Текст книги "История и философия науки: учебное пособие"
Автор книги: Лев Зеленов
Жанр:
История
сообщить о нарушении
Текущая страница: 5 (всего у книги 33 страниц) [доступный отрывок для чтения: 12 страниц]
2.1. Развитие естественных наук
Естественные науки (естествознание) изучают природу в двух ее формах: неживая и живая природа. В связи с этим закономерно выделять два подраздела в этой области:
– динамика развития абиотических наук,
– динамика развития биотических наук.
2.1.1. ДИНАМИКА РАЗВИТИЯ АБИОТИЧЕСКИХ НАУКАбиотические науки – это науки, изучающие механические, физические и химические системы и их свойства.
Общий процесс в их развитии в современной науке достаточно зафиксирован в становлении трех парадигмальных картин:
1) механическая картина мира (МКМ), основанная на классической механике;
2) электродинамическая картина мира (ЭДКМ), основанная также на классической электродинамике;
3) квантово-полевая картина мира (КПКМ), основанная на квантовой механике и релятивистской физике.
Традиционное философское понимание неживой природы, основанное на принципах атомистики (амеры, атомы, монады и т. д.), не рушится, а углубляется, уточняется, расширяется, поскольку в философско-материалистических концепциях учитывались «единство атомов и пустоты» (Демокрит), вещества и эфира, пространственно-временной четырехмерности, прерывности и непрерывности, определенности и неопределенности, диалектической дополнительности полярностей. Ф. Энгельс писал в 1876 г., что «атом не является мельчайшей частицей», В. Ленин писал в 1908 г., что «электрон так же неисчерпаем, как атом», и т. д. Современная квантово-полевая картина мира нисколько не противоречит диалектико-материалистической концепции.
Рассмотрим историю этого развития.
При рассмотрении данной темы используется специфический критерий периодизации, связанный с науковедческим пониманием небесспорного феномена революции. Условно может быть выделено три этапа.
Первый, связанный прежде всего с деятельностью Г. Галилея, – формирование новой научной парадигмы; второй, связанный главным образом с Р. Декартом, – формирование теоретико-методологических основ новой науки; и третий, центральной фигурой которого является И. Ньютон, – полное завершение новой научной парадигмы и начало классической науки.
В этом процессе участвовало много европейских стран и городов, но представляется возможным выделение Италии в начале и Англии в конце периода как его «главных» научных центров.
Развитию науки в XVII в. посвящено огромное количество работ самого разного плана: многотомные труды Галилея, Декарта, Лейбница, Ньютона; подробные биографии, переписка, исторические исследования естественно-научного, философского, социологического характера и др. И хотя не все согласны с определением «научная революция», впервые введенным в 1939 г. А. Койре и впоследствии столь удачно использованным Т. Куном, большинство ученых сходятся на том, что именно в XVII в. была создана классическая наука современного типа. Таким образом, XVII век как целостное историческое явление чрезвычайно важен для понимания процессов генезиса и современного состояния науки.
На вопрос, почему возникает наука, вряд ли получится дать исчерпывающий ответ, но вполне возможно проследить и описать механизм возникновения данного явления. Познавательной моделью античности был мир как Космос, и мыслителей волновала, скорее, проблема идеальной природы, нежели реальной. Познавательной моделью Средневековья был мир как Текст, и реальная природа также мало заботила схоластов. Познавательной же моделью нового времени стал мир как Природа. В новое время религиозность не исчезла, но она обратила свой взгляд на природу как наиболее адекватное, не замутненное последующими толкованиями высказывание Бога. Поэтому иногда суть научной революции XVII в. интерпретируется как первое прямое и систематическое «вопрошание» Природы. Разработка общезначимой процедуры «вопрошания» – эксперимента и создания специального научного языка диалога с Природой – составляет главное содержание научной революции.
