Текст книги "Бабочка и ураган. Теория хаоса и глобальное потепление"
Автор книги: Карлос Мадрид
Жанр:
Математика
сообщить о нарушении
Текущая страница: 3 (всего у книги 8 страниц)
Глава 2. Повторное открытие хаоса
– Вы – не обычный случай.
– Нет?
– Нет.
– Тогда что же я?
– Предмет изучения.
– Я буду предметом изучения;
но никто не хочет изучать меня.
Пио Бароха, «Древо познания».
Никому еще не удавалось познать что-то новое мгновенно. Если нам и кажется, что мы познали какое-то явление моментально, это означает, что на самом деле оно было рядом с нами долгое время. Так, хаос сопровождал нас почти тайно, не выходя на свет, поскольку ни один ученый не хотел столкнуться с ним лицом к лицу. Один американский физик прекрасно объяснил, почему путь к хаосу, открытый Пуанкаре, был практически заброшен на целых полвека, с начала до середины XX столетия, и впоследствии этот путь пришлось прокладывать заново.
Физик и математик Дойн Фармер, известный в США тем, что регулярно выигрывал в рулетку в Лас-Вегасе, применяя нелинейные дифференциальные уравнения, рассказывал о том, как он изучал математику:
«Слово «нелинейный» можно было встретить лишь в конце учебника. Студенты-физики проходили курс математики, и нелинейным уравнениям посвящалась последняя лекция. Многие пропускали эту тему, а остальные узнавали только методы, позволяющие сводить нелинейные уравнения к линейным и находить их приближенные решения. Мы теряли веру в свои силы: у нас не было ни малейшего представления о том, как сильно нелинейность изменяет модель. Мы не знали, что решения нелинейных уравнений могут казаться совершенно случайными. И если мы наблюдали нечто похожее, то задавались вопросом: "Откуда взялось это случайное движение? В уравнениях его не видно"».
Помимо Пуанкаре и новых исследователей теории хаоса, были и другие математики и физики, которые в те времена (мы говорим о последних годах XIX – начале XX века) изучали труды французского математика о задаче трех тел скорее в порядке исключения. Эти исследователи хаоса услышали призыв Пуанкаре заняться решением нелинейных задач и совершили ряд открытий в смежных областях.
Одним из этих ученых был Жак Адамар. Хотя различные примеры хаотических систем были известны давно, он в 1898 году первым математически доказал, что в некоторых динамических системах небольшое изменение начальных условий вызывает значительные изменения в последующем развитии системы (мы называем это явление эффектом бабочки). Французский математик изучил особую разновидность бильярда, в которой стол имел форму седловой поверхности, а траектории шаров были крайне неустойчивыми: два шара, расположенные рядом, после удара, приводившего их в движение, удалялись очень далеко друг от друга (по экспоненциальному закону). Адамар доказал, что для этой и аналогичных систем справедлива теорема о чувствительности к начальным условиям.
* * *
ВИВА, ЛАС ВЕГАС!
Два студента-физика, Дойн Фармер и Норман Паккард, в конце 1970-х основали небольшую группу под названием «Эвдемонисты». Их целью было найти способ выиграть в рулетку и направить вырученные средства на поддержку научного сообщества. Изучив купленную рулетку, члены группы сформулировали уравнение, включавшее период вращения рулетки и период вращения шарика на ней. Так как решить полученное уравнение было крайне сложно, студенты решили сконструировать микрокомпьютер, который бы предсказывал, в какой из восьми секторов упадет шарик. Компьютер помещался в каблуке туфли. Информация о том, на какой сектор следует ставить, передавалась с помощью сигнала от трех вибрирующих соленоидов, закрепленных на груди, под одеждой.
В 1978 году группа отправилась в Лас-Вегас, намереваясь обыграть казино. Наблюдатель вводил данные в компьютер, а девушка, которая делала ставку, получала указания от соленоидов, спрятанных под юбкой. Средний выигрыш составил 44 % от общей суммы ставок. Однако не обошлось без неожиданностей. Как-то раз изоляция повредилась, девушка получила сильные ожоги, но стоически продолжала игру. В итоге общий выигрыш группы составил почти 10000 долларов. Заветная цель была достигнута: с помощью методов статистики ученым удалось предсказать, в какую часть колеса рулетки будет падать шарик.
