Текст книги "Бабочка и ураган. Теория хаоса и глобальное потепление"
Автор книги: Карлос Мадрид
Жанр:
Математика
сообщить о нарушении
Текущая страница: 1 (всего у книги 8 страниц)
Карлос Мадрид
«Мир математики»
№ 32
«Бабочка и ураган. Теория хаоса и глобальное потепление»
Посвящается Густаво Буэно
Предисловие
Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе? Разумеется.
Если вы читали хоть что-нибудь о хаосе, вам наверняка известен ответ на этот вопрос. Однако рассмотрим противоположную ситуацию: может ли случиться так, что в результате взмаха крыльев той же бабочки в Бразилии утихнет ураган над Сингапуром?
Ответ вы узнаете из книги, которую держите в руках. Авторы большинства трудов, посвященных теории хаоса и ее связи с метеорологией и климатологией, отвечают лишь на первый вопрос и оставляют в стороне второй. Мы же рассмотрим оба и продемонстрируем читателю две стороны хаоса. Откроем секрет: ответ на второй вопрос также будет утвердительным.
Бабочка, о которой говорится в названии этой книги, имеет намного больше власти над торнадо, чем может показаться. Бабочка Лоренца превратилась в символ теории хаоса, подобно тому, как кот Шрёдингера стал символом квантовой механики.
К сожалению, приручить бабочку Лоренца так же непросто, как и кота Шрёдингера, поскольку теория хаоса и квантовая механика нанесли два самых болезненных удара по научной идее всеобщего детерминизма, или взаимной обусловленности процессов. Неприятнее всего то, что хаос буквально окружает нас. Солнечная система, погода и климат, популяции животных, эпидемии, атмосферные вихри, капли воды, капающие из крана, некоторые химические реакции, сигаретный дым, сердцебиение, сигналы головного мозга, финансовые рынки – это лишь некоторые примеры хаотических систем. По-настоящему удивительно не то, что некоторые сложные системы являются хаотическими, а то, что хаотическими могут быть удивительно простые системы, например двойной маятник.
В этой книге речь пойдет о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата. Хаотическое поведение системы наблюдается, если она чувствительна к начальным условиям, то есть когда имеет место так называемый эффект бабочки, который мы наблюдаем каждый день в прогнозах погоды, а также, как вы убедитесь чуть позже, в исследованиях климата. Немногие темы, связанные с наукой, вызывают такой же большой интерес, как изменение климата. Но чтобы рассмотреть эту тему как настоящие ученые, мы должны отличать сенсационные сообщения СМИ от математических теорий, описывающих климат.
В двух первых главах мы поговорим о революционных последствиях теории хаоса (и заодно покажем, в чем именно ошибался один великий философ), после чего расскажем о рождении и развитии теории хаоса. В третьей главе мы объясним основные понятия, связанные с хаосом, в том числе наиболее современные методы его применения в различных дисциплинах. В двух последних главах мы покажем, как эти методы и понятия находят применение при изучении задачи изменения климата, которую мы попытаемся представить в общем, понятном для всех виде.
Написать увлекательную и одновременно подробную книгу о теории хаоса непросто. Написать такую книгу о глобальном изменении климата тоже нелегко.
Однако написать книгу, посвященную двум этим темам сразу, еще сложнее. Мы надеемся, что вы, перевернув последнюю страницу, проникнете в самую суть теории хаоса и увидите, какие задачи она охватывает.
Необходимость говорить о математических теориях популярным языком заставила меня совершить квантовый скачок, который радикально изменил мои взгляды на мир. Постепенно для меня научное знание стало дополнять обычное, общечеловеческое знание, и это изменение было бы невозможно без изменения начальных условий, сформировавшихся в свое время благодаря моим школьным и университетским преподавателям, которые направили мой «хаотический» путь в сторону «странного аттрактора» – математики и ее истории. Я благодарю всех, кто помогал мне в работе над книгой: это и моя мать, Елена, и Хавьер Фресан, и мои друзья и коллеги по институту и университету, которые не хотели читать мою книгу, но терпели меня все время, пока я трудился над ней.
