовой), в социологии, демографии, генетике и др. В то же время, «распределение» есть способ группировки вероятностей, значения которых составляют некоторую замкнутость и целостность, поскольку их общая сумма строго приравнивается к единице.
Обратимся теперь к обобщающей функции теоретико-вероятностной модели распределения. Таковая имеет непосредственную связь с выражением устойчивости в массовом случайном явлении, поскольку общее имеет один из своих моментов: одинаковость, повторяемость, которые в известном смысле могут служить синонимами устойчивости. В этом плане устойчивость количественных отношений, фиксируемая численными значениями вероятностей, может рассматриваться' и как обобщающая характеристика для вариаций случайных признаков соответствующей группировки или подмножества. Дело здесь заключается в том, что посредством вероятностей случайное событие получает свое определение как отнесенное к тому или иному подмножеству из некоторого множества возможных. Обобщенность же выражения случайного события состоит тогда в том, что оно становится элементом так называемой случайной величины, возможные значения которой определяют собой тип или вид событий из некоторого их множества. Например, случайным событием можно считать выпадение или невыпадение какой-либо грани игральной кости. Переход к вероятностям дает здесь возможность иметь дело не просто с множеством или полем случайных событий, но с их упорядоченностью в рамках случайной величины, именно с классами ее возможных значений, которым становится в соответствие та или иная вероятность.
Вопрос о характере обобщения, осуществляемого в рамках теоретико-вероятностной модели распределения, остается весьма трудным, поскольку данная форма представляет собой особый вид абстракций, связанный с отвлечением от общей необходимости, присущей отдельным статистическим единицам. Эта особенность статистического подхода позволяет иметь дело с чрезвычайно широкой сферой его приложения. Так что объект его исследования может быть выделен из различных целостностей и разнообразной среды, и, в принципе, объекты статистической совокупности могут принадлежать различным в качественном отношении уровням и областям действительности.
Вместе с тем, чтобы результат статистического исследования имел ценность не простой классификации, производимой по произволу исследователя, но давая действительно обобщенный вывод, применение статистической формы должно иметь своей предпосылкой представление о некоторой объективно общей основе данных массовых явлений. Мне представляется существенным, что исходной точкой статистического исследования всегда выступает признание единства объектов совокупности по некоторому качественному признаку. И это обстоятельство давно отмечается во всех руководствах по статистическому анализу. [5] Понятно, что выбор такого признака не является простым делом и требует применения иных, нестатистических средств анализа – с целью нахождения общей основы статистической совокупности (ею может быть структура объекта, общие условия, влияние природы некоторого объемлющего целого, например, типа общественной формации и т.д.).
Следовательно, произвольная совокупность явления или факторов, выбранная, скажем, лишь по признаку пространственной смежности, не может служить основанием для применения статистических методов исследования. Одновременно можно утверждать, что чисто формальное объединение случайных событий, опосредованное их принадлежностью к видам значений случайной величины, имеет тот глубокий смысл, что основывается на учете признаков или параметров более абстрактного и фундаментального уровня. Часто использовавшийся в науке пример с игральной костью демонстрировал такое обращение к обобщенным параметрам, на базе которых складывается единство случайных событий, – к симметрии в строении кубика.
Исследование истории науки показывает одну важную особенность теоретико-вероятностной модели обобщения. Она проявляется в том, обобщение достигается опосредованным путем, поскольку переход от признаков элементов к признакам совокупности предполагает использование структурных характеристик целого, задаваемых вероятностным распределением. Точка зрения целостности, устойчивой общности массового явления выступает в статистическом исследовании исходным пунктом и предпосылкой. Собственно Случайные события получают свое определение не в единичных, поэлементных характеристиках, но напротив, как представители некоторых подмножеств или классов. Тем самым, следует признать, что существенное содержание статистического подхода нельзя ограничивать категориями единичного и случайного. Более правильным будет утверждение, что оба названных момента выступают в статистической зависимости в качестве подчиненных, поскольку на передний план выдвигается момент целостности определенного множества случайных явлений.
Со своей стороны добавлю, что признание случайности в отдельных явлениях присуще в известном смысле и нестатистическому исследованию. Речь идет о том подходе, когда ограничиваются чисто поэлементным рассмотрением, когда каждое явление из данной совокупности выступает единичным объектом анализа.
В противовес статистическому подходу здесь отыскивают устойчиво общее, которое имеет значение для всякого отдельного элемента, и лишь на этой основе утверждается устойчивость и самого множества. Очевидно, что в таком случае исходят из представления об однопорядковости параметров, свойств или характеристик отдельных элементов и всей совокупности.
В то же время сами статистики давно осознали, что в статистическом исследовании заранее принимается во внимание подвижность, вариативность собственных признаков каждого объекта совокупности. Так что поэлементный переход от одного к другому оказывается неосуществимым. В силу этого статистическая закономерность, описывая устойчивость на уровне целостности, не предписывает распределения общего признака среди всех элементов множества. Например, для случая с правильной игральной костью описание ее поведения посредством задания вероятностей выпадения каждой грани не означает, что эмпирическое испытание обязательно даст выпадение всех граней и что мощность подмножеств, соответствующих каждому признаку, будет совпадать с теоретически предвычислимой.