Но будьте внимательны: найденный алгоритм совсем не прост, и его нельзя применить к любой рулетке. В идеальных условиях, когда шарик представляет собой идеальную сферу, а колесо рулетки – идеальную окружность, предсказать результат было бы невозможно. «Эвдемонисты» смогли спрогнозировать, в какую часть колеса рулетки упадет шарик, только потому, что они внимательно изучили дефекты конкретной рулетки. Достоверность прогноза в краткосрочном периоде достигалась за счет несовершенства самой рулетки и шарика.
Компьютер «эвдемон истов», спрятанный в туфле.
* * *
Намного позже, в 1970-е, советский математик Яков Синай (род. 1935) вновь изучил результаты, полученные Адамаром, и рассмотрел уже не криволинейный бильярдный стол, а движение шаров на плоском квадратном столе, где располагались различные препятствия в форме дисков. Он доказал, что этот бильярд обладает теми же свойствами, что и бильярд Адамара, так как дискообразные препятствия приводят к хаотическому распределению шаров.
Хаотическая траектория бильярдного шара на бильярде Синая.
Еще один важный результат получил однокурсник Жака Адамара – французский физик Пьер Дюгем (1861–1916). Он был убежденным католиком и ставил религиозную философию выше научной, с чем убежденный рационалист Пуанкаре не мог согласиться. Дюгем обратился к важным философским последствиям результатов, полученных им и Пуанкаре, и смог разглядеть их революционный характер.
В главе «Пример математического вывода, никогда не применимого» своего труда «Физическая теория. Ее цель и строение» (1906) Дюгем замечает, что долгосрочное прогнозирование траектории шаров в бильярде Адамара не имеет смысла, поскольку любая, даже самая малая неточность при измерении начального положения и скорости шара приведет к ошибочному прогнозу. Прогнозная траектория не будет иметь ничего общего с реальной. Процитируем книгу Дюгема:
«Очень хороший пример такого вывода, всегда бесполезного, представляют изыскания Адамара. Мы заимствуем его из наиболее простых проблем, составляющих предмет исследования наименее сложной из физических теорий, а именно механики. Материальная масса скользит вдоль некоторой поверхности. На нее не действует никакая тяжесть, никакая сила; нет также никакого трения, которое изменяло бы ее движение. Если наша материальная точка движется по какой-нибудь произвольной поверхности, то она описывает линию, которую наши математики называют геодезической линией данной поверхности. Исследования Адамара касались специально геодезических линий многократно пересекающихся плоскостей противоположной кривизны. Если дано первоначальное положение нашей материальной точки и направление ее первоначальной скорости, геодезическая линия, которая должна быть описана, вполне определена. Другое дело, когда начальные условия даны не математически, а практически. Пусть начальное положение нашей материальной точки есть не определенная точка на поверхности, а какая-то точка внутри небольшого пятна. Пусть направление начальной скорости не есть вполне определенная прямая линия, а одна какая-то из прямых линий, образующих пучок, сечение которого есть небольшое пятно. Несмотря на тесные границы, в которых сжаты геометрические данные, соответствующие нашим практическим данным, можно эти геометрические данные всегда выбрать таким образом, чтобы геодезическая линия удалилась от геодезической линии, выбранной заранее. Можно произвольно увеличить точность, с которой определены практические данные, можно уменьшить пятно, в котором находится первоначальное положение материальной точки, можно сжать пучок, в котором находится направление начальной скорости, но все же никогда не удастся геодезическую линию, остающуюся на конечном расстоянии, выделить из пучка ее неверных подруг, которые удаляются на бесконечность. Если начальные данные не определены математически, а при помощи физических методов, как бы они ни были точны, поставленный вопрос остается без ответа и всегда останется таковым».
* * *
ДЕДУШКА АДАМАР
Жак Адамар (1865–1963), блестящий ученый еврейского происхождения, которому арифметика в детстве давалась с большим трудом, после смерти Пуанкаре занял его место во Французской академии наук. Адамар был патриархом парижской математики, сначала он занимал должность преподавателя в институте (известно, что студенты не понимали его лекций и высказывали недовольство), затем – университетского профессора (здесь, как правило, темы его исследований также интересовали прежде всего его самого).