В каждой революции, как известно, решается два вопроса: разрушение и созидание (точнее, разрушение для созидания). В содержательном аспекте научная революция XVII в. знаменовала собой смену картин мира. Главной предметной областью проходивших процессов были физика и астрономия. Разрушение – созидание совпадали (правда, в различной степени) в трудах отдельных ученых периода научной революции. Если Возрождение выявило тенденцию к разрушению «старого» Космоса, то начиная с 1543 г. – года выхода книги Н. Коперника «О вращении небесных сфер» – процесс приобретает четкие научные формы. «Старый» Космос – это мир «по Аристотелю и Птолемею»: он имеет шаровидную форму, вечен и неподвижен; за его пределами нет ни времени, ни пространства, в центре его – Земля; он дихотомичен: изменяющийся подлунный мир и совершенно неизменный надлунный; пустоты нет: в подлунном мире четыре элемента (земля, вода, воздух, огонь), в надлунном эфир; все движения в Космосе круговые в соответствии с кинематикой Птолемея. «Новый» Космос, по Копернику, начинался в простой модели, совпадавшей с моделью Аристарха Самосского: вращение Земли вокруг оси; центральное положение Солнца внутри планетной системы; Земля – планета, вокруг которой вращается Луна. Именно эта модель как пифагорейский символ гармоничного мира и вдохновляла Коперника, Галилея и Кеплера, поскольку соответствовала астрономическим наблюдениям лучше, чем геоцентрическая модель Птолемея. Однако модель Коперника, когда он попытался ее расширить, оказалась малопригодной для практического применения. К тому же она сохраняла и весь «аппарат» птолемеевской модели (круговые орбиты, эпициклы и др.). Мощным оказался удар коперниковской модели по христианскому мировоззрению, недаром Мартин Лютер и Джон Донн в сатирической поэме «Святой Игнатий, его тайный совет и…» всячески поносили католического священника Коперника. Коперник, «остановив Солнце», лишил Землю сакральности центра мироздания.
В создание новой картины мира большой вклад внесен Джордано Бруно. Его идея множественности миров не была новой; новизна заключалась в «перемещении» множественности внутрь «нашего» Космоса, что сразу обессмысливало идею божественной избранности Земли, да и саму идею монотеистического Бога. Но судьба Бруно – своеобразный символ перехода от Средневековья к Новому времени: с одной стороны, он в христианстве и одновременно в мистицизме, с другой —
полон желания не только «прокричать» идею, но и логически ее обосновать, и все же сделать этого не в состоянии. Трагическая фигура! Мученическая смерть на костре инквизиции дала основание для его последующей героизации. Но он, скорее, герой духа, чем науки.
Специального рассмотрения требует проблема соотношения оккультизма и науки на этапе становления последней. «Геометрический импульс» ее происхождения совершенно очевиден, но, вырастая из мистицизма, наука преодолевала его.
Для ориентировки корабля, как и вообще для определения положения планет на небесной сфере, использовались таблицы, составленные по указанию Альфонса X еще в 1252 г. В 1474 г. в Нюрнберге были напечатаны «Эфемериды» Региомонтана (Иоганна Мюллера), следующее их издание содержало таблицы для решения самой сложной задачи – определения широты места. Все великие мореплаватели XV в.: Диас, Вас ко да Гама, Америго Веспуччи и Колумб – пользовались этими таблицами. С их помощью Веспуччи определил в 1499 г. долготу Венесуэлы, а Колумб смог поразить туземцев, сообщив им о предстоящем солнечном затмении 29 февраля 1504 г.
Наблюдательная астрономия была широко развита к XVII в. трудами Пурбаха, Региомонтана, Коперника. Любое плавание в открытом море связывалось с необходимостью постоянного измерения (визирования) положения небесных тел. Но высшего совершенства в наблюдательной астрономии в дотелескопическую эпоху достиг, несомненно, Тихо Браге. Его помощником и в какой‑то мере научным наследником был Иоганн Кеплер. Браге создал свою уникальную обсерваторию в Ураниборге. На основе своих наблюдений он составил каталог 777 звезд, причем координаты 21 опорной звезды были им определены с особой тщательностью. Ошибка при определении положений звезд не превышала одной минуты, а для опорных звезд еще меньше.
