Текст книги "Бабочка и ураган. Теория хаоса и глобальное потепление"
Автор книги: Карлос Мадрид
Жанр:
Математика
сообщить о нарушении
Текущая страница: 4 (всего у книги 8 страниц)
Однако влияние советской школы этим не ограничивалось: во время холодной войны основные результаты, полученные советскими математиками, были переведены на английский. Европейские и американские математики смогли ознакомиться с ними благодаря трудам Соломона Лефшеца (1884–1972), которые пришлись как нельзя кстати. Этот инженер-химик родился в Москве, учился в Париже, переехал в США, где в результате несчастного случая (во время эксперимента произошел взрыв) потерял обе руки, после чего он начал заниматься математикой. Математика помогла Лефшецу справиться с сильной депрессией, и позднее он даже получил должность преподавателя в Принстоне. Чтобы писать на доске, ученый использовал пластиковые протезы и перед лекциями просил учеников прикрепить кусочек мела к его правой руке. Его сотрудничество с советскими математиками по окончании Второй мировой войны сыграло важнейшую роль в развитии теории динамических систем, а вместе с ней – ив развитии зарождавшейся теории хаоса.
Лоренц: кофе, компьютер, бабочка
Вернемся в Соединенные Штаты. Там в 1963 году юный метеоролог из MIT по имени Эдвард Нортон Лоренц (1917–2008), который учился у Биркхофа в Гарварде, сформулировал модель из трех обыкновенных дифференциальных уравнений для описания движения потока жидкости под действием градиента температур. Эта модель представляла собой упрощенное описание конвекции в атмосфере, то есть движение потоков горячего и холодного воздуха в условиях заметной разницы температур: горячий воздух поднимается вверх и, достигнув верхних слоев атмосферы, охлаждается, после чего вновь опускается к поверхности Земли. При некоторых значениях постоянных дифференциальные уравнения модели описывали начало нестационарной конвекции.
Однажды во время поиска численных решений с помощью компьютера Royal МсВее LGP-30, первого персонального компьютера в мире, Лоренц отлучился выпить чашку кофе и, вернувшись, обнаружил, что система демонстрирует крайне нестабильное, хаотическое поведение. Компьютер распечатал список очень странных значений, в которых не прослеживалось какой-либо закономерности. Лоренц счел, что произошла какая-то ошибка, и повторил расчеты. Но всякий раз он получал те же необычные результаты. Списки чисел начинались с почти одинаковых значений, которые затем становились принципиально различными. Лоренц по счастливой случайности столкнулся с феноменом чувствительности к начальным условиям.
Он заметил, что система была крайне неустойчивой даже при малейших изменениях. Незначительное изменение начальных условий приводило к тому, что конечные состояния системы оказывались принципиально разными. Предоставим слово самому Лоренцу:
«Два неотличимо различающихся состояния могут породить два существенно различных состояния. Если допущена какая-либо ошибка при наблюдении текущего состояния системы (а для реальных систем это, по всей видимости, неизбежно), то дать надежный прогноз состояния системы в далеком будущем будет невозможно».
Позаимствованный Лоренцем образ в итоге занял важное место в науке: взмах крыльев бабочки в Бразилии мог вызвать торнадо в Техасе. Это явление получило название эффект бабочки. И действительно, представим, что маленькая бабочка сидит на ветке дерева в далекой Амазонии и время от времени раскрывает и закрывает крылья. Допустим, что она взмахнула крыльями ровно два раза. Так как атмосфера – это хаотическая система, чувствительная к начальным условиям, малейшее отклонение потоков воздуха рядом с бабочкой может в конечном итоге вызвать ураган над Техасом спустя несколько месяцев.
Этот феномен стал широко известен в 1972 году, когда на заседании Американской ассоциации содействия развитию науки Лоренц выступил с докладом на тему «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?», хотя еще в 1963 году один метеоролог так прокомментировал результаты исследования Лоренца: «Если эта теория верна, то взмах крыльев чайки может навсегда изменить погоду».
Популярная метафора о взмахе крыльев бабочки стала известной благодаря Лоренцу, а выражение «чувствительность к начальным условиям» ввел американский математик Гукенхеймер уже в 1970-е. В любом случае результат один: в силу хаотической динамики изначально совпадающие траектории постепенно отделяются друг от друга и расходятся.