Рассеянность Адамара была легендарной: во время Второй мировой войны, когда нацисты оккупировали Францию, профессор забыл дома американскую визу. Когда он переехал в США, то должен был как-то зарабатывать на жизнь, и в свои 79 лет он направился в университет. Ученого принял профессор, не расслышавший имени Адамара, и тот тогда показал на свой портрет, висевший на стене: «Смотрите, это я». Неделей позже Адамар вновь пришел в университет, но его портрет бесследно исчез со стены, а сам ученый получил отказ. По своим взглядам Адамар был близок к коммунистам, и некоторые полагают, что именно ему принадлежало авторство теорем, которые позднее были опубликованы в СССР и приписывались Карлу Марксу.
* * *
Далее Дюгем рассматривает другую задачу, очевидно схожую с той, что рассмотрел Адамар – задачу трех тел. Упомянув исследования Пуанкаре, Дюгем указывает: сплетение устойчивых и неустойчивых траекторий может означать, что мы не способны однозначно определить, является ли траектория планет устойчивой. Он пишет:
«Проблема трех тел остается еще для математиков страшной загадкой. Тем не менее, если в какой-нибудь данный момент известны с математической точностью положение и скорость каждой из звезд, образующих систему, то можно утверждать, что с этого момента каждая звезда будет описывать вполне определенную траекторию.
На этом основании математик может задаться следующим вопросом: будут ли эти звезды и впредь продолжать свое вращательное движение вокруг Солнца? Не произойдет ли, напротив, такая вещь, что одна из этих звезд отдалится от своих подруг, чтобы удалиться в бесконечность? Этот вопрос образует проблему устойчивости системы. Лаплас полагал, что он решил эту проблему, но только стараниями современных математиков, и в особенности Пуанкаре, обнаружена была чрезвычайная трудность ее решения. Но может случиться так, что практические указания, которые астроном дает математику, представляют для последнего бесчисленное множество теоретических данных, граничащих друг с другом, но тем не менее различных. Возможно, что среди этих указаний окажутся такие, по которым все звезды вечно должны оставаться на конечном расстоянии, но, может быть, окажутся и такие, по которым некоторые из этих небесных тел должны удалиться в бесконечность. Если бы здесь обнаружилось обстоятельство, аналогичное тому, с которым мы познакомились в проблеме Адамара, то для физика всякий математический вывод относительно устойчивости Солнечной системы оказался бы выводом никогда не применимым».
В присутствии хаоса реальная и прогнозная траектория системы в среднесрочном и долгосрочном периоде будут расходиться.
Несмотря на то что все французские математики находились в тени Пуанкаре, на протяжении большей части XX столетия никто не предпринимал серьезных попыток подробно изучить гомоклинические сети и хаотические орбиты.
Между открытиями Пуанкаре и началом современных исследований хаоса прошло очень много времени. Так случилось потому что, во-первых, была открыта квантовая механика, которой уделяли внимание несколько поколений физиков и математиков. Если в квантовой механике случайность оказывает влияние на различные события новым, неизвестным образом, зачем вводить случайность в классической механике, рассматривая чувствительность к начальным условиям? Во-вторых, идеи Пуанкаре, Адамара и Дюгема были высказаны слишком рано, когда еще не существовало средств для их дальнейшего развития, и только с появлением компьютеров стало возможным произвести необходимые сложные вычисления и численный анализ.
* * *
МАКС БОРН (1882–1970). БОРЬБА С ХАОСОМ
Этот знаменитый физик, создатель квантовой механики, в 1955 году вновь подчеркнул, какую важную роль в физике играет высокая чувствительность системы к начальным условиям, Борн задался вопросом: является ли классическая механика детерминированной? Чтобы найти ответ, он рассмотрел модель крайне нестабильного газа, предложенную Хендриком Антоном Лоренцем в 1905 году для объяснения теплопроводности металлов. По сути, каждая частица газа Лоренца ведет себя так же, как бильярдный шар в моделях Адамара и Синая: эта частица (допустим, электрон) при движении и столкновении с рядом препятствий (например, с атомами металла) отклоняется от траектории, и в результате малейшее различие в начальных условиях порождает два совершенно разных состояния. И вновь, если бы положение и скорость частицы можно было определить с очень высокой точностью, то ее состояние в последующие моменты времени (в прошлом или в будущем) можно было бы определить однозначно.
