412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Клиффорд Пиковер » Инопланетяне глазами науки (ЛП) » Текст книги (страница 11)
Инопланетяне глазами науки (ЛП)
  • Текст добавлен: 15 июля 2025, 17:07

Текст книги "Инопланетяне глазами науки (ЛП)"


Автор книги: Клиффорд Пиковер



сообщить о нарушении

Текущая страница: 11 (всего у книги 21 страниц)

Первая форма жизни?

На Земле нуклеиновые кислоты, такие как ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота), содержат основную генетическую информацию всех форм жизни. Эта информация проявляется в виде последовательности из четырёх различных химических оснований. Предполагается, что молекулы РНК – это самые примитивные формы «жизни», которые эволюция породила самыми первыми: они спонтанно складываются в сложные структуры и при определённых условиях размножаются. В настоящее время мы знаем, что характерные особенности сворачивания РНК влияют на их функционирование и выживание в условиях, неблагоприятных в плане работы ферментов или с точки зрения биохимии.

Если сложные споры не попали на Землю на кометах, то период химической эволюции на Земле, в течение которого в первобытных морях постепенно накапливались органические соединения, начался, вероятно, около 4000 миллионов лет назад. Синильная кислота (HCN) играет ключевую роль в большинстве реакционных цепочек, ведущих к абиотическому образованию этих простых азотсодержащих органических соединений. (Понятие «абиотический» относится к процессам, в которых не участвуют живые компоненты.) HCN легко образуется в результате таких реакций, как

2 CH4 + N2 → 2 HCN + 3 H2

и

CO + NH3 → HCN + H2O.

HCN является предшественником органических молекул вроде пуринов и пиримидинов, из которых состоят такие молекулы, как ДНК и РНК.

Многие исследователи предполагают, что РНК была первоначальным протогеном – первой информационной макромолекулой и первой структурой на пороге жизни. В настоящее время исследователи пытаются заставить нити РНК воспроизводить себя и подвергаться адаптации посредством эволюции – в подходящей среде. Генетическая информация многих вирусов закодирована в одноцепочечной молекуле РНК.

Учёные давно задавались вопросом о том, появились ли белки раньше нуклеиновых кислот или наоборот. Похоже, белки образуются только по инструкциям, состоящим из нуклеиновых кислот, однако нуклеиновые кислоты не могут функционировать без помощи каталитических белков. Возможно, способ взаимодействия белков и нуклеиновых кислот эволюционировал из более простого и иного процесса. Например, мы знаем, что нуклеиновые кислоты могут размножаться без помощи белков. РНК могут действовать как ферменты, расщепляя молекулы РНК на части, которые далее могут рекомбинировать. Возможно, на ранних этапах эволюции на Земле РНК могла не только самовоспроизводиться, но и эволюционировать благодаря ошибкам репликации, подготавливая почву для эволюции более успешных систем ДНК и РНК. В лаборатории можно создавать спирали РНК и двухцепочечную РНК, просто смешивая нуклеотиды и фосфаты (строительные блоки РНК) в колбе, освещённой медленно вращающимся источником света, имитирующим суточные циклы света и темноты. Субъединицы РНК, зафиксированные на глине, также могут соединяться в длинные цепочки, которые самовоспроизводятся.

Другие исследователи считают, что белки были изначально способными к самовоспроизведению, а затем «изобрели» нуклеиновые кислоты. Когда смеси аминокислот нагревают до очень высоких температур и полученный протеиноидный материал растворяют в горячей воде и охлаждают, они образуют микроскопические сферы, которые выглядят как некие бактерии. Сферы обладают многими свойствами, похожими на свойства жизни, среди которых катализ химических реакций, напоминающие мембраны поверхности и способность к размножению. Некоторые исследователи считают, что агент, вызывающий «коровье бешенство», может состоять только из белка, который, судя по всему, размножается в головном мозге, и это подтверждает идею о том, что в ходе эволюции белковая форма жизни могла предшествовать формам жизни, основанным на нуклеиновых кислотах.