Подобно спискам чисел, графики, приведенные Лоренцем в статье, изображали ряд колебаний, которые возрастали и в конечном итоге становились хаотическими.
Изначально траектория системы была периодической, но затем начинала испытывать сильные колебания, не подчиняющиеся какой-либо закономерности. Траектории вращались, по всей видимости, случайно, вокруг фигуры, напоминавшей восьмерку или крылья бабочки. Иногда траектории вращались несколько раз подряд вокруг одной половины этой фигуры, затем вокруг второй ее половины другое число раз. С течением времени близлежащие траектории отдалялись друг от друга по мере того, как они растягивались и складывались вблизи этой странной фигуры. При растяжениях близлежащие траектории разделялись, ошибки прогноза увеличивались. Затем, когда траектории складывались, они сплетались между собой. Этой странной фигурой, вблизи которой находились траектории, был аттрактор Лоренца.
В отличие от предсказуемых классических аттракторов (точек или предельных циклов), странные, или хаотические аттракторы, в частности аттрактор Лоренца, описывают непредсказуемые движения и имеют более сложную форму.
Лоренц опубликовал результаты своего открытия в метеорологическом журнале. Статья называлась «Детерминированный непериодический поток» и осталась практически незамеченной. Хотя Лоренц был метеорологом, он хотел быть математиком, однако эти планы нарушила Вторая мировая война. Математическое открытие Лоренца оказалось неактуальным, и статья пролежала на библиотечных полках почти 10 лет.
Только профессор Джеймс Иорк (род. 1941) из Мэрилендского университета смог распознать научные и философские последствия работы Лоренца: в упомянутой нами статье от 1963 года слились воедино (доказательством чему служит список источников, приведенный Лоренцем) топологические исследования нелинейных систем Пуанкаре, теория динамических систем Биркхофа и (внимание!) традиции советской математической школы, изложенные в книге «Качественная теория дифференциальных уравнений» Немыцкого и Степанова, изданной в Москве в 1949 году и переведенной на английский язык в 1960-м.
Эффект бабочки (чувствительность к начальным условиям) и так называемый эффект карточной колоды, заключающийся в растяжении и складывании траекторий, были сокрыты в гомоклинических сетях Пуанкаре. Оба этих признака хаоса проявились в виде аттрактора Лоренца и подковы Смэйла. Строго говоря, изучение гомоклинических сетей уже натолкнуло Смэйла на мысли о соленоиде и подкове, растяжение и складывание траекторий в которых являются характерными признаками хаоса. Так теория хаоса возродилась.
Новые создатели теории хаоса
Если Эдвард Лоренц предложил научному сообществу парадигму непрерывных хаотических динамических систем (систему Лоренца), то Роберт Мэй (род. 1936), занимавшийся популяционной биологией, в своей статье «Простые математические модели, обладающие сложной динамикой», опубликованной в журнале Nature в 1976 году, описал парадигму дискретных хаотических динамических систем (в них время течет не непрерывно, а скачками). Речь шла о логистическом отображении очень простой функции: f(х) = kx (1 – х). При значениях, близких к 4, эта функция, как это ни парадоксально, демонстрирует удивительно сложную динамику.
В следующей главе на примере этого отображения мы объясним основные понятия, связанные с хаосом.
Термин «хаос» был официально принят за год до публикации Мэя. В 1975 году профессор Иорк впервые использовал этот термин в современной научной литературе, в частности в своей статье «Период, равный трем, означает хаос», написанной в соавторстве с Ли Тянь-Янем. Несколько лет спустя, в 1978–1979 годах, физик Митчелл Фейгенбаум (род. 1944) эвристически (то есть с помощью нестрогих методов, приблизительных подсчетов) обнаружил определенные универсальные постоянные, характеризовавшие переход от периодического движения к хаотическому.