Осталось сказать лишь одно: переверните же страницу и почувствуйте очарование хаоса.
Глава 1. «Доисторическая эпоха» теории хаоса
На самом деле чем величественней наука, тем сильнее ощущение тайны.
Владимир Набоков
Однажды великий философ Иммануил Кант (1724–1804), известный в обоих полушариях, возвращался с дневной прогулки. Слуга следовал за ним на почтительном расстоянии, стараясь не потревожить мыслей своего господина. Кант всегда гулял в одном и том же месте в одно и то же время. Благодаря его пунктуальности жители Кёнигсберга даже сверяли часы по своему знаменитому соседу. Как-то раз, прежде чем пересечь сад и перешагнуть порог дома, автор «Критики чистого разума» задержался. Он остановился, чтобы посмотреть на папоротник, выросший после недавних дождей. По его зеленому стеблю неуклюже карабкалась прекрасная бабочка. Философ аккуратно тронул ее, а затем провел рукой по влажному листу папоротника и улыбнулся, наслаждаясь совершенством его формы. Кант что-то неслышно прошептал, посмотрел в небо и вошел в дом.
Несколько минут спустя он сел за стол у камина, обмакнул перо в чернильницу и начал писать.
Если бы Кант поднял голову…
В своей книге «Критика способности суждения» Иммануил Кант задался вопросом: является ли математика частью природы или же математику в натуральную философию привносят сами математики? Он писал о господствующих силах природы так:
«Можно смело сказать: для людей было бы нелепо даже только думать об этом или надеяться, что когда-нибудь появится новый Ньютон, который сумеет сделать понятным возникновение хотя бы травинки, исходя лишь из законов природы, не подчиненных никакой цели. Напротив, такую проницательность следует безусловно отрицать у людей»[1]1
Перевод Н. Лосского. – Примеч. ред.
[Закрыть].
Портрет Иммануила Канта.
«С самых ранних времен, до которых простирается история человеческого разума, математика пошла верным путем науки».
Это амбициозное утверждение сегодня неактуально – если вы позволите нам такое сравнение, то уже пришло время этого второго Ньютона, который сделал понятным возникновение травинок. Мы говорим об английском математике Майкле Барнсли, специалисте по одному из интереснейших аспектов теории хаоса – фракталам. Фрактальная геометрия – неразлучная спутница теории хаоса, в чем вы еще не раз убедитесь, читая эту книгу.
Барнсли обнаружил, что при простой «игре в хаос», словно по волшебству, могут появляться листья папоротника и других растений. Игра в хаос заключается всего лишь в постепенном нанесении на лист бумаги последовательности точек, которая в пределе образует знакомую картину. Подведем итог: на основе случайного закона (Кант сказал бы: закона, не подчиняющегося намерению) при помощи компьютера мы способны породить лист растения. Для этого достаточно выбрать фиксированную точку (расположенную не в центре экрана) и начать подбрасывать монету.
Когда выпадет решка, отметим новую точку на расстоянии в 6 единиц на северо-запад от предыдущей. Когда выпадет орел, новую точку сдвинем на 25 % к центру относительно предыдущей. Очевидно, что это построение может повторяться произвольное число раз и изначально расположение точек будет казаться случайным.
Однако после нескольких тысяч бросков на экране непостижимым образом постепенно начнет проявляться лист папоротника. Хаос словно бы порождает порядок в виде фрактального множества – папоротника Барнсли.
Мы никогда не узнаем, что сказал бы великий кёнигсбергский философ, если бы смог охватить взглядом удивительное множество природных систем, строго детерминированных, но при этом обладающих хаотическим поведением со всеми вытекающими последствиями, то есть поведением случайным, или стохастическим (по-гречески stochastikos означает «умеющий угадывать»). Многие движения, кажущиеся беспорядочными, в действительности описываются строгими правилами, в которых нет места случайности. Таким образом, хаос и фракталы – это новый инструмент познания Вселенной.