Кремниевая жизнь

До этого момента наше внимание уделялось жизни, основанной на углероде. Однако исследователи предполагают, что инопланетная жизнь может быть основана на цепочках из атомов кремния вместо углеродных цепочек, как в случае Земли. Согласно химическим законам, существует только два элемента, способных образовывать длинные цепочки, которые, как мы полагаем, необходимы для жизни: углерод и кремний. Возможно ли, чтобы формы жизни даже на Земле были основаны на кремнии?{39} Это представляется маловероятным, хотя сложная система чего-то вроде реакций органической химии могла бы протекать с кремниевыми цепочками в жидком аммиаке вместо воды. Однако аммиак является жидким только в узком диапазоне очень низких температур, что делает его менее подходящей средой для жизни в сравнении с водой. Замёрзшая вода весьма примечательна тем, что она менее плотная, чем жидкая, и это заставляет лёд плавать по поверхности океанов в холодную погоду. С другой стороны, в океане жидкого аммиака замороженные куски аммиака тонули бы, тем самым подвергая поверхность жидкого аммиака воздействию холода, так что в конце концов весь аммиак в аммиачном море замёрз бы.

Несмотря на эти предостережения, жизнь теоретически может возникнуть не только в жидком аммиаке при температурах около -58 градусов по Фаренгейту (-50 градусов по Цельсию) – с более слабыми связями, в образовании которых участвует азот, преобладающий в обменных процессах, – но и в углеводородах,{40} где в качестве растворителя, растворяющего или диспергирующего агента работает смесь углеводородов. (По всей видимости, большинству земных организмов на одном из этапов их жизненного цикла требуется хотя бы незначительное количество растворителя, чтобы они могли жить и здравствовать.) Например, мне нравится представлять себе маленьких существ, живущих в нефти. Восстановительные реакции – это такие реакции, в которых донор электронов вроде водорода передает электрон другому участнику реакции. Такие реакции, например, гидрирование, можно было бы использовать в качестве источника энергии. Это не настолько маловероятно, как может показаться. Многие экстремофилы на Земле процветают в органических растворителях, токсичных для большинства других форм жизни. Например, некоторые микробы превосходно чувствуют себя в толуоле, бензоле, циклогексане и керосине, иногда при концентрации растворителя до 50 процентов (остальные 50 процентов составляет вода). Эти микробы можно обнаружить в почве и глубоководных илах, и они разлагают сырую нефть и полиароматические{41} углеводороды. Эти виды микробов могут быть полезны в качестве биоразлагающих агентов, уменьшающих количество токсичных отходов.

Углерод действительно обладает некоторыми уникальными свойствами, которые делают его идеальным кандидатом для перехода к жизни. Он может соединяться сам с собой в длинные цепочки и может образовывать связи с четырьмя другими атомами одновременно. Теоретически это допускает существование огромного количества различных соединений. Заметим, однако, что жизнь могла бы основываться и на менее универсальных атомах. Например, атому нет необходимости образовывать связи самому с собой, чтобы строить длинные цепочки. Вообще, цепочки могли бы состоять из двух или более видов атомов, чередующихся друг с другом. Физики Джеральд Фейнберг и Роберт Шапиро предположили, что жизнь могла бы возникнуть на основе альтернативной химии, возможности которой не столь обширны, как у углерода. Например, если английский язык можно передать и сохранить, используя 26 букв, его также можно столь же успешно, хотя и не столь компактно, закодировать с помощью единиц и нулей – двоичного кода, используемого компьютерами. Точно так же менее сложная химия с большим количеством компонентов, нужных в каждой молекуле или клетке, могла бы послужить генетической основой жизни.

Что такое жизнь?

Мы обсуждали химическую эволюцию жизни и различные химические вещества, которые, как предполагается, могут создавать жизнь. Недавно химик Массачусетского технологического института Джулиус Ребек создал органическую молекулу, которая воспроизводит сама себя, – молекулу, которую Ребек считает примитивной формой жизни. Независимо от того, действительно ли она живая или нет, это определённо не та жизнь, какой мы её знаем. Например, J-образная молекула Ребека связана воедино некоторыми из тех же химических связей, что и белки, ДНК и РНК, но размножается молекула в растворе хлороформа. Тем из вас, кто разбирается в химии, скажу, что эта примитивная форма жизни состоит из «трёхкислотного сложного эфира аминоаденозина».{42} В растворе хлороформа молекулы Ребека могут копировать себя со скоростью, доходящей до головокружительного миллиона раз в секунду.