Не следует забывать, что в конце 1970-х – начале 1980-х годов исследования возможностей практического применения теории хаоса начали давать свои плоды не только в компьютерном моделировании. Классическим примером, демонстрирующим важность хаоса при изучении физических явлений, является переход к турбулентности в потоке. Турбулентность – очень важное явление, так как оно рассматривается во многих науках, начиная от гидродинамики и заканчивая метеорологией и климатологией. В классической математике турбулентность начинается с накопления колебаний. В стандартной интерпретации по мере того, как движение воды в реке становится все быстрее, сумма колебаний, по отдельности простых, порождает нестабильность, турбулентность. Проблема заключалась в том, что большинство колебаний при наложении совпадают, и в результате возникает периодическое движение, но не турбулентность. Наконец, в 1971 году математики Давид Рюэль (род. 1935) и Флорис Такенс (1940–2010) решили использовать иной теоретический подход и рассмотрели турбулентность с точки зрения топологии. Тогда и возникла блестящая идея: сочетание колебаний может породить новый объект – странный аттрактор, получивший такое название за форму: он представлял собой множество, отличное от известных на тот момент аттракторов (фокусов и предельных циклов).
Еще одна область применения теории хаоса, важность которой неуклонно повышается, связана с биологией при изучении неравномерности пульса и распространения заболеваний. Еще более многообещающими кажутся исследования в медицине и нейробиологии, в частности в электроэнцефалографии, где выявление хаотических и нехаотических участков (любопытно, что именно нехаотические участки являются аномальными) на энцефалограмме сегодня считается единственным способом раннего диагностирования заболеваний мозга.
* * *
ОПЕРЕЖАЯ ВРЕМЯ
Весьма вероятно, что первой динамической системой, с которой столкнется человек, только начавший изучение теории хаоса, будет логистическое отображение: f(x) = 4х( 1 – х). Несмотря на кажущуюся простоту, это отображение обладает очень сложной динамикой, которая включает хаотическое поведение. Логистическая функция является решением логистического уравнения, которое впервые описал бельгийский ученый Пьер Франсуа Ферхюльст (1804–1849). Когда в исследовании роста населения, опубликованном в 1838 году, Ферхюльст ввел логистическое уравнение для моделирования „ _ роста населения и последующей стабилизации его численности, подтверждаемого демографической статистикой, он не мог и представить, что более чем через 100 лет его модель привлечет огромное внимание исследователей и станет классическим примером теории хаоса.
Пьер Франсуа Ферхюльст.
* * *
СТРАННЫЕ АТТРАКТОРЫ И ФРАКТАЛЫ
Большинство странных аттракторов в хаотических системах представляют собой фрактальные множества. Именно фрактальная геометрия, созданная Бенуа Мандельбротом (1924–2010) в 1977 году на основе передовых трудов Пьера Фату и Гастона Жюлиа, опубликованных в 1918 году, считается геометрией природы. Форму фракталов имеет множество природных объектов (морские побережья, листья растений, раковины моллюсков, легкие и другие органы человека, галактики, созвездия и даже кольца Сатурна, сегменты которых напоминают фрактальные множества Кантора), так как самоподобие – основное свойство сложных систем.
* * *
Слишком громкая революция
Несмотря на вышесказанное, объективная и не лишенная скепсиса характеристика, приведенная Давидом Рюэлем в книге «Случайность и хаос», полностью корректна:
«Математическая теория дифференцируемых динамических систем выиграла от притока «хаотических» идей и в целом не пострадала от современной тенденции (техническая сложность математики препятствует мошенничеству). Однако физика хаоса, несмотря на частые триумфальные объявления о «новых» прорывах, в настоящее время практически не дает интересных открытий.
Мы не будем излагать искаженное видение хаоса, характерное для некоторых постмодернистов и других мыслителей. Критики утверждают, что высокая популярность теории хаоса и фрактальной геометрии не соответствует их реальной научной ценности. Теория хаоса применяется даже при анализе художественных произведений и в управлении предприятиями.
Нельзя отрицать, что хаос открыл новый путь в науке. Эту новую науку, объединяющую множество дисциплин, математики называют теорией хаоса, или теорией динамических систем, физики – нелинейной динамикой, все остальные – нелинейной наукой. Это наука об эффекте бабочки, о чувствительности к начальным условиям, о случайных, беспорядочных и неправильных траекториях, о непериодическом и нестабильном поведении, о гомоклинических орбитах, о растяжении и складывании траекторий, о странных аттракторах и многом, многом другом. Войдем же в дверь, которую открыла перед нами теория хаоса.