«Спонтанное» появление папоротника Барнсли.
* * *
ОТРЫВОК ИЗ РОМАНА «ВЕК ПРОСВЕЩЕНИЯ» АЛЕХО КАРПЕНТЬЕРА
Наблюдая за улиткой, Эстебан думал о том, что на протяжении тысячелетий перед взором первобытных народов, живших рыбною ловлей, постоянно находилась спираль, но они еще не способны были не только постичь ее форму, но даже осознать ее присутствие. Он созерцал похожего на шар морского ежа, спиралевидную раковину моллюска, желобки на раковине святого Иакова и поражался богатству форм, открытых человечеству, которое, увы, не способно осмыслить то, что представало его глазам. «Верно, и ныне многое вокруг меня приняло четкие и определенные формы, но я не могу постичь их смысл!» – думал Эстебан. Какой знак, какая мысль, какое предупреждение таятся в завитках цикория, в немом языке мхов, в строгой форме плода миртового дерева? Созерцать улитку. Одну улитку… Те Deum…[2]2
Перевод Я. Лесюка. – Примеч. ред.
[Закрыть]
* * *
ДИАЛОГ ИЗ ФИЛЬМА «ПАРК ЮРСКОГО ПЕРИОДА»
(РЕЖИССЕР СТИВЕН СПИЛБЕРГ, 1993 ГОД), СНЯТОГО ПО ОДНОИМЕННОМУ РОМАНУ МАЙКЛА КРАЙТОНА
– Тираннозавр не намерен подчиняться правилам и распорядку, он – суть хаоса.
– Я не понимаю, что такое хаос. Что это значит?
– Это непредсказуемость в сложных системах. Проще говоря – эффект бабочки. Бабочка взмахнула крылышком в Пекине, а в Центральном парке полил дождь. Сейчас вы все увидите. Дайте мне этот стакан воды. Машину постоянно качает, но ничего, это просто пример.
Допустим, вам в руку упала капелька воды. Куда она, по-вашему, скатится? К какому пальцу?
– Скажем, к большому.
– Так, хорошо. Не убирайте руку! Не шевелитесь. Я снова капну, в то же самое место. Куда теперь скатится капля?
– Не знаю. Туда же?
– Не туда! Почему? Потому что невидимые глазу колебания, ориентация волосинок на руке, количество крови в венах, микроскопические изъяны кожи, как правило, непостоянны и значительно влияют на результат.
– Как это называется?
– Непредсказуемость. Смотрите. Видите? Я снова прав. Кто мог предположить, что д-р Грант неожиданно выпрыгнет на ходу из машины? И еще один пример. Я остался один и разговариваю с самим собой. Теория хаоса в действии.
* * *
Рождение теории хаоса
Сегодня хаос у всех на устах. О нем сняты такие фильмы, как «Хаос», «Эффект бабочки» и «Парк Юрского периода». Ему посвящены художественные произведения, к примеру «Баталист» испанского писателя Артуро Перес-Реверте, где удачно сделанная фотография полностью меняет жизнь хорватского партизана, рассказы «И грянул гром» Рэя Брэдбери, в котором гибель доисторической бабочки меняет исход президентских выборов в США, или «Крах Баливерны» Дино Буццати, где неудержимое восхождение по отвесной скале получает неожиданную развязку.
Но что такое хаос? В большинстве словарей приводится несколько определений этого понятия. К примеру, в толковых словарях русского языка дается три значения слова «хаос». Первые два отражают изначальный смысл, которым наделялось это слово в Древней Греции, а также его привычное значение.
1. В древнегреческой мифологии и философии – беспорядочная материя, неорганизованная стихия, существовавшая в мировом пространстве до образования известного человеку мира.
2. Полный беспорядок, неразбериха.
Третье определение отражает смысл хаоса в физике и математике.