В своей речи при получении Нобелевской премии по физике в 1954 году Борн привел еще один пример: представьте себе частицу, которая движется без трения вдоль прямой между двумя стенами, причем соударение частицы со стенами абсолютно упругое. Частица движется с постоянной скоростью, равной начальной скорости, назад и вперед. Если мы точно знаем скорость частицы, то можем определить, где она будет находиться в любой момент времени. Но если допускается даже небольшая погрешность в измерении скорости, то неточность при измерении положения частицы в последующие моменты времени будет нарастать, а через достаточное время станет сопоставима с расстоянием между стенами. Следовательно, предсказать положение частицы на достаточно большом промежутке времени невозможно. Чувствительность к начальным условиям – составная часть классического детерминизма.
* * *
Последователи Пуанкаре в Америке
Шел XX век, и работы Пуанкаре были продолжены представителями двух математических школ: по одну сторону океана – американской, в частности Биркхофом и Смэйлом, по другую сторону – советской школой, основанной Ляпуновым (главными ее представителями были Колмогоров и Арнольд). Влияние Пуанкаре оставалось заметным, однако его идеи о гомоклинических точках на долгое время были забыты.
В работах Джорджа Дэвида Биркхофа (1884–1944) влияние работ Пуанкаре прослеживается при рассмотрении качественных характеристик дифференциальных уравнений. В своей книге «Динамические системы» (1927), где впервые упоминается термин «динамическая система», этот американский математик описывает теорию динамических систем и заходит дальше, чем Пуанкаре, в анализе кривых, определяемых дифференциальными уравнениями. Иными словами, Биркхоф использовал наследие Пуанкаре и развил его идеи в новых направлениях.
Говоря об американской математической школе, нельзя обойти вниманием фигуру Стивена Смэйла (род. 1930), удостоенного в 1966 году Филдсовской премии за вклад в теорию динамических систем. Смэйл находился под влиянием сразу трех наиболее важных традиций изучения динамических систем и хаоса, а именно: забытой традиции, начатой Пуанкаре, к которой принадлежал Биркхоф; русской математической школы, объединившейся с английской усилиями Соломона Лефшеца во время холодной войны, и, наконец, традиции аналитико-топологического изучения дифференциальных уравнений, начатой Мэри Люси Картрайт (1900–1998) и Джоном Идензором Литлвудом (1883–1977) в Великобритании на основе трудов Ван дер Поля.
Бальтазар Ван дер Поль (1889–1959) был голландским инженером-электронщиком, который в «золотые двадцатые» обнаружил предельный цикл (об этом понятии мы уже говорили в первой главе) в нелинейном дифференциальном уравнении, которое описывало поведение электронных ламп, имевших огромное значение в сфере телекоммуникаций. Это уравнение имело траекторию-решение в форме замкнутой кривой, которая притягивала к себе все ближайшие траектории. В 1945 году, когда союзники вовсю работали над созданием радара, Картрайт и Литлвуд доказали, что в окрестностях этого предельного цикла наблюдалось сложное непериодическое движение – это был хаос!
Несколько позже, в 1950-е, специалист по топологии Стивен Смэйл продолжил качественный анализ динамических систем в поисках теоремы, аналогичной теореме Пуанкаре – Бендиксона, для трехмерного пространства, однако его работы не увенчались успехом. Подобная теорема не сформулирована до сих пор, так как траектории в пространстве могут переплетаться, что крайне усложняет динамику. Существуют трехмерные динамические системы, в которых, помимо центров, фокусов, узлов, седел и предельных циклов, наблюдаются странные аттракторы.
К несчастью для Смэйла, хаос существовал.
Странный аттрактор Рёсслера (1976). Подобно ленте Мёбиуса, он имеет только одну сторону, хотя кажется, что у него две стороны: достаточно проследовать вдоль внешней границы, чтобы увидеть, как она постепенно переходит во внутреннюю.