* * *
ХАОС НА ЗЕМЛЕ И НА НЕБЕ
Если Роберт Мэй представил парадигму дискретной хаотической динамической системы в одном измерении (логистическое отображение), то французский астроном Мишель Эно предложил парадигму дискретной хаотической динамической системы в двух измерениях – так называемое отображение Эно. В 1976 году, спустя несколько лет после того, как свет увидела работа Лоренца с описанием модели непрерывной хаотической динамической системы, Эно опубликовал статью «Двухмерное отображение со странным аттрактором», в которой представил преобразование плоскости, определяемое формулой
где а и b – две постоянные, которые обычно принимаются как а = 1,4 и b = 0,3. Это отображение Н представляет собой упрощенную версию сечения Пуанкаре для аттрактора Лоренца.
Если мы применим Н несколько раз подряд к квадрату, то увидим, как он будет менять форму: сначала он будет превращаться во все более вытянутый четырехугольник, затем – в бесконечно запутанную подкову. Эта бесконечно запутанная структура (фрактал), к которой приближаются последовательные итерации Н, и будет странным аттрактором Эно.
Хотя Эно утверждал, что описал странный аттрактор (то есть аттрактор, имеющий фрактальную природу), правильность его выводов подтвердили шведские математики Майкл Бенедикс и Леннарт Карлесон лишь в 1991 году.
Аттрактор Эно имеет фрактальную структуру, то есть обладает самоподобием (он повторяется в различных масштабах снова и снова).
Глава 3. Но, господин математик, что такое этот ваш детерминированный хаос?
Но, господин математик, что такое этот ваш детерминированный хаос?
Кто исчислит песок Иакова и число четвертой части Израиля?
Числа, глава 23, стих 10
Мефистофель: Как предречь игру судьбины?
Иоганн Вольфганг Гёте, «Фауст»
Бог и Дьявол сошлись в одном: способность человека предсказывать будущее безнадежно ограничена. Теория относительности Эйнштейна избавила ученых от иллюзий об относительном пространстве и времени, описанных в классической физике Ньютона, квантовая теория Бора, Планка и Гейзенберга, в свою очередь, покончила с мечтами о точных измерениях, а теория хаоса в одночасье уничтожила фантазии о возможностях предсказания будущего.
Самым важным ударом по традиционной мысли стало понимание того, что предсказать поведение многих систем на больших интервалах времени в принципе невозможно, так как решения уравнений, описывающих движение этих систем, крайне неустойчивы. Сложное поведение подобных систем вызвано не внешним воздействием, не обилием степеней свободы и не квантовыми эффектами. Уравнения, описывающие движение системы, детерминированы, однако их решения обладают стохастическими свойствами. Это явление называется детерминированным хаосом.
Попытаемся объяснить детерминированный хаос с точки зрения математики, ведь, как говорил Чарльз Дарвин, «математика наделяет человека новым, шестым чувством».
Хаос и сложность
Хаотические и сложные системы на протяжении многих десятилетий были забыты официальной наукой. Наука XX века позволила понять, из какой ткани соткана Вселенная, познать относительность пространства-времени и микрокосм квантовой механики (его можно сравнить с игровым полем), а современная наука помогает лучше понять, как устроена наша реальность (то есть фишки на игровом поле). Однако подлинное величие науки в конечном итоге проявляется на практике, и лишь теперь, в начале XXI века, мы постепенно начинаем осознавать важность теории хаоса и наук о сложности.
В действительности теория хаоса – лишь одна из так называемых наук о сложности, так как хаотические системы – это всего одна из разновидностей сложных систем. Существуют и другие науки о сложности: фрактальная геометрия, теория катастроф, нечеткая логика и другие. Говорят, что описать класс систем, изучаемых в теории хаоса, сложно, потому что они находятся на полпути между порядком и беспорядком, словно между двух огней. Если крайне упорядоченные системы (например, хрусталь) или очень неупорядоченные системы (например, дым) просты и описать их несложно, то описать промежуточные системы сложнее всего. В частности, хаотические системы – это нелинейные детерминированные системы, обладающие непериодическим поведением, в силу которого они становятся непредсказуемыми. Согласно китайской пословице, взмах крыльев бабочки можно ощутить на другой стороне Земли. Или, как писал математик Блез Паскаль, будь нос Клеопатры чуть покороче, облик Земли стал бы иным: Октавиан влюбился бы в Клеопатру и не стал бы первым римским императором. Кроме того, как вы увидите чуть позже, хаотические системы вездесущи: их можно встретить в математике, физике, астрофизике, метеорологии, биологии и медицине. Иными словами, почти все (или даже все) реальные системы обладают хаотической динамикой.