3. Явление, при котором поведение нелинейной системы выглядит случайным, несмотря на то что оно определяется детерминистическими законами.
В этой книге мы, разумеется, поговорим о хаосе в третьем, последнем значении, а также покажем, как математический хаос находит место в массовом сознании благодаря его использованию в физике, биологии, медицине, нейробиологии и других науках. Множество систем в нашем мире, начиная от человеческого мозга и заканчивая климатом Земли, полны хаоса.
В этой и следующей главах мы расскажем историю математической истории хаоса начиная с эпохи Ньютона, периода научной революции, и заканчивая XXI веком.
Знаковым в развитии теории хаоса стал рубеж XIX и XX веков, когда ряд нерешенных задач небесной механики, связанных с устойчивостью Солнечной системы (столкнется ли Луна с Землей? уничтожит ли удар астероида жизнь на Земле?), был рассмотрен талантливым математиком Анри Пуанкаре принципиально иным образом. И в этой, и в следующей главе мы будем использовать интуитивно понятное определение хаоса, близкое к тому, которое применяется в механике, так как именно в механике впервые были описаны системы, которые мы сегодня называем хаотическими. В третьей главе попытаемся применить более формальный подход и постараемся точнее объяснить, в чем именно заключается упомянутый в предисловии эффект бабочки, уже знакомый нам по литературе и кино.
Но начнем с самого начала. Так называемая теория хаоса родилась усилиями нескольких математиков, заинтересованных в том, чтобы связать динамические системы (системы, эволюционирующие со временем) и геометрию, – в их число входили уже упомянутый Анри Пуанкаре и Стивен Смэйл. Немалый вклад в создание теории хаоса внесли физики, изучавшие столь далекие друг от друга области, как метеорология и астрономия, в частности Эдвард Лоренц и Мишель Эно, а также некоторые биологи, занимавшиеся изучением роста популяций, в частности Роберт Мэй. В этот длинный список также следует включить многих ученых, работавших сразу в нескольких областях, в частности Джеймса Йорка, Давида Рюэля, Митчелла Фейгенбаума, Майкла Барнсли и многих других.
Начнем путь к истокам теории хаоса. Нам предстоит преодолеть три реки, которые впадают в море динамических систем: это механика Ньютона, аналитическая механика Лапласа и, наконец, общая теория, задуманная Пуанкаре, который по праву станет главным героем этой главы.
От Ньютона – к Лейбницу, от Лейбница – к Лапласу
В попытках понять траектории движения планет, которые наблюдал Кеплер в свой телескоп, Ньютон составил математические модели, следуя путем Галилея. Так, Ньютон сформулировал законы, связывавшие физические величины и скорости их изменения, то есть, к примеру, пространство, пройденное телом, и скорость тела или скорость тела и ускорение. Следовательно, физические законы, описывавшие динамические системы, выражались в виде дифференциальных уравнений, в которых дифференциалы служили мерами скорости изменения.
Дифференциальное уравнение – это уравнение, главной неизвестной которого является скорость изменения величины, то есть ее дифференциал или производная. И дифференциал, и производная функции описывают изменение ее значений, то есть показывают, как ведет себя функция: возрастает, убывает или остается неизменной. В наших примерах ускорение описывает изменение скорости движущегося тела, так как представляет собой отношение дифференциалов скорости и времени.
Иными словами, ускорение – это производная скорости по времени. Следовательно, ускорение характеризует изменение скорости с течением времени.
Простые решения дифференциальных уравнений, как и алгебраических, крайне редки. Аналитическая механика, появившаяся позднее, стала шагом вперед по сравнению с механикой Ньютона, поскольку была ближе к анализу, чем к геометрии.