Позднее список звезд был доведен до 1000, не считая 223 звезд, положения которых были установлены с несколько меньшей точностью.
Наблюдения привели его к обоснованию уникальной геогелиоцентрической модели мира. Но, возможно, самым революционным было наблюдение Тихо Браге появления новой звезды в созвездии Кассиопеи 11 ноября 1572 г. Браге не только зафиксировал это явление, но и строго научно описал его. Представление о совершеннейшем надлунном мире Аристотеля получило еще один сильный удар.
Первый «рабочий чертеж» новой картины мира суждено было выполнить Кеплеру, человеку, на которого с детства выпало столько несчастий, что трудно найти более тяжелую судьбу. Кеплер был открытым и последовательным пифагорейцем и совершенство своей астрономической модели искал (и нашел!) в сочетании правильных многогранников и описывавших их окружностей (правда, нашел это в третьей своей геометрической модели, отказавшись попутно от «самого совершенного» типа орбиты небесных тел – круговой).
В книге «Новая астрономия», завершенной в 1607 г. и опубликованной двумя годами позже, Кеплер привел два из трех своих знаменитых законов движения планет.
1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
2. Каждая планета движется в плоскости, проходящей через центр Солнца, причем линия, соединяющая Солнце с планетой (радиус – вектор планеты), за равные промежутки времени описывает равные площади. Замечательно полное название книги: «Новая астрономия, основанная на причинных связях, или Физика неба, выведенная из изучения движений звезды Марс, основанных на наблюдениях благородного Тихо Браге».
3. В 1618 г. он обнародовал открытый им третий закон планетных движений: квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит. Параллактический эллипс, описываемый звездой, выглядит с Земли так же, как и земная орбита, если бы мы могли наблюдать ее со звезды.
Кеплер не смог объяснить причины планетных движений: он считал, что их «толкает» Солнце, испуская при своем вращении особые частицы (species immateriata). При этом эксцентричность орбиты определяется магнитным взаимодействием Солнца и планеты. Все его силы ушли на математическое описание предложенной геометрической модели. Сколь трудной была задача, свидетельствует множество безуспешных попыток Кеплера совместить его закон площадей с круговыми формами орбит. В отчаянии он усомнился в верности закона, пока не преодолел стереотип мышления: «Загипнотизированный общепринятым представлением, я заставлял их (планеты) двигаться по кругам, подобно ослам на мельнице».
Кеплеровский закон площадей – это первое математическое описание планетарных движений, исключившее принцип равномерного движения по окружности как первооснову. Более того, он впервые выразил связь между мгновенными значениями непрерывно изменяющихся величин (угловой скорости планеты относительно Солнца и ее расстояния до него).
Этот «мгновенный» метод описания, который Кеплер впоследствии вполне осознанно использовал при анализе движения Марса, стал одним из выдающихся принципиальных достижений науки XVII в. – методом дифференциального исчисления, оформленного Г. Лейбницем и И. Ньютоном.
Кеплер заложил первый камень (вторым стала механика Галилея) в фундамент, на котором покоится теория Ньютона. «Аристотелевский мир» рухнул окончательно.
В 1632 г. во Флоренции была напечатана наиболее знаменитая работа Галилея, послужившая поводом для известного процесса над ученым. Ее полное название «Диалог Галилео Галилея Линчео, Экстраординарного Математика Пизанского
университета и Главного Философа и Математика Светлейшего Великого Герцога Тосканского, где в четырех дневных беседах ведется обсуждение двух Основных Систем Мира, Птолемеевской и Коперниковой; и предполагаются неокончательные философские и физические аргументы как с одной, так и с другой стороны».
Эта книга была написана на итальянском языке и предназначалась для «широкой публики». В книге много необычного. Например, один из ее «героев» Симпличио (лат. «простак») отстаивает точку зрения Аристотеля. Явный намек на Симпликия – выдающегося комментатора Аристотеля, жившего в VI в. Несмотря на легкость и изящество литературной формы, книга полна тонких научных наблюдений и обоснований (в частности, инерции, гравитации и др.). Вместе с тем цельной системы Галилей не создал.