Благодаря исследованиям Ребека мы должны расширить наши представления о том, какое сырьё необходимо для приготовления внеземных органических первичных бульонов. И пусть эксперименты Ребека и других учёных не говорят нам о том, что на самом деле происходило миллиарды лет назад на Земле, они могут дать нам ключ к пониманию того, что могло бы произойти в этом или в каком-то другом мире во Вселенной.

Разумеется, все эти разговоры о других формах, которые принимает жизнь, не затрагивают вопрос «Что такое жизнь?» Фактически, само рассмотрение инопланетных форм жизни начинается именно с этого вопроса. Одни люди могли бы определить как жизнь всё, что поглощает, осуществляет обмен веществ и выделяет, но это описание можно применить к автомобилю, ржавчине или пламени свечи. Другие определяют жизнь как отклонение от термодинамического равновесия, но значительная часть природы (например, молния и озоновый слой) находится вне состояния равновесия и, таким образом, хотя и соответствует этому определению, жизнью не является. Определения жизни, отталкивающиеся от биохимии и требующие наличия белков или нуклеиновых кислот, представляются ограничительными. Например, если бы мы нашли инопланетного червя, который мог бы делать всё, что может делать червь на Земле, но состоял бы из других молекул, мы бы наверняка не признали его «неживым». В конце концов, многие из определений могут оказаться неприменимыми к инопланетным мирам.

У нас есть некоторое представление о том, насколько быстро эволюционировала жизнь на Земле. Земля сформировалась путём слипания древних «планетезималей» – тел радиусом около 3 миль (5 км). Эти глыбы начали сталкиваться друг с другом, образуя фрагменты, которые в результате какой-то последней «Великой бомбардировки» сложились в планеты, существующие в настоящее время. На Земле примитивная жизнь зародилась вскоре после Великой бомбардировки, которая завершилась около 3,8 миллиарда лет назад. Многочисленные ископаемые свидетельства показывают, что примитивная жизнь уже прочно обосновалась на Земле 3,5 миллиарда лет назад. Изучение геологической истории Земли предполагает, что примитивным клеткам было значительно легче эволюционировать из органических химических веществ, чем многоклеточным существам из одноклеточных, потому что многоклеточные существа появились в летописи окаменелостей менее 1 миллиарда лет назад.

Если на планете существуют простые формы жизни, то каковы шансы их эволюции в высшие организмы наподобие людей? В ходе эволюции жизни на Земле происходили различные катастрофы вроде той, что привела к вымиранию динозавров, или той, что унесла жизни 80 процентов морских животных в среднекембрийский период (около 515 миллионов лет назад). Каждое из этих событий расчищало Землю для всплеска эволюции в новых направлениях. Маловероятно, что эти случайные события повторялись повсеместно, поэтому в других мирах жизнь может не развиваться точно таким же путём, как это происходило здесь. Однако, как только искра жизни зажжена, она будет снова и снова вспыхивать в любой доступной ей щели или нише, что приведет к пожару различных существ.

Размышления о происхождении жизни сопровождают нас уже многие века. В прошлые времена учёные верили в самопроизвольное зарождение, также называемое абиогенезом; считалось, что посредством этого процесса из неживой материи развиваются даже крупные существа. Например, считалось, что куски хлеба, завёрнутые в тряпьё и оставленные в тёмном углу, превращаются в мышей, потому что через неделю среди тряпья появлялись мыши. Самопроизвольное размножение считалось объяснением появления личинок на разлагающемся мясе. Однако к восемнадцатому веку стало очевидно, что высшие организмы не могут быть созданы из неживого материала. Происхождение таких микроорганизмов, как бактерии, не было известно в полной мере до девятнадцатого века, когда Луи Пастер доказал, что микроорганизмы размножаются.