В результате изучение физических явлений стало сводиться к поиску дифференциальных уравнений, описывающих эти явления. После того как Ньютон открыл знаменитое дифференциальное уравнение «сила равна произведению массы на ускорение», описывающее движение систем точек и твердых тел, швейцарский математик Леонард Эйлер (1707–1783) определил систему дифференциальных уравнений, описывающих движение непрерывных сред, например воды, воздуха и других потоков, в которых отсутствует вязкость. Впоследствии физик и математик Жозеф Луи Лагранж (1736–1813) изучил звуковые волны и сформулировал уравнения акустики, а Жан-Батист Жозеф Фурье (1768–1830) рассмотрел потоки распределения тепла и описал их с помощью уравнения. Математический анализ, по мнению Фурье, был так же обширен, как и сама природа.
В XVII–XIX веках физики последовательно расширяли математическую картину мира, предлагая все новые дифференциальные уравнения для изучения самых разных областей, к примеру уравнения Навье – Стокса, описывающие движение вязкой жидкости, или уравнения Максвелла, характеризующие электромагнитное поле. Всю природу – твердые тела, жидкости, звук, тепло, свет, электричество – стало возможно описать с помощью дифференциальных уравнений. Однако найти уравнения, характеризующие то или иное явление природы, и решить их – две принципиально разные задачи.
Существуют два типа дифференциальных уравнений: линейные и нелинейные.
Дифференциальное уравнение называется линейным, если сумма двух его решений также будет его решением. В линейном уравнении ни сама неизвестная функция, ни ее производная не возведены в степень, отличную от нуля или единицы. Линейные дифференциальные уравнения описывают события, в которых действие совокупности причин равно совокупному действию этих причин по отдельности. В нелинейных уравнениях, напротив, подобное соотношение между причинами и следствиями не наблюдается, и совокупность двух причин может привести к неожиданным последствиям. Как вы увидите позднее, нелинейности всегда сопутствует хаос.
* * *
НЬЮТОН И ПЕРВОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ
Самое знаменитое дифференциальное уравнение, несомненно, принадлежит Ньютону: сила равна произведению массы на ускорение. В виде символов это уравнение записывается так:
F = m∙a где а = dv/dt – (ускорение есть отношение дифференциалов скорости и времени, то есть производная скорости по времени). Рассмотрим еще два простых примера:
(dy/dx) + y = 0
Это линейное дифференциальное уравнение, однако
(dy/dx) + y2 = 0
уже будет нелинейным, так как в этом случае неизвестная функция у возведена в степень, отличную от нуля или единицы.
* * *
Теория линейных дифференциальных уравнений довольно быстро была разработана полностью. А вот с теорией нелинейных дифференциальных уравнений все обстояло иначе, и нелинейные задачи, например уравнение колебаний маятника, решаются путем приведения уравнений к линейному виду, то есть путем устранения всех неудобных членов. Иными словами, для данного нелинейного дифференциального уравнения решалось похожее линейное дифференциальное уравнение, а полученные решения использовались как приближенные решения исходного уравнения.
Этот метод был назван методом возмущений. Вскоре стала понятна его неэффективность, однако прошло еще много времени, прежде чем нелинейным дифференциальным уравнениям стало уделяться примерно такое же внимание, что и линейным.
Одной из нелинейных задач, не дававших покоя физикам и математикам с XVII века, была задача небесной механики, связанная с моделированием Солнечной системы – задача n тел. Необходимо определить траекторию движения в пространстве для n тел разной массы, взаимодействующих по закону тяготения.
Несмотря на простую формулировку, решить эту задачу совсем не просто. Ньютон решил геометрически задачу двух тел для двух сфер, движущихся под действием взаимного притяжения, и привел решение в «Математических началах натуральной философии». В 1734 году Даниил Бернулли (1700–1782) привел аналитическое решение этой задачи в статье, удостоенной премии Французской академии наук, а во всех подробностях задача была рассмотрена лишь в 1744 году Эйлером, в труде «Теория движения планет и комет».
Портрет Эйлера.
«Читайте, читайте Эйлера – он учитель всех нас!»