Изначально Смэйл считал, что почти все (или все) трехмерные динамические системы обладают не слишком странным поведением – почти таким же, как и двухмерные динамические системы на плоскости, все возможные аттракторы которых принадлежали конечному множеству фокусов и предельных циклов. Интерес Смэйла к аттракторам был вызван тем, что они описывали поведение динамической системы в долгосрочном периоде. Эти точки указывали, какими будут системы в далеком будущем, поскольку они испытывают фатальное притяжение к аттракторам, расположенным бесконечно далеко. Смэйл полагал, что единственными видами движения, корректными в долгосрочном периоде, были либо пребывание в состоянии покоя, либо равновесие в стационарном состоянии (в фокусе), либо периодическое повторение некой последовательности движений. Иными словами, система могла либо оставаться неподвижной, либо снова и снова совершать определенные движения. В долгосрочном периоде траекториями системы были точки либо окружности.
Каким же было удивление ученого, когда он, отдыхая на пляжах Рио-де-Жанейро, получил письмо с контрпримером к своей гипотезе. Норман Левинсон, коллега Смэйла из Массачусетского технологического института (MIT), описал динамическую систему, порождавшую нелинейный осциллятор Ван дер Поля, изученный Картрайт и Литлвудом. Эта система имела бесконечное множество периодических орбит и, что еще хуже, в долгосрочном периоде демонстрировала в высшей степени странное поведение: в теории была возможна ситуация, при которой система в будущем не будет оставаться неподвижной и не будет совершать определенные движения снова и снова, а продолжит двигаться совершенно беспорядочным образом. Рассмотрев аналитические работы Левинсона с геометрической точки зрения, Смэйл в 1959 году описал соленоид Смэйла (названный так за внешнее сходство с соленоидом – электромагнитом, состоящим из металлического сердечника, на который намотана проволока), а затем, уже в 1960-е – подкову Смэйла, обладающую крайне сложной динамикой, схожей с той, что демонстрирует система, описанная Левинсоном. Это были два в высшей степени странных аттрактора.
Соленоид Смэйла, представляющий собой тор, трижды обмотанный вокруг другого тора в четырехмерном пространстве.
Описание соленоида Смэйла, и в особенности подковы Смэйла, стало важным шагом на пути к пониманию связи между существованием гомоклинической орбиты и непериодическим и неустойчивым поведением, которое позднее стало называться детерминированным хаосом. С мэйл доказал, что существование гомоклинических точек подразумевает существование подковы – фигуры, служащей воплощением топологических операций растяжения и складывания, которые, как мы объясним в третьей главе, порождают хаос.
Возьмем на себя смелость рассмотреть хаос подробнее. До сих пор мы пытались приблизиться к хаосу с помощью интуитивно понятных примеров, однако понять, что же происходит на самом деле, совсем не просто. В научно-популярных книгах и даже в учебниках объяснения начинаются с числовых примеров, и только потом автор приводит примеры из геометрии и топологии.
Мы же решили действовать противоположным образом: во-первых, именно так исторически изучался хаос, во-вторых, так читатель сможет лучше понять, как и математики постепенно понимали, что такое хаос, – сначала с качественной, а затем с количественной точки зрения. У вас кружится голова от непонятных слов? Не беспокойтесь, математики прошлого чувствовали себя точно так же.
И соленоид, и подкова Смэйла – это примеры отображений, геометрических преобразований, в которых проявляется хаос. Преобразование, порождающее подкову Смэйла (обозначим его через f), очень простое. Чтобы выполнить его, рассмотрим квадрат или любую другую фигуру похожей формы. Сначала расположим квадрат на плоскости, растянем его, затем сложим пополам в форме подковы и уложим в границы, определенные краями исходной фигуры. Если мы будем повторять преобразование f снова и снова бесконечное число раз, то получим сложную и запутанную многослойную структуру, и возникнет хаос. На первой итерации исходный квадрат превратится в подкову в форме буквы U, как показано на следующем рисунке. На второй итерации подкова превратится в другую подкову, состоящую из трех кривых в форме буквы U. На третьей итерации мы получим уже семь кривых той же формы, и так далее. В пределе имеем бесконечно запутанную кривую, очень похожую на гомоклиническую сеть, которая приводила в ужас Пуанкаре. И действительно, в растяжении и складывании заключен геометрический смысл хаоса.
Последовательные итерации при построении подковы Смэйла. Они заключаются в растяжении и складывании кривой в форме буквы U в границах исходной фигуры.