В 1638 г. вышла последняя его книга «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению…». Во многом Галилей здесь касался тех проблем, которые были им решены еще около 30 лет назад.
Механика Галилея дает идеализированное описание движения тел вблизи поверхности Земли, пренебрегая сопротивлением воздуха, кривизной земной поверхности и зависимостью ускорения свободного падения от высоты.
В основе «теории» Галилея – четыре простые аксиомы (правда, в явном виде Галилеем не сформулированные):
– свободное движение по горизонтальной плоскости происходит спонтанной по величине и направлению скоростью (сегодня – закон инерции, или первый закон Ньютона);
– свободно падающее тело движется с постоянным ускорением;
– тело, скользящее без трения по наклонной плоскости, движется с постоянным ускорением, равным произведению ускорения свободного падения на синус угла наклонной плоскости;
– принцип относительности Галилея и поле снарядов, траектория движения которых описывается уравнением параболы («преобразования Галилея»),
У Г. Галилея впервые связь космологии с наукой о движении приобрела осознанный характер, что и стало основой создания научной механики. До 1610 г. Галилеем были открыты законы механики, но первые публикации связаны с существенно менее оригинальными работами по космологии.
Изобретение в 1608 г. голландцем Хансом Липперсхеем, изготовителем очков, телескопа (правда, не предназначавшегося для астрономических целей) дало возможность Галилею, усовершенствовав его, в январе 1610 г. открыть новую астрономическую эру.
Оказалось, что Луна покрыта горами, Млечный Путь состоит из звезд, Юпитер окружен четырьмя спутниками, и «Аристотелевский мир» рухнул окончательно.
Галилей публикует увиденное в своем «Звездном вестнике», который выходит уже в марте того же 1610 г. Книга была написана на латыни и предназначалась для ученых.
Первыми «концептуалистами» нового времени принято считать Фрэнсиса Бэкона и Рене Декарта.
Бэкону принадлежит провозглашение главенства метода индукции, примата эмпиризма на пути развития практической и экспериментальной науки, призванной реализовать лозунг «Знание – сила».
Декарт несравненно более глубокий мыслитель – основатель философии нового времени. В отличие от Бэкона Декарт ищет обоснование знания не столько в сфере его практической
реализации, сколько в сфере самого знания. В центре методологических размышлений («сомнений») Декарта – мысль и сам человек. Природа Декарта – вечно движущееся чисто материальное образование, основными ее законами являются принципы сохранения количества движения, инерции и недвижения. На основе этих принципов и методологически контролируемого построения механических моделей разрешимы все познавательные задачи, обращенные к природе.
Декарт провозгласил примат математического описания мира, но дал лишь его качественную картину (хотя сегодня прямоугольные координаты мы называем Декартовыми, у Декарта они были косоугольными и произвольными). Отличительная черта взглядов Декарта-естественника – синкретичность его механики (и оптики) с философией, поэтому все три положения его механики очень важны для понимания последующей философии естествознания:
– в мире отсутствует пустота, Вселенная наполнена материей (и вся она в непрерывном движении);
– материя и пространство суть одно;
– не существует абсолютной системы отсчета, а следовательно, абсолютного движения.
Р. Декарт был типичным представителем ятрофизики – направления в естествознании, рассматривавшего живую природу с позиций физики. Дальнейшее развитие это направление получило в работах итальянского анатома Джованни Борелли – основоположника ятромеханики – и впоследствии выросло в биомеханику. С позиций ятрофизики и ятромеханики живой организм подобен машине, в которой все процессы можно объяснить с помощью математики и механики. Подобно ятро– физике широкое развитие получила и ятрохимия, считающая, что все процессы, совершающиеся в организме, химические, поэтому с химией должно быть связано как изучение процессов, так и лечение болезней.
К концу XVII в. «новый» космос, новая картина мира, что и было когнитивной сутью науки, оформилась полностью. («Ньютоновская физика была полностью спущена с Небес на Землю по наклонной плоскости Галилея», – писал Анри Бергсон.) Ее архитектором и прорабом стал Исаак Ньютон.