Одним из моих любимых сторонников абиогенеза был Эндрю Кросс, который в начале девятнадцатого века якобы создавал в лаборатории живые организмы с помощью электричества. Кросс писал, что когда он пропитал пористый камень смесью соляной кислоты и силиката калия, а затем пропустил сквозь камень электрический ток, там возникли ужасающие чудища микроскопических размеров (рис. 5.2). В наши дни мы предполагаем, что эти существа уже были там изначально, пусть даже незамеченные!

5.2 Arcarus electricus. В 1800-е годы Эндрю Кросс верил, что синтезировал это микроскопическое существо, пропустив электрический ток сквозь пористый камень, пропитанный соляной кислотой и силикатом калия. Форма жизни, названная Arcarus electricus, была показана в «Лекциях по электричеству» Г. М. Ноада (Лондон, 1849).

Выводы Кросса могут показаться фантастическими, но лишь потому, что он верил, что сложные многоклеточные организмы возникли в один миг в результате простых химических манипуляций. Многие учёные полагают, что первые крохи жизни на первобытной Земле действительно возникли из неживой материи посредством биопоэза – это означает создание жизни из неживого материала, содержащего необходимые химические вещества. Согласно этой теории, в ходе данного процесса молекулы медленно группировались, затем перегруппировывались, создавая всё более эффективные средства для преобразования энергии и воспроизводства.

В нынешних условиях на Земле из неживой материи вряд ли будут созданы новые формы жизни. Если жизнь образуется постоянно, то новые формы не так хорошо приспособлены к окружающей среде, как уже существующие, и, следовательно, не могут успешно конкурировать.

От Марса к Европе и дальше

Если мы, первооткрыватели двойной спирали ДНК, вообще заслуживаем похвалы хоть за что-то, так это за настойчивость, и за готовность отбрасывать идеи, когда они становились несостоятельными. Один из обозревателей подумал, что мы были не слишком умны, потому что столько раз ходили по ложному следу, но именно так обычно и делаются открытия. Многие попытки проваливаются не потому, что не хватает мозгов, а потому, что исследователь застревает в тупике или сдаётся слишком рано.

– Фрэнсис Крик

Поиски внеземной жизни веками побуждали мысль знаменитых астрономов, от сэра Уильяма Гершеля (1738-1822), открывшего Уран, до Персиваля Лоуэлла (1855-1916), который внёс решающий вклад в открытие Плутона, и Карла Сагана (1934-1997), который сформулировал важные догадки о происхождении земной жизни. Вообще, мысль об инопланетной жизни захватила значительное число астрономов, и многие современные астрономы считают, что две ледяных луны Юпитера, Энцелад и Европа, являются вероятными кандидатами на существование жизни. Это увлекательное предположение о жизни на спутниках Юпитера не ново и уже обсуждалось некоторыми авторами в прошлом. Например, Артур Ч. Кларк, Ричард Ч. Хогленд и доктор Роджер Джастроу давно предполагали, что на Европе в покрытых льдом океанах, поддерживаемых в жидком состоянии гравитационными силами Юпитера, могли существовать живые формы.{43}

Я тоже размышлял о жизни на спутниках Юпитера, давая полную свободу воображению читателей причудливыми описаниями жизни на Ганимеде, одном из самых замечательных спутников нашей Солнечной системы и месте действия моих научно-фантастических приключений из «Хаоса в Стране чудес».

Прежде чем начать рассуждать о жизни на лунах планет-гигантов и других планетах с научной точки зрения, я хотел бы отойти от темы и потратить несколько абзацев, чтобы рассказать вам о необычном мире, биологии и обществе моих собственных гипотетических созданий с Ганимеда. В «Хаосе в Стране чудес» я создаю целую цивилизацию. Существа и экология из моих описаний – это чистейший вымысел, но возникает вопрос: а смогла бы такая раса эволюционировать на Ганимеде при наличии подходящих условий?..