Последовательно выполняемые операции растяжения и складывания, характерные для подковы Смэйла, – верный признак хаоса. Следовательно, эти же операции вы встретите во многих хаотических отображениях. В качестве примера можно привести «отображение пекаря», названное так за сходство с операциями, выполняемыми при замешивании теста, или «отображение кота Арнольда», определенное В. И. Арнольдом (о нем мы расскажем позже), которое заключается в последовательном растяжении и складывании изображения головы кота. Но мы не будем растягивать и складывать голову кота, вместо этого используем более привлекательное изображение – фотографию модели Лины Седерберг, мисс Ноябрь журнала «Плейбой» 1972 года. С 1970-х годов фрагмент ее фотографии используется в качестве тестового изображения в алгоритмах сжатия изображений и, по сути, является стандартом в науке и технике. (И кто-то еще осмеливается заявлять, что математики – скучные люди!) Между прочим, номер «Плейбоя» с этой фотографией стал самым продаваемым за всю историю журнала.
Если мы несколько раз применим отображение кота Арнольда к этой фотографии, то есть будем последовательно растягивать и складывать ее определенным образом, то заметим, что уже через несколько итераций лицо модели станет неразличимым. Но после определенного числа итераций (а именно 192) лицо модели можно будет увидеть снова. Точнее говоря, можно будет увидеть очень похожее лицо – траектории динамических систем могут совпадать друг с другом, только если являются периодическими, а мы рассматриваем хаотическую орбиту. Тем не менее лицо Лины будет появляться и исчезать бесконечное число раз. Так проявляет себя хаос.
Отображение кота Арнольда на примере фотографии Лины Седерберг. Результатом многократного растяжения и складывания изображения (верхние ряды) будет однородное поле (центральные ряды). Однако на каком-то этапе некоторые точки будут располагаться вблизи исходных положений, и исходное изображение внезапно появится вновь (нижний ряд).
В худшем (или лучшем – с какой стороны посмотреть) случае динамическая система будет хаотической. В этом случае траектории, расположенные близко друг к другу, будут быстро расходиться по мере того, как они будут растягиваться, сжиматься и складываться по мере приближения к аттрактору. Эти преобразования определяют очень странное и сложное поведение, которое следует из теоремы Пуанкаре о возвращении.
В своем труде о новых методах небесной механики ученый сформулировал удивительную теорему: «Для данных уравнений определенной формы и произвольного частного решения любого из этих уравнений всегда можно найти периодическое решение – его период может быть очень большим – такое, что разница между этими решениями будет сколь угодно малой». Портрет Лины демонстрирует теорему Пуанкаре о возвращении: если повторно применять одно и то же преобразование к системе, которая не может выйти за определенные границы, она бесконечное число раз будет возвращаться в состояние, близкое к оригиналу. Иными словами, рано или поздно все вернется на круги своя. Существование периодического решения означает, что если мы проткнули колесо велосипеда, то достаточно подождать, когда оно наполнится воздухом само по себе. Через достаточно долгое время колесо вновь наполнится воздухом – так гласит теорема Пуанкаре. Единственная проблема в том, что ждать придется дольше, чем существует Вселенная.
* * *
ВЫ, КОНЕЧНО, ШУТИТЕ, МИСТЕР ФЕЙНМАН?
Ричард Филлипс Фейнман (1918–1988), эксцентричный американский физик, был удостоен Нобелевской премии по физике 1965 года за вклад в квантовую электродинамику. В число его хобби входил гипноз, посещение топлесс-баров и взлом сейфов. В своих популярных «Фейнмановских лекциях по физике» он приводит несколько примеров, при виде которых возникает вопрос: вы, конечно, знакомы с теорией хаоса, мистер Фейнман?
В разделе «Немного философии» главы 38 первого тома «Лекций…», опубликованном в 1965 году, Фейнман описывает, насколько классическая механика проникнута духом недетерминизма, который с практической точки зрения есть следствие неточности при определении начальных условий некоторых физических систем. Если бы мы знали положение и скорость всех частиц в мире, то смогли бы предсказать, что произойдет в будущем. Предположим, что нам неизвестно точное положение некоторого атома. Следовательно, после столкновения этого атома с другим ошибка при определении его положения увеличится, с каждым новым столкновением неточность будет нарастать, а по прошествии определенного периода времени величина нашего незнания будет невообразимо велика.