(Пьер-Симон Лаплас)
* * *
НЕЛИНЕЙНОЕ УРАВНЕНИЕ КОЛЕБАНИЙ МАЯТНИКА
Если обозначить через θ угол наклона маятника относительно вертикали, то нелинейное дифференциальное уравнение колебаний маятника будет записываться так: d2θ/dt2 + sin θ = 0.
Для малых колебаний это уравнение можно заменить линейным, использовав в качестве приближенного значения тригонометрической функции sin θ сам угол θ. Полученное уравнение d2θ/dt2 + sin θ = 0 решить нетрудно: это линейное дифференциальное уравнение второго порядка, так как в нем фигурирует вторая производная, однако ни вторая производная, ни θ не возводятся в степень, большую 1.
Приведем еще один пример нелинейного дифференциального уравнения: m∙(dv/dt) – v2 = mg, где g – ускорение свободного падения (9,8 м/с2). Это уравнение описывает движение снаряда в среде, сопротивление которой пропорционально квадрату его скорости (v2 и будет нелинейным членом уравнения).
* * *
После того как задача n тел была решена для n = 2, физики и математики XVIII и XIX столетий приступили к решению этой задачи для n = 3, чтобы описать относительное движение Солнца, Земли и Луны. Были начаты две параллельные исследовательские программы: в рамках первой велся поиск общих приближенных решений с помощью метода возмущений, в рамках второй – поиск точных частных решений. К примеру, Лагранж решил задачу трех тел, рассмотрев систему, включающую Солнце, Юпитер и астероид Ахиллес. Самый знаменитый труд Лагранжа,
«Аналитическая механика», стал достойным завершением работ Ньютона по механике. Вообще этот математик считал Ньютона счастливейшим из ученых: Вселенная всего одна, а ее математические законы открыл именно он.
В то же самое время возник еще один вопрос, тесно связанный с задачей n тел, – вопрос об устойчивости Солнечной системы, которая в то время представляла собой систему из семи тел. Ответ на этот вопрос напрямую зависел от решения задачи n тел. Ньютон знал, что для задачи двух тел можно привести точное решение для любого промежутка времени, однако при рассмотрении трех тел все обстояло иначе.
Хотя взаимное притяжение планет слабее, чем их притяжение к Солнцу, этими силами нельзя пренебречь, поскольку они могут сместить планету с орбиты или даже вытолкнуть ее за пределы Солнечной системы.
В своем труде «О движении тел по орбитам» (De motu corporum in gyrum), изданном в 1684 году, Ньютон писал, что планеты не движутся по эллипсам и не проходят по одной и той же орбите дважды. Он признавал, что задача о расчете траекторий движения планет на произвольный интервал времени неподвластна человеческому разуму.
Лист рукописи «О движении тел по орбитам» Исаака Ньютона.
Оставался вопрос: устойчива ли Солнечная система? Не сойдут ли ее планеты в будущем со своих орбит? По мнению Ньютона, если планеты Солнечной системы постепенно сходили с орбит, требовалось радикальное решение: рука Бога периодически должна подталкивать каждую планету внутрь орбиты, восстанавливая равновесие. Лейбниц возражал Ньютону: Создателя нельзя уподоблять часовщику, который время от времени подводит часы.
Несколько десятилетий спустя великий физик и математик Пьер-Симон Лаплас (1749–1827), который при Наполеоне занял пост министра внутренних дел, счел, что объяснил отклонения Сатурна и Юпитера от орбиты. Эти отклонения сильно беспокоили Ньютона, считавшего, что они объясняются исключительно законом всемирного тяготения и со временем скомпенсируют – ся. Юпитер, казалось, двигался с ускорением, Сатурн же постепенно замедлялся, и если бы эта тенденция сохранялась, то Юпитер покинул бы Солнечную систему, а Сатурн упал бы на Солнце.