Эта особенность статистической закономерности демонстрирует, как справедливо отмечал Ю.В.Сачков, тот способ обобщения, когда исходные и обобщенные параметры являются разнопорядковыми, относятся к различным уровням кодирования информации об объекте.
По мнению Ю.В.Сачкова, вероятностно-статистическое описание связано с выделением двух классов параметров сложного объекта, относящихся к различным уровням его организации. «Характеристики первого, исходного уровня, – те, которые постоянно и независимо изменяют свои значения при переходе от одного элемента к другому в исследуемом массовом явлении и соответственно каждое из значений которого рассматривается как случайное событие». [6]
С этих позиций поставленная в рамках детерминизма проблема неоднозначности получила свое истолкование в концепции уровней кодирования. Существенным здесь является тот факт, что признание неоднозначности зависимостей (взаимообусловленности) элементов некоторой совокупности имеет своей оборотной стороной признание их автономности. В такой ситуации зависимость элементов приобретает дополнительные характеристики, которых не знала классическая наука и которые выражаться понятиями интенсивности, тесноты, уровней, функциональности этой зависимости и т.д.
Полезно отметить, что указанная выше особенность вероятностно-статистического обобщения представляет собой новое научное средство выражения гибкости объективного мира. Причем, основное идейное содержание данного способа обобщения совпало с кругом идей формирующегося в ту же эпоху системного подхода, который был ориентирован на разработку средств выражения структурно-функциональной динамики и сложности материальных систем.
Наука и практика, начиная с середины XX столетия, столкнулись с ситуацией, которая получила свою оценку в терминах «сложность» и «неопределенность». В целом ряде научных областей было признано, что сложность не сводится к учету множественности составных элементов материального объекта. Пристальное внимание привлек еще один аспект сложности. Он выявился в разнообразии взаимодействий данного объекта как целого со своим окружением. И эти взаимодействия несут на себе печать неопределенности, поскольку всегда имеют открытый характер. Для теоретического описания подобной ситуации стали привлекаться такие концептуальные формы, которые, сохраняя рационализм, давая вполне определенную картину явлений действительности, могли бы учитывать ее гибкую и неопределенностную природу.
Теперь в центр внимания науки передвинулись вопросы, касающиеся изучения таких целостностей, демонстрирующих гибкость и неопределенность связей и взаимодействий с окружающей средой. И с этого момента во весь рост встала задача нахождения способов выражения структуры такого рода целостностей. Статистический тип закона благодаря использованию языка вероятностных распределений послужил как раз моделью такой структуры.
Здесь я говорю об идейном родстве вероятностно-статистического и системного подходов. Но оно нашло свое проявление также в реальной истории науки. На протяжении многих десятилетий пути их формирования проходили в тесной зависимости друг от друга.
Наглядным подтверждением тому является становление молекулярно-кинетической теории теплоты, в рамках которой природа термодинамических систем поучила статистическое истолкование. Одновременно развитие физической теории в этом направлении привело к переформулированию ряда однозначных (динамических) законов посредством терминов вероятности (например, больцмановское статистическое истолкование закона энтропии). Смысл подобной переформулировки состоит в том, что некоторые интегральные характеристики термодинамических систем (температура, теплоемкость, энтропия и т.д.) оказались выводимыми из характеристик более глубокого уровня посредством статистического приема обобщения. Наиболее развитый аппарат такого вывода или перехода был предложен теорией так называемых «статистических ансамблей» Гиббса.
Современные исследования в области теории информационных систем также показали важность применения статистики для раскрытия природы информации. Например, Н.Винер писал: «... для господина Бигелоу и для меня уже стало очевидным, что техника управления и техника связи неотделимы друг от друга и что они концентрируются не вокруг понятий электротехники, а вокруг более фундаментального понятия сообщения... Сообщение представляет собой дискретную или непрерывную последовательность измеримых событий, распределенных во времени, т.е. в точности то, что статистики называют временным рядом». [7] И несколько далее он продолжал: «Приняв определенную статистику для временного ряда, можно найти явное выражение для среднего квадрата ошибки предсказания при данном методе и на данное время вперед. А располагая таким выражением, мы можем свести задачу оптимального предсказания к нахождению определенного оператора, при котором становилась бы минимальной некоторая положительная величина, зависящая от этого оператора». [8] Здесь существенным оказалось признание принципиального значения статистического характера сообщения для получения определенного предсказания или информации.