* * *
Математика по другую сторону «железного занавеса»
В это же самое время внутри «железного занавеса» существовала мощная советская школа. Ее представители, многочисленные физики и математики, унаследовали важные результаты, полученные Ляпуновым в ходе исследований устойчивости движения в динамических системах.
Математик и физик Александр Ляпунов (1857–1918), работавший примерно в то же время, что и Пуанкаре, использовал более количественный подход к теории устойчивости. Вместо того чтобы, подобно Пуанкаре, изучать геометрию траекторий, Ляпунов рассмотрел числа – так называемые экспоненты Ляпунова – которые служили индикаторами неустойчивости. Если какая-либо из этих экспонент была положительной, то траектории удалялись друг от друга (экспоненциально). В этом случае система была нестабильной.
В 1950-е годы основной темой семинаровАндрея Колмогорова (1903–1987) в Московском государственном университете была небесная механика: и он, и его ученик Владимир Игоревич Арнольд (1937–2010) занимались теоретическим изучением устойчивости динамических систем небесной механики, взяв за основу труды Пуанкаре и Ляпунова. Результатом этих исследований стала теорема, представленная Колмогоровым в 1954 году на Международном математическом конгрессе в Амстердаме.
Позднее юный немецкий математик Юрген Курт Мозер (1928–1999) захотел написать обзорную статью по этой теме для журнала Mathematical Reviews. Мозер настолько интересовался этой темой, что совершил поездку в Советский Союз, там он познакомился с Арнольдом, и результатом их совместной работы стала широко известная (среди специалистов) теория Колмогорова – Арнольда – Мозера. Эта теория описывает, что происходит, когда в интегрируемой (линейной) системе возникают неинтегрируемые (нелинейные) возмущения. Если эти возмущения достаточно малы, то большинство орбит будут подобны стабильным и квазипериодическим, то есть никогда не будут слишком далеко отклоняться от периодических орбит системы. В этой же ситуации будут наблюдаться и другие орбиты, предсказать поведение которых нельзя. Таким образом, в океане хаоса будут формироваться островки стабильности.
Если рассматривать Солнечную систему, то, поскольку масса планет по сравнению с массой Солнца пренебрежимо мала, в первом приближении можно пренебречь силами, действующими между планетами, и получить интегрируемую систему, в которой каждая планета будет двигаться по прекрасному кеплеровому эллипсу, что доказал Ньютон. Но если мы начнем учитывать взаимодействие между планетами, система уже не будет интегрируемой, о чем нам известно благодаря трудам Пуанкаре.
Планеты перестанут описывать идеальные эллипсы, и вполне возможно, что одна из них даже начнет движение по хаотической орбите и в конце концов покинет пределы Солнечной системы. С 1954 года благодаря теории Колмогорова – Арнольда – Мозера мы знаем, что незначительные отклонения нарушают равномерность лишь частично. И если предположить, что силы взаимодействия планет не слишком велики, то большинство их орбит будут близки по форме к эллипсам. Это не означает, что абсолютно все движения в пределах Солнечной системы должны быть равномерными – достаточно, чтобы равномерными были большинство движений.
Некоторые малые тела Солнечной системы могут двигаться по хаотическим орбитам. В конечном итоге они либо столкнутся с другими телами, либо покинут пределы Солнечной системы. Возможно, именно такой была судьба Хирона – астероида из группы Кентавров (наполовину астероида, наполовину кометы), движущегося по хаотической и неустойчивой орбите между Сатурном и Ураном.
Теория Колмогорова — Арнольда – Мозера описывает островки регулярности в море хаоса.
Еще одной иллюстрацией теории Колмогорова – Арнольда – Мозера стало численное исследование, проведенное французским астрономом Мишелем Эно (род. 1931) совместно с аспирантом Карлом Хайлсом (род. 1939) в 1962 году при помощи нового инструмента – компьютера. Эно и Хайле хотели изучить движение звезд в галактиках в зависимости от их энергии. При низких энергиях решения уравнений были, как и ожидалось, периодическими или квазипериодическими. При высоких энергиях компьютер показывал, что периодические траектории постепенно размываются, и возникает целое море хаоса, в котором лишь иногда наблюдаются островки стабильности. Это была хаотическая система Эно – Хайлса.