Ганимед и воображение

Иногда я мечтаю о том, что через сто лет космический корабль с Земли обнаружит остатки высокоразвитых форм жизни на Ганимеде, одном из спутников Юпитера, где есть вода. Что с ними случилось? Никто не знает. Возможно, они превратились в структуры, которые не выглядят как жизнь для человеческих глаз, или, возможно, превратились в споры, ожидающие пробуждения в каком-нибудь незаметном кратере. Размышления такого рода подтолкнули меня к тому, чтобы придумать загадочных ганимедских существ из «Хаоса в Стране чудес». Робкая разумная раса существ, известная как латёёкарфийцы, проводит свои дни в размышлениях над сложными математическими системами. В их обществе статус определяется красотой структуры их сновидений. В моём романе цивилизация латёёкарфийцев развивается внутри огромной воздушной полости во льдах Ганимеда. Потолок подземной воздушной камеры выложен фосфоресцирующими минералами и биолюминесцентными (светящимися) бактериями, что дополняет тусклый солнечный свет, проникающий сквозь лёд. Тела латёёкарфийцев состоят из арсенида алюминия-галлия со следами кремния из ледяной почвы Ганимеда. Эти материалы делают их головы проводниками электрических сигналов, а их мысли напоминают поток электронов в компьютерных чипах. Поэтому латёёкарфийцы мыслят со скоростью, недостижимой для земных форм жизни на углеродной основе (рис. 5.3).

5.3 Латёёкарфиец из «Хаоса в Стране чудес». У этих мозговитых математиков полупроводниковые головы. Статус в их обществе опирается на красоту фрактальных структур их сновидений.

Поскольку при воздействии электрического тока арсенид галлия излучает свет, латёёкарфийцы демонстрируют замысловатые узоры, которые переливаются сверкающими огнями. Красивые головы-дисплеи освещают тёмные ганимедские вечера, словно миллион светлячков, танцующих в каком-то неслыханном ритме. Их кровь состоит из электрореологических жидкостей{44}, которые в ответ на изменения электрического поля превращаются из жидкости в твёрдое вещество и обратно. Их рты, туловища и пищеварительные каналы выстланы пьезоэлектрическими материалами вроде кварца и оксида цинка. Под воздействием электрического напряжения оксиды расширяются или сжимаются, поскольку их молекулы поворачиваются, чтобы выстроить свои внутренние заряды в соответствии с электрическим полем. В результате эти вещества действуют как механические устройства, которые скручиваются или вытягиваются в ответ на электрические сигналы, исходящие от голов латёёкарфийцев.

В «Хаосе в Стране чудес» крошечные простейшие обитают во льдах Ганимеда и являются неотъемлемой частью экосистемы латёёкарфийцев. Эти планктонные существа, называемые ёо (рис. 5.4), мигрируют между поверхностью Ганимеда и потолком подземной воздушной камеры латёёокарфийцев, проделывая путешествие длиной в 17 лет. В романе подробно обсуждается сложная экология ёо и десятков других существ, а также описаны приключения двух антропологов в воздушном кармане Ганимеда.

5.4 Ледяной планктон Ганимеда из «Хаоса в Стране чудес».

Инопланетяне на Европе

От этого причудливого описания странной биологии, которую я разработал для существ из «Хаоса в Стране чудес», мне хотелось бы вернуться к серьёзному рассмотрению микроскопической жизни на других лунах и планетах нашей Солнечной системы. Жизнь может показаться хрупкой, однако же она возникла на Земле в условиях, которые покажутся суровыми и вам, и мне.

Европа, четвёртый по величине спутник Юпитера, долгое время считалась одним из немногих мест в Солнечной системе (наряду с Марсом и спутником Сатурна Титаном), где могла существовать среда, поддерживающая существование примитивных форм жизни. Пять миллиардов лет назад Юпитер был больше похож на миниатюрное солнце, чем на планету, и выделял достаточно тепла, чтобы поверхность Европы была покрыта океаном, а не льдом. В настоящее время известно, что на Европе находится значительное количество замёрзшей воды. Сатурн, возможно, также излучал тепло, потому что по размеру и составу он похож на Юпитер. Существовали и другие процессы, которые могли бы дать Энцеладу, спутнику Юпитера[18]18
  Так в книге. Энцелад – спутник Сатурна. – прим. перев.