В своей кандидатской диссертации (1973 г) автор уже говорил о взаимозависимости и взаимовлиянии вероятностного и системного подходов. Теперь я вновь подчеркиваю наличие определенной тенденции в их взаимозависимости. Принимая во внимание характер идеализаций того или другого, представляется правомерным рассматривать современный системный подход как развитие вероятностного. В самом деле, специфическая природа статистических закономерностей получает свое определение из особенностей так называемого массового случайного явления. Подобный способ определения используется во многих руководствах по теории вероятностей. Например, В.Е.Гмурман пишет: «... достаточно большое число однородных случайных событий, независимо от их конкретной природы, подчиняется определенным закономерностям, а именно – вероятностным закономерностям». [9]
Напомню, что в математике под массовым случайным явлением понимают особый класс массовых явлений, удовлетворяющий следующим условиям:
1. Число группировок случайных событий должно быть конечным.
2. Совокупность группировок образует так называемую полную группу событий.
3. Перечисленные в пункте 1 группировки случайных событий являются несовместимыми.
4. События, образующие полную группу, являются равновозможными.[10]
Данная математическая абстракция представляет собой довольно удачную модель, реальных массовых явлений, традиционно служивших объектом приложений вероятностно-статистических методов исследования (социальная статистика, атомно-молекулярные явления газовой динамики и др.). Она послужила исходным пунктом формирования первичных понятий, приспособленных для выражения статистических закономерностей.
Однако то основание, на базе которого складывались первые представления о статистических закономерностях, довольно быстро обнаружило свою ограниченность, оказавшись тесным для многих приложений. Предметом критики, прежде всего, стала идея равновозможности (или равновероятности). Основные моменты этой критики отмечены были выше при обсуждении классического подхода к определению понятия «вероятность», и здесь я не буду затрагивать их во всех подробностях.
В рамках обсуждаемого вопроса существенное значение имеет следующее: равновозможность (или равновероятность) каждого из полного набора случайных событий можно истолковать как их равноценность с некоторой вероятностной точки зрения. Иными словами, если а, а2 ...а представляют собой полную группу событий, то любое а можно рассматривать в качестве равноценного параметра, элемента или альтернативы данной совокупности. Однако значительное число задач, скажем, таких, которые связаны с предсказаниями на основе анализа временных рядов (сообщений) требуют отказа от идеи равноценности статистических параметров. Например, построение оператора для восстановления истинного сообщения из искаженного шумом прошлого сообщения включает в качестве основополагающей идею «наилучшего значения» одного или некоторой совокупности параметров, характеризующих с известной мерой ошибки истинное сообщение». [11] Дело, таким образом, идет о поиске «подходящей интерпретации «наилучшего значения», какого-либо из этих статистических параметров или множеств статистических параметров». [12]
В науке возникла проблема выбора критерия такого значения. С ней оказалось связано-решение более общей задачи – задачи оптимального предсказания, разработка общей теории оптимизации. В итоге можно констатировать, что боле общая постановка задач вероятностно-статистического подхода вводит исследование в рамки системного подхода. Осознав это обстоятельство можно перейти к исследованию глубинных общеметодологических истоков формирования статистических методов познания.
2.2. Категориальные основания статистических закономерностей
Накопился богатый материал, позволяющий оценить основания перехода к статистическим закономерностям в современной науке: в свете принципа причинности, единства необходимости и случайности, возможности и действительности и т.п.
2.2.1. Причинность.
Есть смысл рассмотреть, прежде всего, попытки истолковать статистический закон в качестве особой формы причинного закона, описывающей сложный способ перехода от причины к следствию. [13]
Подобное истолкование делает своим исходным пунктом признание взаимосвязи причинного порождения и производства с качественно-количественными характеристиками. Речь идет в этом случае о признании различных видов и форм причинной связи, выделяемых по следующему признаку: одни из них не ведут к качественно новым результатам (пример – механическая причинность), другие же относятся к высшим формам движения материи и предполагают качественное различие между собственно причиной и ее действием. В последнем случае характер причинной связи чрезвычайно усложняется.
Сложная природа этой связи предполагает специальные средства или способы ее выражения. Известно, например, что в ряде разделов знания удается выразить причинную связь в виде функциональной зависимости, основные свойства которой как математического объекта задаются в рамках математического анализа. Именно к данному случаю приложим обычно термин «динамическая закономерность». Однако в нашей литературе справедливо подчеркивалось, что функциональная зависимость не может служить адекватной и единственной формой такого выражения, ибо она не является тождественной самой причинности. [14] Будучи специальным математическим объектом, она не несет сама по себе конкретного значения о причинности в том или ином рассматриваемом случае изменения материальной системы. Признание же функциональной зависимости в качестве известной идеализации приводит к мысли, что невозможность выразить причинную связь в форме такой зависимости не может еще свидетельствовать об отсутствии причинности.
Особенность идеализации, скрытой за данной формой зависимости, состоит в том, что причинная связь ограничивается со стороны требования непрерывности ее переноса. Это и служит основанием для применения дифференциальных уравнений в области математического выражения динамических законов, поскольку решение дифференциальных уравнений предполагает наличие непрерывной функции у=(р(х), определенной в некотором интервале (а,в). Соответственно, признание лишь данной формы выражения причинности и закономерности означает введение представления о последний только как о неизбежности, ибо принципиально результат, действие запрограммированы в системе дифференциальных уравнений.