* * *
ПОЛЕМИКА ЛЕЙБНИЦА И КЛАРКА
В 1715–1716 годах философ, математик, юрист, посол и человек множества других профессий Готфрид Вильгельм Лейбниц (1646–1716) вступил в дискуссию по переписке с Сэмюелом Кларком (1675–1729), англиканским священником и сторонником Ньютона. Спор был посвящен влиянию механики Ньютона на христианские догматы. Лейбниц к тому времени уже вел активную переписку с самим Ньютоном по поводу авторства дифференциального и интегрального исчисления: оба ученых обвиняли друг друга в плагиате. Лейбниц во время этой переписки обсудил открытия Ньютона на примере задачи трех тел и устойчивости Солнечной системы.
Предполагалось, что Бог совершенен, следовательно, созданный Им мир – лучший из возможных, поэтому абсурдно предположение, что Бог должен регулярно подводить часы Вселенной.
По мнению Лейбница, Ньютон недооценил Бога. И действительно, в «Оптике» Ньютон писал: «В связи с вязкостью жидкостей, трением частей и слабой эластичностью тел движение с намного большей вероятностью будет затухать, нежели появляться, и неизменно будет сходить на нет». В ответ на это Лейбниц задавал вопрос: «Неужели машина, созданная Богом, способна приходить в такой беспорядок, что Он сам должен чинить ее подобно простому ремесленнику?»
Ньютон, дабы не унижать свое достоинство, предоставил право ответа на этот вопрос Кларку.
На этом полемика Лейбница и Ньютона завершилась, и английская математика надолго оказалась в изоляции. В результате пострадала и континентальная наука: французы, к примеру, долго следовали Декарту и его теории вихрей, пока Вольтер в 1727 году, вернувшись из Англии, не познакомил соотечественников с теорией тяготения Ньютона.
* * *
Лаплас доказал, что ускорение Юпитера и замедление Сатурна были вызваны второстепенными факторами, обусловленными особым расположением планет относительно Солнца. Солнечная система восстанавливала равновесие самостоятельно. Казалось, что спустя почти 100 лет Лейбниц праздновал победу над Ньютоном. Когда Лаплас представил свой «Трактат о небесной механике» Наполеону, тот заметил, что ни в одном томе этого монументального труда не упоминается Бог. Лаплас ответил: «Это потому, что я в этой гипотезе не нуждался». Система мира, описанная Лапласом, была полностью детерминированной и устойчивой. В своем «Опыте философии теории вероятностей» (1814) ученый писал:
«Мы должны рассматривать нынешнее состояние Вселенной как результат его предшествующего состояния и как причину состояния, которое воспоследует. Разум, которому в настоящий момент были бы известны все силы, движущие природой и относительное положение всех существ, ее составляющих, и который был бы достаточно обширным, чтобы подвергнуть все эти данные анализу, подытожил бы в одной и той же формуле движения величайших тел Вселенной и мельчайших атомов: для этого разума ничто не было бы неопределенным, и грядущее, равно как и прошлое, предстали бы перед его глазами.
То совершенство, которым человеческий разум наделил астрономию, есть лишь слабый отголосок этого разума. Открытия человека в области механики и геометрии наряду с открытием закона всемирного тяготения позволили описать теми же аналитическими выражениями прошлое и будущее состояние системы мира».
Однако Лаплас был очень и очень далек от истины. В своих уравнениях, описывавших систему «Солнце-Юпитер-Сатурн» (задачу трех тел) ученый пренебрег одним слагаемым, которое он счел слишком малым. Но это слагаемое могло неограниченно возрастать и вести к потере устойчивости Солнечной системы. В отличие от Лагранжа, крайне скрупулезного в расчетах, Лаплас был подобен лису, заметавшему собственные следы хвостом. Он часто забывал указывать источники, из которых брал те или иные результаты, и создавалось впечатление, что все они принадлежали ему лично. Математические задачи, с которыми Лаплас сталкивался в физических исследованиях, он решал так же небрежно. Американский астроном, который перевел «Трактат о небесной механике» на английский язык, говорил, что каждый раз, когда он видел фразу «нетрудно видеть, что…», то понимал: для восстановления пропущенного потребуется несколько часов упорного труда.