[Закрыть]
, и Европе открытые океаны, в которых сияет солнце.

Европа размером примерно с земную Луну и покрыта гладким белым и коричневатым льдом, а не большими кратерами, как многие другие тела Солнечной системы. Наличие трещин, вероятно, связано с напряжениями, вызванными деформирующим приливным действием сильной гравитации Юпитера. Тепла, генерируемого приливным нагревом, может быть достаточно, чтобы размягчить или даже превратить в жидкость некоторую часть ледяного покрова Европы. В 1996 году снимки Европы с космического аппарата НАСА «Галилео» ещё раз подтвердили идею о том, что в настоящее время «тёплый лёд» или даже жидкая вода по-прежнему существует под покрытой трещинами ледяной коркой Европы. На Европе есть места, похожие на плавучие льды, а также признаки извержений, напоминающих гейзеры. Снимки также свидетельствуют о том, что на Европе наблюдается геологическая активность. В некоторых местах лёд расколот на большие куски, которые отодвинулись друг от друга, но явно подходят друг к другу, как кусочки головоломки-мозаики. Это свидетельствует о том, что под ледяной коркой находится смазка в виде тёплого льда или жидкой воды.

В апреле 1997 года новые снимки Европы крупным планом показали завораживающее множество мелких гребней, трещин и разломов на ледяной поверхности. Снимки, сделанные космическим аппаратом «Галилео», подтвердили ранее сделанные выводы о том, что ледяные глыбы на Европе двигались и вращались, как если бы они скользили по подстилающему их слою тёплого льда или воды. Солнечный свет, проникающий сквозь трещины во льду в верхний слой воды, мог создать пребиотические сложные органические молекулы.

На типичной ледяной луне мы находим камень, металл, водяной лёд, сухой лёд, замороженный аммиак и замороженный метан. Целые эпохи тому назад эти материалы в парообразной или жидкой форме подвергались воздействию ультрафиолетовых лучей молодого Солнца, несущих больше энергии, и, вероятно, образовывали различные органические соединения на поверхности таких спутников, как Энцелад и Европа. Если в прошлом в этих двух мирах эволюционировала жизнь, то есть вероятность того, что она всё ещё теплится в наши дни в жидкой воде под их ледяной коркой. Тепла, выделяемого приливными (гравитационными) взаимодействиями между Ио, Европой и Юпитером, по-видимому, достаточно, чтобы растопить лёд под корой Европы. Аппарат «Вояджер-2» даже наблюдал, как Энцелад выбрасывает столбы воды. Геотермальная энергия может поддерживать жизнь в этих мирах точно так же, как геотермальные источники тепла могут поддерживать существование земной жизни. На мой взгляд, нашими первыми инопланетными гостями станут жители Европы и Энцелада, которых доставят на Землю для наблюдения, когда Соединённые Штаты решат потратить нужную сумму денег на отправку робота в эти миры, извлечение образцов из-подо льда и доставку их на Землю.

Жизнь на Марсе

Марс, четвёртая планета от Солнца, всегда был источником тайн и домыслов. К числу самых оригинальных научно-фантастических произведений, связанных с Марсом, относится цикл «Барсум» Эдгара Райса Берроуза (1875-1950), автора книг о Тарзане. Я вспоминаю, как с любовью читал об экзотических встречах Джона Картера с марсианскими расами и об их особенных языках, обычаях, природной среде, общественных и политических организациях. Серия книг «Барсум» вобрала в себя многие современные для того времени представления, например, идею умирающего Марса с дном мёртвых морей и каналами, отводящими воду с полюсов, популяризированную астрономом Персивалем Лоуэллом.

Хотя в настоящее время мы знаем, что марсианских каналов не существует, никто не сомневается, что когда-то Марс был гораздо более тёплой и влажной планетой. В 1997 году исследования марсианских метеоритов показали, что вода текла по поверхности Марса или неглубоко под ней совсем недавно, 700 миллионов лет назад. Один метеорит содержал большое количество иддингсита – смеси глин и оксидов железа, которая образуется только в присутствии воды. Если вода на поверхности была на Марсе менее 1 миллиарда лет назад, то жизнь, возможно, сохранялась на Марсе значительно дольше, чем предполагали исследователи.