Динамические системы
Вы уже увидели, что хаос – это феномен, изучаемый в математической теории динамических систем. Динамическая система – это математическая модель, применяемая в естественных или общественных науках, которая представляет собой уравнение, описывающее изменение состояния системы с течением времени.
Существуют дискретные и непрерывные динамические системы. В дискретных системах время принимает набор фиксированных значений (t = 0, 1, 2, 3 …). Так, дискретная динамическая система формально задается уравнением в конечных разностях – формулой, которая описывает, как вычислить на основе исходного значения следующее, за ним – следующее, и так далее, до бесконечности. Уравнение в конечных разностях – это уравнение вида
где f – функция, описывающая, как вычисляется хn+1 на основе х. Иными словами, эта функция указывает, как вычислить х1 через x0, х2 через х1, х3 через х2 и так далее.
Уравнение в конечных разностях – это формула, выражающая значение переменной на следующем шаге через ее значение на предыдущем шаге. Так, для данного начального условия x0 решением динамической системы будет траектория {x0, х1, x2, х3 …}. Чтобы получить ее, нужно применить f к х0 некоторое число раз.
В непрерывных динамических системах время не принимает набор фиксированных значений, а течет непрерывно, как и в реальном мире. Непрерывные динамические системы описываются дифференциальными уравнениями, подобными приведенным в предыдущих главах. Дифференциальные уравнения – это формулы, выражающие скорость измерения переменной в зависимости от ее текущего значения.
В математическом анализе хаоса мы для простоты будем рассматривать дискретные динамические системы, так как они позволят вам понять суть вопроса.
Существует теорема, согласно которой непрерывная динамическая система будет хаотической тогда и только тогда, когда существует такое сечение Пуанкаре, что в нем можно определить дискретную динамическую систему, которая также будет хаотической.
Существует особый класс дискретных динамических систем, обладающих очень важной характеристикой: эти системы являются нелинейными. Система называется линейной, если функция f является линейной, то есть функцией первой степени, следовательно, имеет вид f(х) = ах + Ь. Если же функция f нелинейная (то есть ее степень больше 1) и, к примеру, имеет вид f(х) = ах2 + Ьх + с, то такая система считается нелинейной.
Несмотря на то что в нелинейных динамических системах значения величин, характеризующих систему, определяются значениями величин в предыдущий момент времени (такая система называется детерминированной), выходные значения непропорциональны входным. Микроскопические изменения в начальных условиях могут вызвать значительные изменения конечного состояния системы. Именно эта несоразмерность между причинами и следствиями объясняет, почему поведение подобных систем столь разнообразно: некоторые из них описывают фиксированные точки, периодические, квазипериодические и, наконец, хаотические орбиты.
Виды нелинейных динамических систем (стационарные, периодические и хаотические), соответствующие им представления временных рядов значений (слева) и графики траекторий на фазовой диаграмме (справа).
Эффект бабочки и эффект карточной колоды
Настало время ответить на вопрос, вынесенный в название главы: что же такое детерминированный хаос? Сначала посмотрим, что мы узнали о работах Пуанкаре, Смэйла и Лоренца из предыдущих глав. Мы увидели, что геометрическая сущность хаоса заключается в растяжении и последующем складывании траекторий.
В результате последовательных растяжений и складываний траектории на фазовом пространстве становятся подобны тарелке спагетти, в которой каждая траектория переплетена с остальными. Следовательно, малейшая неточность при измерении начальных условий может привести к тому, что мы проследуем вдоль неверной траектории-спагетти, которая переплетена с той, что нас интересует, но ведет к совершенно другой части блюда. В результате наш прогноз в долгосрочном периоде будет ошибочным. Эффект бабочки в действии.
История появления теории хаоса показывает нам две структурные характеристики, связанные с хаосом и объясняющие его непредсказуемость. Во-первых, хаотические системы крайне чувствительны к начальным условиям (это показали Пуанкаре и Лоренц), во-вторых, траектории в хаотических системах, растягиваясь и складываясь пополам, переплетаются между собой (Пуанкаре, Смэйл). Мы продемонстрировали обе эти характеристики на примере задачи трех тел Пуанкаре, бильярда Адамара, подковы Смэйла, системы Лоренца и других.