Роль Ньютона в истории науки удивительна. Многое, чем он занимался, что он описал, в частности, в знаменитых «Математических началах натуральной философии» (первое издание в 1687 г.), было раньше высказано и описано другими. Например, в частных экспериментах и рассуждениях X. Гюйгенс фактически использовал такие важнейшие положения, как пропорциональность веса тела G его массе; соотношение между приложенной силой, массой и ускорением (F = та); равенство действия и противодействия. Известны не всегда красивые приоритетные споры, героем которых был Ньютон (чего стоит один спор с Лейбницем). Но все это не умаляет величия научного подвига Ньютона. Он показал себя настоящим мастером, который не столько обобщал, сколько создавал оригинальную новую концепцию мира. У Ньютона также слились космология и механика, главными положениями которых стали понятия движущей силы, инерции, соотношения гравитационной и инертной масс.
Понятие движущей силы — высшей по отношению к телу (любому: снаряду или Луне, например), которая может быть измерена по изменению движения, производимого ею. При этом Ньютон понял, что сила, скорость и ускорение представляют собой векторные величины, а законы движения должны описываться как соотношения между векторами. Наиболее полно все это выражается вторым законом Ньютона: «Ускорение а, сообщаемое телу массы т, прямо пропорционально приложенной силе Fи обратно пропорционально массе, т. е. F= та».
Понятие инерции, которая изначально присуща материи и измеряется ее количеством. Первый закон Ньютона: «Если бы на тело не действовало никаких сил вообще, то оно после того, как ему сообщили начальную скорость, продолжало бы двигаться в соответствующем направлении равномерно и прямолинейно». Следовательно, никаких свободных движений нет, а любое криволинейное движение возможно лишь под действием силы.
Понятие соотношения гравитационной и инертной масс i иш прямо пропорциональны друг другу Отсюда обоснование тяготения как универсальной силы и третий закон Ньютона: «Каждое действие вызывает противодействие, равное по величине и противоположно направленное, или, иными словами, взаимное действие двух тел друг на друга равно по величине и противоположно по направлению».
Особое место в размышлениях Ньютона принадлежит поиску адекватного количественного (математического) описания движения. Именно с него начинается новый раздел математики, который Ньютон назвал «метод начальных и конечных отношений» (дифференциальное исчисление). Исследуя движение по некруговой орбите, Ньютон рассматривал его как постоянно «падающее». Он ввел понятие «предельное отношение», основанное на интуитивном представлении о движении, так же как Евклидовы понятия «точки» и «линии» основаны на интуитивном восприятии пространства, это своего рода кванты движения.
Особое значение здесь имеют те «предельные отношения», которые характеризуют скорость изменения каких‑либо величин (т. е. в зависимости от времени). Ньютон назвал их «флюксиями» (сейчас – производные). Вторая производная звучала как «флюксия от флюксий», что особенно возмущало одного из критиков Ньютона епископа Дж. Беркли, который считал это нелепым изобретением, подобным призраку природы.
Среди выдающихся исследователей и мыслителей XVII в. следует назвать Готфрида Лейбница и отметить его значительно более глубокое, чем у Ньютона, понимание, вернее, конструирование понятия «дифференциал» как общенаучного термина (термин принадлежит Лейбницу), как собственно научного метода, а не только языка научного описания конкретного научного факта, а также его удивительную теорию – «Монадологию» – о своеобразных квантах, «монадах» бытия и, кроме того, понятия абсолютного («пустого») пространства, в котором находятся сосредоточенными массы (с их взаимным дальнодействием и единым центром масс), и абсолютного же (полностью обратимого, поскольку перемена знака времени в формулах механики не меняет их вида и смысла) времени с начальной точкой отсчета.
Теория Ньютона – простая, ясная, легко проверяемая и наглядная – стала фундаментом всего «классического естествознания», механической картины мира и философии, интегральным выражением и критерием самого понимания научности на более чем 200 лет. Не утратила полностью своего значения она и сегодня.