Портрет Лапласа (1749–1827), «Ньютона революционной Франции».
Многие физики и математики XIX века посвятили себя поискам полного решения задачи трех тел и ответа на вопрос об устойчивости Солнечной системы. Со времен великого Ньютона до 1900 года на эту тему было написано более 800 работ.
Среди математиков, пытавшихся справиться с этой задачей, нашелся и человек, сыгравший ключевую роль в создании теории хаоса, – гениальный Анри Пуанкаре (1854–1912).
Конкурс короля Оскара
Еще в детстве Пуанкаре проявлял живой интерес к математике, однако в остальном он был неуклюжим и рассеянным. Он считается последним математиком-универ салом: в отличие от узких специалистов, Пуанкаре интересовало буквально все – он занимался анализом, дифференциальными уравнениями, группами, топологией, небесной механикой и математической физикой, а также философией, преподаванием и просветительской работой. Разумеется, он был первым математиком, кто столкнулся лицом к лицу с хаосом при решении задачи трех тел.
Жюль Анри Пуанкаре в возрасте 36 лет.
«Мысль – это всего только молния в ночи. Но в этой молнии – все».
Знаменитая работа Пуанкаре, посвященная этой задаче, была опубликована в 1890 году, когда ученому было всего 36 лет, однако ее история началась раньше.
В 1885 году европейские математики узнали, что под покровительством Оскара II, короля Швеции и Норвегии, пройдет важный международный математический конкурс. Оскар II, изучив ряд математических дисциплин в университете, чувствовал, что математике нужно придать новый толчок. В рамках международного конкурса была учреждена премия для того, кто сможет решить задачу трех тел и открыть путь к изучению устойчивости Солнечной системы.
В 1884 году Магнус Геста Миттаг-Леффлер (1846–1927), преподаватель математики Стокгольмского университета, предложил королю Оскару II провести математический конкурс, приуроченный к шестидесятилетнему юбилею монарха, который должен был праздноваться через 5 лет, 21 января 1889 года. В те годы подобные конкурсы были вполне обычным делом, и хотя премии обычно не отличались большим размером, победители пользовались тем же авторитетом, что и нынешние нобелевские лауреаты. С другой стороны, этим конкурсом Миттаг-Леффлер хотел привлечь внимание специалистов к журналу Acta Mathematica, который он основал незадолго до того при неоценимой поддержке короля.
Подобрать членов жюри и организационного комитета конкурса было совсем не просто. Миттаг-Леффлер хотел избежать споров и обвинений в предвзятости, поэтому выбрал тех, с кем был знаком лично: своих бывших преподавателей, Шарля Эрмита и Карла Вейерштрасса как представителей французской и немецкой математической школы, а также Софью Ковалевскую, блестящую ученицу Миттаг-Леффлера и Вейерштрасса.
С помощью Миттаг-Леффлера члены организационного комитета сформулировали четыре вопроса, один из которых касался решения задачи n тел: «Для данной системы, состоящей из произвольного числа материальных точек, взаимодействующих друг с другом согласно законам Ньютона, предлагается выразить координаты каждой точки с помощью ряда, содержащего известные функции времени, которые бы равномерно сходились для любого значения времени.
По-видимому, эта задача, решение которой расширит наши знания об устройстве Вселенной, может быть решена известными на сегодня методами анализа. Это следует предполагать по меньшей мере потому, что незадолго до смерти Иоганн Петер Густав Лежён Дирихле сообщил своему другу, математику Леопольду Кронекеру, что обнаружил метод интегрирования дифференциальных уравнений механики и успешно применил его для доказательства устойчивости нашей Солнечной системы. К сожалению, нам ничего не известно об этом методе, хотя почти со стопроцентной уверенностью можно предполагать, что он не подразумевал каких-либо объемных и сложных расчетов, а основывался на некой простой идее. Разумно ожидать, что эту идею можно будет обнаружить вновь в ходе более тщательного и серьезного исследования.