Математическое определение хаоса, с одной стороны, отражает чувствительность к начальным условиям, или эффект бабочки, а с другой стороны – запутанную топологическую структуру, или эффект карточной колоды (он заключается в том, что траектории переплетаются между собой так, будто воображаемый пекарь месит воображаемое тесто).
ХАОС = ЭФФЕКТ БАБОЧКИ + ЭФФЕКТ КАРТОЧНОЙ КОЛОДЫ
Хаос представляет собой совокупность эффекта бабочки и эффекта карточной колоды. Недостаточно, чтобы близлежащие траектории со временем быстро отдалялись друг от друга – они также должны растягиваться, складываться и при этом переплетаться.
Существует множество классических примеров хаотических систем, большинство из которых мы уже упоминали. Если говорить о непрерывных динамических системах, то наиболее ярким примером системы, не сохраняющей энергию (диссипативной системы), будет система Лоренца – упрощенная модель земной атмосферы.
Система Эно – Хайлса, связанная с задачей трех тел, – это классическая модель хаотической системы без диссипации (такие системы называются гамильтоновыми).
Если говорить о дискретных динамических системах, то вам уже знакомы логистическое отображение Мэя (о нем мы подробнее поговорим далее) и двухмерное отображение Эно – две системы, по форме схожие с подковой Смэйла и, что более важно, обладающие символической динамикой. Примером символической динамики является сдвиг Бернулли – возможно, простейшая разновидность дискретной динамической хаотической системы.
Сдвиг Бернулли определяется следующим образом: для данного числа х на интервале от 0 до 1, записанного в виде десятичной дроби, нужно сдвинуть запятую на одно положение вправо и отбросить первую цифру (то есть целую часть полученного числа). Пример:
В (0,324571) = 0,24571.
Мы сдвинули запятую на одну позицию вправо и стерли цифру 3. Аналогично,
В(0,24571) = 0,4571
В(0,4571) = 0,571
В(0,571) = 0,71
В(0,71) = 0,1
В(0,1) = 0
В(0) = 0
В(0) = 0
…
Следовательно, орбита или траектория начального значения х = 0,324571 будет записываться так: {0,324571; 0,24571; 0,4571; 0,571; 0,71; 0,1; 0; 0; 0}. Эта орбита стремится к фиксированной точке 0 (точечному аттрактору, или фокусу).
Как вы узнаете позже, сдвиг Бернулли обладает хаотическим поведением, поскольку в нем присутствуют и эффект бабочки, и эффект карточной колоды. Чувствительность к начальным условиям несложно подтвердить экспериментально: допустим, что мы хотим проследовать вдоль траектории точки х = 1/3 = 0,3 = 0,33333. Так как результатом измерения может быть лишь конечное число десятичных знаков, рассмотрим у = 0,3333. Ошибка будет составлять менее одной тысячной. Изначально орбиты х и у будут располагаться поблизости, однако затем отдалятся друг от друга:
В (0,33333…) = 0,33333 – В (0,3333) = 0,333
В (0,33333…) = 0,33333 – В (0,333) = 0,33
В (0,33333…) = 0,33333 – В (0,33) = 0,3
В (0,33333…) = 0,33333 – В (0,3) = 0
В (0,33333…) = 0,33333 – В(0) = 0
В (0,33333…) = 0,33333 – В(0) = 0
… –…
Подобно остальным периодическим десятичным дробям, х = 0,3 определяет периодическую орбиту для сдвига Бернулли. В нашем случае точка х имеет период, равный 1, то есть это фиксированная точка, так как она повторяется бесконечное число раз. И напротив, у = 0,3333, подобно всем остальным непериодическим десятичным дробям, – это точка, составляющая часть впадины аттрактора, расположенного в точке 0, так как в долгосрочном периоде ее орбита притягивается к точке 0. Ошибка измерения, которая изначально составляла менее одной тысячной (х – у = 0,3 – 0,3333 = 0,00003), значительно возрастет и будет иметь порядок нескольких десятых (после четвертой итерации ошибка будет равна 0,3 – 0 = 0,3).
Два начальных условия, близкие друг к другу, порождают две траектории, которые по прошествии определенного времени никак не связаны между собой.