В последние годы всё чаще появляются предположения о жизни на Марсе. В 1996 году весь мир ошеломил марсианский метеорит в форме картофелины, получивший обозначение ALH 84001, содержащий возможные свидетельства примитивной жизни в прошлом Красной планеты. Электронные микроскопы обнаружили крошечные образования, напоминающие земных микробов. Хотя они по-прежнему являются предметом споров, некоторые учёные полагают, что это окаменелые останки древних одноклеточных марсианских организмов.

Некоторые свидетельства указывают на то, что структуры, обнаруженные в метеорите, являются следствием марсианской жизни. На снимках, полученных с помощью электронного микроскопа, видны скопления удлинённых образований длиной не более 4 миллионных долей дюйма (100 нанометров). Эти формы, похожие на крошечные связки сосисок, могли быть просто крупинками минерала. Однако они имеют поразительное сходство с самыми ранними крупными микрофоссилиями на Земле, которые образовались 3,45 миллиарда лет назад. Также были обнаружены тёмные окаймления из магнетита (Fe3O4) и сульфида железа (FeS). На Земле эти соединения железа синтезируются определёнными бактериями, в частности, анаэробными (не любящими кислород) штаммами.

Учёные также обнаружили на метеорите органические молекулы под названием полициклические ароматические углеводороды, или ПАУ. Обычно их присутствие не указывает на биологическую активность – ПАУ часто наблюдаются в таких разнообразных телах, как метеориты и межзвёздные облака, предположительно как следствие процессов образования звёзд. Однако распределение ПАУ в метеорите напоминает то, которое ожидается при распаде простой органики.

Руководитель группы НАСА Дэвид Маккей признаёт, что ни одна из этих находок сама по себе не является окончательным доказательством существования примитивной жизни на метеорите, известном как ALH 84001. Полученные результаты можно имитировать с использованием чисто неорганических механизмов, а по поводу интерпретации наблюдений существуют некоторые разногласия.

Крошечный размер гипотетических окаменелостей марсианских микробов также даёт обширное поле для дискуссий, о чём свидетельствуют десятки писем, написанных в научные журналы. Существует ли ещё меньший предел размера для микроорганизмов? Некоторые учёные утверждают, что «существа» размером с тех, что были найдены в марсианском метеорите, были бы слишком малы, чтобы вместить химические и генетические механизмы, считающиеся необходимыми для жизни. При длине от 0,8 до 4 миллионных долей дюйма (от 20 до 100 нанометров) марсианские формы составляют в лучшем случае одну сотую размера самых мелких микрофоссилий древних земных бактерий из когда-либо найденных. Однако бактерии рода Coxiella (мелкие грамотрицательные патогены) имеют размеры всего 8 × 16 миллионных долей дюйма (200 × 400 нанометров, или 0,2 × 0,4 микрометра), что было бы ближе к пятикратной разнице в размерах. Таким образом, вполне возможно, что на Марсе могли развиться ещё более мелкие бактерии. С тех пор команда Маккея также предположила, что многие особенности, которые они видят в ALH 84001, являются скорее придатками бактерий, чем организмами.

Каков же будет самый крошечный инопланетянин, которого мы можем рассчитывать обнаружить когда-либо? На Земле диаметры самых мелких среди известных микроорганизмов довольно близки к теоретическому минимальному диаметру (0,14 мкм) для клеток, рассчитанному на основании размера макромолекулярных компонентов, необходимых и достаточных для жизни. Если учесть, что внутри клетки находятся её собственная ДНК, рибосомы, ферменты, липиды и всё остальное, наиболее вероятен теоретический минимальный диаметр в 8 миллионных долей дюйма (0,2 микрометра). Следует заметить, что овальный объект с диаметром меньше этого содержал бы всего лишь около 100 миллионов атомов – плотно упакованный набор для осуществления хранения информации, обменных и сборочных процессов, а также процессов репликации, необходимых для жизни.{45}


    Ваша оценка произведения:

Популярные книги за неделю