Где в нашем случае проявляется эффект карточной колоды? Рассмотрим бесконечные непериодические десятичные дроби, то есть иррациональные числа. Построим орбиты чисел (2)0,5 – 1 (= 0,41421356237…) и π – 3 (= 0,14159265358…):
B((2)0,5 – i) = 0,14213… – В (π – 3) = 0,41592…
В(0,14213..) = 0,42135… – В (0,41592…) = 0,15926…
В (0,42135…) = 0,21356… – В (0,15926…) = 0,59265…
В (0,21356…) = 0,13562… – В (0,59265…) = 0,92653…
В(0,13562…) = 0,35623… – В (0,92653…) = 0,26535…
В (0,35623.. .) = 0,56237… – В (0,26535…) = 0,65358…
… –…
Что вы видите? Полученные десятичные дроби абсолютно случайны! Они напоминают номера лотерейного тиража. Это случайность, порождаемая хаосом. Орбиты чисел (2)0,5 -1, π – 3 или любого другого иррационального числа будут колебаться между 0 и 1. они будут приближаться к нулю столь же часто, как и к единице (или к 0,5). Знаки в десятичной записи иррациональных чисел не подчиняются какому-либо закону. Таким образом, если два рациональных числа – периодические десятичные дроби, значение которых точно известно, – порождают орбиты, которые рано или поздно будут периодическими (то есть начнут повторяться), то иррациональные числа (бесконечные непериодические десятичные дроби), напротив, порождают исключительно беспорядочные орбиты. Так как любое рациональное число бесконечно близко к некоторому иррациональному, периодические и непериодические орбиты неизбежно будут переплетаться между собой. В этом и заключается эффект карточной колоды.
Можно задаться вопросом: где в этом примере выполняются операции растяжения и складывания, которые порождают хаос? Чтобы обнаружить их, нужно посмотреть, какие математические действия мы совершаем при выполнении сдвига Бернулли. Мы уже говорили, что сдвиг Бернулли представляет собой сдвиг запятой в записи десятичной дроби на одну позицию вправо с последующим удалением первой цифры полученного числа. Когда мы сдвигаем запятую, в действительности мы умножаем число на 10, то есть «растягиваем» его, а когда мы стираем первую цифру, то уменьшаем, или «складываем, сгибаем» число. И вновь мы видим магический рецепт хаоса.
* * *
СДВИГ БЕРНУЛЛИ
Символическая динамика имеет и другие интересные свойства.
1) Она не поддается компьютерным вычислениям. Так как компьютеры работают с ограниченным числом десятичных знаков в записи дробей, для них все числа представляют собой точные десятичные дроби. Следовательно, если мы запрограммируем сдвиг Бернулли, то увидим на экране компьютера, что аттрактором всех орбит (подобно орбитам всех точных дробей) будет точка 0. Ни малейшего намека на хаос.
2) Существуют периодические орбиты с произвольным периодом. Так как периодические дроби могут иметь произвольный период (например, состоящий из шести цифр: то будут наблюдаться орбиты с произвольными длинами периодов: 1, 2,3,4, 5. Математики Ли Тянь-Янь и Джеймс Йорк на основе теоремы Шарковского сформулировали знаменитую теорему, согласно которой если для непрерывной функции существует орбита с периодом 3, то для нее существуют орбиты с любым периодом. Точная формулировка теоремы звучит так: существование 3-цикла подразумевает существование n-цикла (для n – 1,2,3,4, 5…). Ли и Йорк удачно подытожили смысл теоремы в названии свой статьи: «Период, равный трем, означает хаос».
3) Адамар и Смэйл обнаружили, что символическая динамика – один из самых заметных признаков хаоса. И соленоид, и подкова Смэйла, и аттрактор Лоренца обладают символической динамикой. Если мы рассмотрим десятичные дроби в двоичной системе счисления, то сможем описать каждую траекторию аттрактора Лоренца последовательностью нулей и единиц.
К примеру, траектория 0,11000101… сначала совершит два витка вокруг правой части аттрактора (так как после запятой записаны две единицы), затем – три витка вокруг его левой части (так как за двумя единицами следуют три нуля подряд) и так далее. Применив эту символическую динамику, можно доказать существование хаоса в системе Лоренца: каждая траектория будет беспорядочно вращаться вокруг правой или левой части аттрактора.
* * *
Рассмотрим теперь логистическое отображение Мэя, которое задается следующим уравнением в конечных разностях: