355 500 произведений, 25 200 авторов.

Электронная библиотека книг » К. Манолов » Великие химики. Том 1 » Текст книги (страница 18)
Великие химики. Том 1
  • Текст добавлен: 6 октября 2016, 20:45

Текст книги "Великие химики. Том 1"


Автор книги: К. Манолов



сообщить о нарушении

Текущая страница: 18 (всего у книги 25 страниц)

– Это невероятно, – сказал Дюлонг при их встрече. – Все тела при нагревании расширяются.

– Кальцит тоже расширяется, – ответил Митчерлих. – Его объемное расширение при 100°С составляет 0,001961, только оно не равномерно в разных направлениях. Вдоль оси кристалла расширение при 100 °С составляет 0,00288, а в перпендикулярном направлении наблюдается сжатие порядка 0,00056.

– Вы исследовали другие минералы?

– У меня есть данные еще о нескольких минералах: о доломите, например, и магнезите.

Новое свойство кристаллов назвали анизотропией. Более года Митчерлих посвятил изучению этого явления. Параллельно он продолжал работать и над вопросом о диморфизме. Ученые категорически отвергали возможность того, что одно и то же вещество может выкристаллизовываться в двух различных системах. Весной 1826 года Митчерлих сделал открытие, которое положило конец всем спорам.

Он расплавил серу в фарфоровом тигле и оставил ее медленно остывать. Удаляя появившуюся поверхностную корку, он заметил, что образовавшиеся кристаллы почти бесцветны. Быстро перевернув тигель, он отлил оставшуюся расплавленную серу и дал кристаллам полностью остыть. На первый взгляд их симметричность была не высока. «Выглядят моноклинными», подумал ученый и приступил к определению их системы.

Моноклинные, а сера образует ромбические кристаллы. Это случайность или тоже диморфизм?..

Сомнений быть не могло. Явление, наблюдавшееся для арагонита и кальцита, не случайность. Сера тоже может кристаллизоваться в двух кристаллографических системах – моноклинной и ромбической. По-видимому, это явление обусловлено только температурой: моноклинная сера существует при более высокой температуре.

Утверждения Митчерлиха оказались правильными: вещества в зависимости от условий кристаллизации могут образовывать два вида кристаллов. Его статья, опубликованная в июле-1826 года, окончательно подытожила спор о диморфизме. Позднее учеными было установлено, что существуют вещества, которые могут образовывать и более двух видов кристаллов, поэтому сегодня это явление называется полиморфизмом.

Закон изоморфизма оказался чрезвычайно важным. Применяя его к ряду новых соединений, ученые сумели установить их состав сравнительно простым способом. Митчерлих тоже проводил подобные исследования. Он изучил соединения селена и установил, что при взаимодействии его окиси с водой образуется селеновая кислота, состав которой также был определен.

Селен был открыт Берцелиусом десять лет назад, но его соединения оставались недостаточно изученными. Митчерлих получил селеновую кислоту, но встал в тупик при попытке написать ее формулу. Анализ не давал исчерпывающего ответа. Тогда Митчерлих подверг кристаллизации раствор селената калия и получил крупные прозрачные кристаллы. Он отобрал несколько крупных кристаллов и определил их симметрию. Оказалось, что селенат калия выкристаллизовывается в той же системе, что и сульфат калия. «Если они изоморфны, то непременно должны образовывать и смешанные кристаллы», рассуждал ученый. Он насыпал в стаканчик смесь сульфата и селената калия, налил воды и подогрел, чтобы растворить их. Через несколько дней на дне стаканчика появились крупные, прозрачные кристаллы, форма которых была совершенно идентична форме кристаллов сульфата и селената калия. Анализ показал, что новые кристаллы содержат калий, селен, серу и кислород. «Раз обе соли изоморфны, то можно с уверенностью написать формулу селенат» калия – она будет аналогична формуле сульфата калия, а тогда формула селеновой кислоты идентична формуле серной», – мысленно заключил ученый.

Закон Митчерлиха открывал дорогу в будущее, способствуя новым открытиям. Это поставило Митчерлиха в ряды самых крупных ученых того времени. В 1828 году его избрали членом, Лондонского королевского общества, которое в следующем году удостоило его золотой медали. Через несколько месяцев профессора Митчерлиха избрали почетным членом Петербургской Академии наук.

Успешное решение вопроса о селеновой кислоте воодушевило ученого, и он стал изучать соли многих элементов; определял систему их кристаллизации, рисовал основные формы кристаллов… Митчерлих намеревался провести подобные исследования почти со всеми известными солями и создать полный справочник. Однако ученый был нетерпелив, и до систематизации полученных данных дело никак не доходило. Едва успев закончить исследования одной соли, он тут же приступал к работе с другой. Количество данных увеличивалось с каждым днем, но они оставались в папках, а Митчерлих все не находил времени, чтобы их обработать и опубликовать.

Особенно обстоятельно он изучил соли марганцовых кислот. Применив закон изоморфизма, он установил формулу манганата калия (изоморфного сульфату калия), перманганата калия (изоморфного перхлорату калия), а затем и формулу марганцовой кислоты. Параллельно с этим он изучил сульфаты, селенаты и хроматы натрия, калия, аммония, цинка, серебра, никеля и других металлов. В начале 1833 года Митчерлих прервал исследовательскую работу по кристаллографии, чтобы высвободить время для написания учебника по химии. К этой работе он готовился очень долго, собирал материалы из научных журналов, посещал лаборатории выдающихся химиков Германии, Франции, Швеции, Англии. В учебник химии Митчерлих включил многое из своих исследований, остававшихся до того времени неопубликованными. Работа над учебником утомляла ученого, долгие часы за письменным столом иногда кончались приступом неудержимого раздражения.

Иногда он бросал все и выходил в сад, где обычно играла его дочь, а жена, устроившись в тени лип, читала или сидела за пяльцами.

– Ты опять переутомился, Эйль. Подорвешь свое здоровье, ее работай так много] – озабоченно говорила она.

– Я постоянно пребываю в угнетенном состоянии, дорогая. Не могу сидеть на одном месте и все время черкать пером. Для меня это ужасно.

– Иди сюда, Этхен, поиграй с папой и: развлеки его. Девочка радостно бежала к отцу.

– Покачай меня на качелях, папа…

В кругу семьи Митчерлих забывал свою усталость и вновь возвращался в кабинет. Упорство ученого брало верх: он продолжал работу над учебником.

К этому времени исследователи всерьез начали интересоваться органической химией. После знаменитой работы Вёлера идея о «жизненной силе» постепенно теряла своих сторонников, и теперь ученые делали попытки осуществить синтез других органических веществ.

Митчерлих не остался в стороне от этой новой, только что зарождающейся области химии. Он изучал этерификацию этилового спирта уксусной кислотой и высказал предположение, что роль серной кислоты состоит в том, чтобы облегчить протекание процесса. Ученые знали и другие подобные реакции, которые несколько позже Берцелиус назвал каталитическими.

Подвергнув нагреванию смесь окиси кальция и бензойной кислоты, Митчерлих получил сильно летучую жидкость. Она обладала характерным запахом. Это был бензол. Обработав его концентрированной серной кислотой, он получил бензолсульфокислоту, а действуя азотной кислотой – нитробензол.

После открытия бензола[388]388
  Бензол (под названием двууглеродистый водород) открыт в 1825 г. М. Фарадеем. Название «бензол» предложено Ю. Либихом. Митчерлих получил бензол в 1833 г., а Э. М. Пелиго (1811–1890) – в 1834 г. (Соловьев Ю. И. Эволюция основных теоретических проблем химии. – М.: Паука, 1971, с. 203; Быков Г. В. История органической химии: Открытие важнейших органических соединений, ук. соч., с. 93 и др.).


[Закрыть]
Митчерлих продолжил опыты, связанные с получением других производных бензола. В результате упорной и продолжительной работы ему удалось получить гексахлорбензол и бензофенон – соединения, играющие важную роль в органической химии. Этерификацией щавелевой кислоты этиловым спиртом Митчерлих получил этиловый эфир щавелевой кислоты[389]389
  Митчерлих открыл также сульфобензид.


[Закрыть]
.

В 1844 году он установил существование двух изомерных форм винной кислоты, обладающих различными оптическими свойствами.

Работа в области органической химии не ослабила интерес Митчерлиха к процессам минералообразования. В основном его привлекали вулканические минералы. Быть может, причиной тому были надолго оставшиеся в памяти медеплавильные заводы в Фалуне, а возможно, таинственный конус Везувия, покоривший ученого во время его пребывания в Неаполе.

Митчерлих стал изучать природу вулканов и связанные с ними процессы. Обычно в конце каждого семестра он заканчивал свои лекции коротким описанием геологической структуры земли и перемен, наступивших на ее поверхности. В летнее время Митчерлих отправлялся обычно в экспедиции[390]390
  Иногда в этих экспедициях участвовал сын Митчерлиха – Александр (1836–1919), профессор химии.


[Закрыть]
. Особенно часто он бывал у горы вулканического происхождения Эйфель.

Кроме геологических исследований, Митчерлих сделал попытки синтезировать в лабораторных условиях многие минералы. Смешивая в определенных пропорциях окись железа, окись алюминия, двуокись кремния, окись магния и другие, ему удалось получить расплавы, которые при охлаждении кристаллизовались и образовывали минералы, идентичные природным. В сотрудничестве с французским ученым Бертье он синтезировал диопсид, везувиан, пироксены и многие другие минералы..

В результате исследований Митчерлих разработал целую теорию, объясняющую происхождение вулканов и причины их: извержений, а также образование минеральных источников.

Последнюю экспедицию на Эйфель он провел летом 1861 года. В Берлин ученый вернулся в сентябре. Он был уже болен. Пришлось оставить на время работу в лаборатории и лекции.

– Вам нужен полный покой, профессор Митчерлих, – советовали ему врачи. – Уезжайте куда-нибудь подальше от Берлина. Близость к университету всегда будет соблазнять вас зайти в лабораторию.

Митчерлих отправился к дочери, которая вышла замуж за профессора Буша и жила в окрестностях Бонна. Ее неустанные заботы, свежий воздух и тишина быстро вернули силы ученому.

– Мне надо вернуться в Берлин, – сказал как-то Митчерлих дочери. – Ведь приближается октябрь. Меня ждут студенческие аудитории.

– Не делай этого, отец. Ты едва окреп. По-моему, тебе не надо больше работать. Оставайся у нас и отдыхай спокойно.

– Сидеть сложа руки? Это погубит меня. Я не могу жить без университета и моей лаборатории.

Осенью 1862 года Митчерлих начал снова читать лекции, а уже в середине декабря он слег в постель: сердце не выдержало непосильной нагрузки. Митчерлих вынужден был выехать, в Шенберг.

28 августа 1863 года он умер в Берлине.


ФРИДРИХ ВЁЛЕР

(1800–1882)

Доктор Вёлер был спокойным и уравновешенным человеком. Редко что могло вывести его из себя. Но сегодня, возвращаясь домой, он встретил учителя математики своего сына, и тот пожаловался на Фридриха. В последнее время мальчик был не внимателен на уроках и почти не готовил домашних заданий.

– Придется серьезно поговорить с этим лентяем. Надеру ему уши, может, тогда возьмется за ум!

Доктор Вёлер тяжело зашагал по улице. Калитка с шумом захлопнулась за его спиной, и он быстро поднялся по лестнице на второй этаж, в комнату Фридриха. Доктор Вёлер резко толкнул дверь и сурово взглянул на сына. В комнате царил полнейший беспорядок. Из-под кровати торчало несколько деревянных ящиков; другие, наполненные образцами самых разнообразных пород, руд и минералов были свалены у стены. На полу валялись всевозможные друзы, а в углу – куча лабораторной посуды: склянки, цилиндры, колбы, стаканы, разбитая реторта и бронзовые ступки…

При появлении отца Фридрих вздрогнул и робко посмотрел на него.

– Ты почему перестал учиться, Фридрих? Чем ты занят?

– Привожу в порядок минералы, папа[391]391
  В детстве Вёлер увлекался минералогией и собрал одну из наиболее полных немецких коллекций минералов. Это увлечение сблизило его с Иоганном Вольфгангом Гёте (1749–1832) – выдающимся немецким поэтом и естествоиспытателем, почетным иностранным членом Петербургской АН с 1826 г. (О Гёте см.: Канаев И. И. Иоганн Вольфганг Гёте: Очерк из жизни поэта-натуралиста. – М. – Л.: Изд-во АН СССР, 1964; Людвиг Э. Гёте. – М.: Мол. гвардия, 1965. – (ЖЗЛ); Канаев И. И. Гёте как естествоиспытатель. – Л.: Наука, 1970; Фойгт В., Зуккер У. И. В. Гёте – естествоиспытатель. – Киев: Вища школа, 1983). Вёлер также увлекался рисованием, любил музыку.


[Закрыть]
.

– Минералы?! А домашнее задание по математике сделал?

– Завтра у нас нет математики.

Доктор Вёлер замолчал. Он горячо любил сына и, несмотря на весь свой гнев и твердое решение наказать сына, чувствовал, что он не может поднять руку на него.

– Учитель сегодня пожаловался на тебя. Ты не стараешься. Допустим, ты не любишь математику, но ты должен ее знать. Ведь ты позоришь меня перед всем городом. Твой отец – врач, уважаемый не только во Франкфурте, а ты у меня – лентяй.

Фридрих обиженно посмотрел на отца и нахмурил брови.

– Никакой я не лентяй. Я много читаю и занимаюсь.

– Занимаешься чепухой, – повысил голос отец. – Я заставлю тебя учиться как положено! Дай мне учебник химии!

Фридрих колебался, но, почувствовав, что отец на этот раз не собирается шутить, неохотно вытащил учебник. Доктор Вёлер взял в руки потрепанную «Экспериментальную химию» Хагена[392]392
  Вероятно, речь идет об известном в то время «Учебнике аптекарского искусства» К. Г. Хагена (1778 г.).


[Закрыть]
. Когда-то и он учился по этой книге. Было это давно, еще в студенческие годы в Марбурге.

– Отдам летом, когда успешно закончишь занятия. Большего наказания для Фридриха трудно было придумать.

Он больше всего на свете любил собирать и изучать минералы, проводить химические опыты. Однажды в библиотеке отца он отыскал этот старый учебник химии и с тех пор не расставался с ним ни на минуту. Его комната превратилась в лабораторию, каждый день в ней появлялись новые приборы и химикаты. Где и каким образом любознательный мальчик находил их, никто не знал. Фридрих испытывал огромное удовольствие даже от самого простого опыта: он зажигал кусочек серы и, не обращая внимания на удушливый газ, с восторгом наблюдал сине-фиолетовое пламя. И вот теперь он лишился учебника – самой дорогой для него вещи.

Фридрих со слезами на глазах опустился на стул. Уши его горели, а у рта появились горькие морщинки. Нет, он все равно останется верным любимой химии! Мальчик вдруг вскочил и быстро выбежал из комнаты. Доктор Бух жил далеко – по другую сторону реки. Фридрих бегом пустился по улице.

– Можно видеть доктора Буха?

– Прошу вас.

Его отец и доктор Бух были добрыми друзьями, но сам Фридрих впервые входил в его дом. Он знал, что доктор Бух знает чрезвычайно много и имеет хорошую библиотеку, но никогда не представлял себе, что у него так много книг. В просторном кабинете доктора Буха книжные полки тянулись по стенам до самого потолка. Шкафы с книгами стояли и в коридоре. Фридрих с восхищением разглядывал это богатство.

– Что, нравится? – спросил хозяин, глядя на мальчика.

Доктор Бух был стройный мужчина лет сорока – сорока пяти. Его волосы, чуть посеребренные сединой, были зачесаны назад и открывали высокий лоб. Взгляд умных глаз спокоен и доброжелателен.

– Сколько книг! – восторженно промолвил Фридрих. – Ведь только из-за этого я и пришел к вам, доктор Бух. Есть ли у вас какие-нибудь книги по химии? Я бы хотел почитать.

– Только почитать? Твой отец рассказывал мне, что ты пытался проводить опыты… Хорошо, мальчик, я дам тебе книги. – Бух указал на одну из полок. – Здесь только химическая литература, можешь выбрать все, что тебе понравится.

Фридрих не верил глазам своим, будто перед ним не доктор Бух, а сам Али-Баба со своими несметными богатствами…

С той поры Фридрих часто заходил в дом к доктору Буху. Постепенно они стали большими друзьями. Бух когда-то и сам мечтал о химии, однако так и остался верен медицине. Но теперь любознательность Фридриха снова пробудила в, нем интерес к этой науке.

Учебники химии Лавуазье[393]393
  Lavoisier A. L. Traite elementaire de chimie, 1789.


[Закрыть]
, Клапрота[394]394
  Сочинения М. Г. Клапрота, ранее опубликованные в научных журналах, были собраны в пяти томах: Beitrage zur chemischen Kenntnis der Mineralkorper, 1795–1810 («К химическому познанию минеральных тел»). Шестой том («Химические акты смешанного содержания») вышел в 1815 г.


[Закрыть]
, Бертолле, журналы академий наук Берлина, Лондона, Стокгольма. Книги, книги, книги… Фридрих читал без устали и обсуждал все интересующее его с доктором Бухом. Год от года мальчик набирался знаний. Особое впечатление произвела на него статья Дэви, в которой говорилось о получении двух новых металлов – калия и натрия[395]395
  См.: Дэви Г. О некоторых химических действиях электричества. – М.—Л.: Гостехтеоретиздат, 1933.


[Закрыть]
.

Калий. Это действительно исключительный элемент. Металл, который при соприкосновении с водой разлагает ее, а образовавшийся водород воспламеняется. Наверняка удивительное зрелище, – эти мысли не давали Фридриху покоя. Он решил во что бы то ни стало получить металл. Прежде всего надо было собрать электрическую батарею.

В этом ему опять помог доктор Бух, познакомивший Фридриха с Бунзеном – мастером Франкфуртского монетного двора.

– Медные пластины мы легко найдем, – сказал Бунзен. – Пойдем со мной. – Он толкнул маленькую железную дверь, и они очутились в низком, полутемном подвале.

– В этом сундучке хранятся старые русские монеты. Они отлиты из чистой меди. Бери, сколько нужно.

– Можно штук десять-пятнадцать? – робко спросил Фридрих.

– Бери даже двадцать. Только вот где нам найти цинковые пластины, этого я и сам пока не знаю.

Фридрих чувствовал себя бесконечно счастливым. Большие, тяжелые монеты оттягивали карманы куртки.

Через несколько дней мастер Бунзен нашел цинковые пластины, и вскоре батарея была готова. Глиняные сосуды, вставленные в ящик, Фридрих спрятал под кроватью, оттуда торчали лишь два конца проводов. Однако все его попытки получить калий не дали результата. Он хотел расплавить едкое кали в разнообразных сосудах, подолгу пропускал ток, но безуспешно. Может быть, ток недостаточно сильный, разочарованно подумал он. Хорошо еще, что батарея работает. Как-то Фридрих случайно дотронулся до электропроводов батареи обеими руками и испытал довольно сильный удар током. Тогда он решил подшутить над своей сестренкой.

– Хочешь, я покажу тебе что-то интересное? Пойдем со мной.

– Только обещай, что не будешь получать удушливые газы, – сказала сестра, подымаясь за ним по лестнице.

Через несколько минут в комнате Фридриха раздались отчаянные крики. Электричество «трясло» сестру, от страха она не могла разжать ладони и высвободиться от оголенных проводов. Испуганная девочка кричала, а Фридрих заливался смехом. Наконец он отдернул провод, и она, побледнев, упала на кровать. В ее глазах был безумный страх. Через несколько минут она пришла в себя и стала кричать на брата.

– Убийца! Я больше не буду помогать тебе! Ты мне не брат!

– Что случилось? – раздался испуганный голос матери. Услышав громкие крики, она вбежала в комнату сына.

– Ничего, мама. Ничего страшного. Я только показал ей, какая чудесная сила у электричества.

– Он хотел убить меня, мама. У меня и сейчас еще дрожат руки и локти очень болят. Это все его несносная батарея.

– Фридрих, постыдись. Ты уже большой, а делаешь глупости. Отец не одобрит твоих поступков.

Отец действительно рассердился, но Фридрих доказывал ему, что все не так опасно и страшно, как кажется.

– Если хочешь убедиться, можешь испробовать на себе.

– Это еще зачем? – спросил возмущенный отец.

– Женщины страшно трусливы, – бормотал Фридрих себе под нос. – Я сам пробовал много раз. Пойдем, ты тоже попробуешь!

Не желая уронить свое достоинство в глазах сына, доктор Вёлер согласился и поднялся в комнату Фридриха. Юный экспериментатор подал отцу концы проводов и включил батарею. Электричество сразу сковало руки доктора, и, как он ни старался, раскрыть ладони не мог.

– Фридрих! Довольно! Прекрати!

Поняв, что шутка не оценена, Фридрих испуганно отдернул провод. Разъяренный отец вскочил со стула, схватил ящик с батареей и выбросил его в окно.

– Хватит твоих безобразий! Ты совсем потерял голову! Фридрих не слушал, он смотрел в окно на груду обломков.

В глазах его были слезы…

И все-таки мысль получить калий не давала ему покоя. Он беспрестанно просматривал книги доктора Буха. Однажды он нашел статью, в которой говорилось о методе получения калия, предложенном Гей-Люссаком и Луи Жаком Тенаром. Из нее он узнал, что электролизный способ Дэви очень сложен и дает возможность получить лишь ничтожные количества металла. Метод французских ученых оказался лучше, поэтому Фридрих решил его испробовать. И снова ему на помощь пришел мастер Бунзен. Он дал мальчику старый большой графитовый тигель и мехи для раздувания огня. В это время мать Фридриха уехала к своей сестре в Эшерсгейм. Поэтому Фридрих мог спокойно расположиться на кухне. Он аккуратно растер куски едкого кали, смешал их с порошком древесного угля и насыпал смесь в тигель. Затем покрыл смесь толстым слоем древесного угля и поставил тигель на сильно разогревшиеся угли в очаге. Его сестра, растрепанная, с красным от усердия лицом, раздувала мехи.

– Сколько раз я давала себе слово не помогать тебе, а потом опять уступаю, – стонала уставшая девочка.

– Но ты увидишь, какой это чудесный металл, – сказал Фридрих. – Мягкий, как воск.

– Пока это только слова, а металла-то нет.

Угли хорошо разгорелись. Синие язычки пламени нагревали тигель. Смесь в нем раскалилась, и небольшие пузырьки газа стали лопаться на поверхности угольного слоя, выбрасывая вверх тонкие пылинки, которые моментально загорались. Казалось, это извергались маленькие вулканчики.

На этот раз опыты Фридриха увенчались успехом. После того как тигель остыл, они с сестрой раздробили его содержимое и нашли несколько маленьких каплеобразных кусочков калия, Фридрих осторожно отделил их и приступил к дальнейшим опытам. Метод Годешона (модифицированный метод Гей-Люссака и Тенара), по которому он получил калий, оказался более легко осуществимым. Успеху Фридрих был обязан, конечно, и своим уже весьма обширным познаниям в области химии.

Многолетняя дружба с доктором Бухом благотворно сказалась также и на занятиях Фридриха в гимназии. Он стал более прилежно готовиться к урокам. Доктор Бух сумел внушить ему мысль, что если он хочет стать ученым, то должен много знать, «должен знать все», как любил говорить Бух.

Фридриху исполнилось двадцать лет, когда он окончил гимназию. Теперь это был уже не смешной, долговязый мальчишка с торчащими ушами, а высокий изящный юноша.

День рождения Фридриха решено было отпраздновать в Эшерсгейме, на родине Вёлера. Именно там 31 июля 1800 года родился мальчик, которому дали имя Фридрих. Этим летом мать его, спасаясь от летней духоты во Франкфурте, выехала к сестре на лоно природы. В доме ее зятя, пастора Эшерсгейма, было всегда удобно и прохладно.

– Опять ужасно жаркое лето, как и в год твоего рождения, – сказала тетушка Фридриху. – Розалина, иди проверь, достаточно ли холодно вино.

Сидя за празднично накрытым столом, под большим развесистым дубом в саду, вся семья оживленно обсуждала будущее Фридриха. Отец мечтал, чтобы сын начал изучать медицину в Марбурге, и домочадцы были с ним полностью согласны. В Марбурге еще оставалось несколько старых друзей и коллег доктора Вёлера. Они позаботятся о Фридрихе, будут следить за его занятиями.

Двумя месяцами позже, осенью 1820 года, Фридрих переселился в Марбург. Ему нравился университет, и он добросовестно там занимался. Но стоило ему попасть домой, как его страстно влекло к занятиям химией. Он не мог спокойно заснуть, если им не был проведен хотя бы один опыт. Безупречный порядок в комнате, наведенный хозяйкой дома, постоянно раздражал его. В конце концов он превратил эту комнату в настоящую химическую лабораторию. Ночи напролет Фридрих сидел, склонившись над колбами и стаканами, забыв обо всем на свете. В этой скромной студенческой комнате Вёлер провел и свое первое научное исследование. Он начал изучать свойства нерастворимых в воде тиоцианатов серебра и ртути.

Молодой ученый получил тиоцианат ртути, смешивая растворы тиоцианата аммония и нитрата ртути. Он отфильтровал белый осадок, поставив его сушить, а сам лег спать. Но ему не спалось, а до утра было еще так далеко – время тянулось мучительно медленно. Вёлер встал, зажег свечу и принялся за работу: положил часть тиоцианата ртути на глиняную плитку и приблизил ее к раскаленным углям в камине. Немного погодя, когда плитка нагрелась, белый порошок стал слегка потрескивать. Вещество начало расползаться по плитке, словно живое, изменяя цвет от белого к желтому и сильно увеличиваясь в объеме. Вёлер с интересом смотрел на происходящее.

Когда потрескивание закончилось, он взял новую порцию белого порошка и стал растирать, немного смочив его, между ладонями. Полученную белую «колбаску» он некоторое время посушил на плитке, а потом стал сильно нагревать с одного конца. Послышалось знакомое потрескивание. Горячий конец начал сильно раздуваться и образовывать большой шар, который быстро перемещался вдоль «колбаски», так как реакция распространялась по всей массе. Наконец реакция прекратилась, оставив неподвижную желтую массу. В эту ночь спать Вёлер, конечно, не мог. Ведь он впервые наблюдал термическое разложение тиоцианата ртути, которое протекало так удивительно красиво и необычно.

Вёлер продолжал исследования еще несколько месяцев, а потом он подробно описал явление в своей первой научной статье, которую опубликовали в «Летописях Жильберта» по рекомендации доктора Буха. Статья была небольшой, но она привлекла внимание Берцелиуса, и он весьма благожелательно оценил ее в своих «Ежегодных обзорах».

Это событие вселило в молодого Вёлера уверенность в своих силах, и он решил переехать в Гейдельберг, где работал знаменитый Леопольд Гмелин[396]396
  Леопольд Гмелин (1788–1853) – немецкий химик, профессор в Гейдельберге. Известность получил благодаря своим важным исследованиям цианидов (в 1822 г. открыл феррицианид калия) и работам в области аналитической химии. Его учениками были Ф. Вёлер и Генрих Вилль (1812–1890). «Учебник неорганической химии» Гмелина (2 тома, 1817–1819 гг.) оказал большое влияние па современников, выдержал ряд переизданий и стал классическим справочником по неорганической химии. О Гмелине см.: Джуа М., ук. соч., с. 198; Pietsch E., Beyer E. In: Great Chemists, Ed. E. Farber. – New York, London: Interscience Publishers, 1961, p. 454–463; Крицман В. А., ук. соч., Ч. I, с. 129–130; Становление химии как науки, ук. соч., с. 217–219 и др.; Волков В. А. и др., ук. соч., с. 143–145.


[Закрыть]
, а также другие известные ученые, среди которых особенно выделялся физиолог, профессор Тидеман[397]397
  Фридрих Тидеман (1781–1861) – немецкий физиолог – совместно с Гмелином проводил изучение изменения пищи в желудке животных.


[Закрыть]
. Вёлер прибыл в Гейдельберг осенью 1822 года и как будущий врач начал работать под руководством Тидемана. Однако идея, которая привела сюда Вёлера, по-прежнему оставалась только мечтой. Он выразил желание посещать лекции профессора Гмелина, но тот, к удивлению Фридриха, отказал ему в этой просьбе.

– Вы не найдете в моих лекциях ничего для себя интересного, господин Вёлер. То, чего добились вы сами, намного больше требований, которые мы предъявляем нашим студентам. Ваша статья в «Летописях Жильберта» ясно свидетельствует о ваших весьма солидных познаниях в химии. Я не хотел бы брать на себя роль оракула, но, мне кажется, у вас очень хорошие экспериментаторские способности.

– Но я в жизни не слушал ни одной лекции по химии, – сказал Вёлер с отчаянием в голосе.

– Это не беда. Важно то, что вы знаете. Как угодно, господин Вёлер, но в аудиторию я вас не пущу, а в лабораторию – милости просим, приходите. Я буду рад, если в моей лаборатории вы сделаете новые интересные открытия. Вы можете приходить ко мне всегда, когда вам понадобится получить совет или захочется просто побеседовать.

Об этом Вёлер даже и не мечтал. Ему разрешили работать в лаборатории Гмелина!

Началась новая страница в жизни молодого ученого. Лаборатория Гмелина совсем не была похожа на его домашнюю лабораторию. Здесь было все – и приборы, и аппараты, и химикаты. Вёлер приступил к изучению циановой кислоты и ее солей. После того как Гей-Люссак установил состав цианистоводородной кислоты и цианогена (дициана), изучение свойств последнего показало, что он был очень похож на хлор. С щелочами дициан образовывал соли пока еще не известных свойств. Вёлер получил дициан по методу Гей-Люссака и абсорбировал его раствором гидроокиси бария. Образовался бесцветный раствор, из которого через некоторое время ему удалось выделить две кристаллические соли: одна – цианистоводородной, другая – циановой кислоты. Согласно анализам, циановая кислота состояла из углерода, азота, водорода и кислорода. Вёлеру также удалось получить серебряную и калиевую соли циановой кислоты. Он тщательно исследовал новые вещества. Леопольд Гмелин давал ему ценные советы и указания. В этот же период он работал с профессором Тидеманом и сложные исследования поглощали почти все его время.

Результаты своих исследований Вёлер опубликовал в двух статьях, вышедших в 1822 и 1823 годах.

В лаборатории Гей-Люссака в Париже над подобными соединениями одновременно работал Юстус Либих. Прочитав его статью, Вёлер был сильно удивлен разницей полученных ими результатов. Он отметил это еще в самом начале статьи Либиха. Анализ цианата ртути, полученного Либихом, дал ему основание назвать соединение гремучей ртутью, так как соль обладала очень сильными взрывчатыми свойствами.

Однако цианат ртути, полученный Вёлером, вообще не взрывался. Не было ли допущено какой-нибудь ошибки при синтезе?

Но ошибки не было. Просто стал известен первый случай изомерии (это название дал Берцелиус в 1829 году). Вёлер изучил соединения циановой кислоты, а Либих – изомерной с ней фульминовой (гремучей) кислоты.

Успехи Вёлера в химии, его высокая культура вызвали дружеское расположение к нему не только Гмелина, но и Тидемана, по совету которого он взялся за изучение весьма важной физиологической проблемы – выделения организмом различных веществ в мочу. Вёлер проводил опыты на собаках, а иногда и на себе. Известно, что из организма выводится много отработанных продуктов жизнедеятельности, первое место среди которых занимает мочевина. Это вещество образует бесцветные кристаллы, растворимые в воде. Вёлер выделил мочевину в чистом виде и подверг ее полному анализу. Он установил самые важные свойства этого вещества и показал, какие пищевые продукты в рационе приводят к увеличению его содержания в моче. Тидеман был доволен полученными результатами.

– Ваши опыты, господин Вёлер, проведены великолепно. Вы можете приступать к написанию работы. Получится прекрасная докторская диссертация.

– Не лучше ли будет, если я опубликую материалы в виде статьи в вашем журнале по физиологии, профессор Тидеман? – спросил Вёлер с некоторым смущением.

– Как хотите, – ответил Тидеман. – Можно и так. Второго сентября 1823 года Вёлер сдал последний экзамен

и получил звание доктора медицины – хирурга. Теперь не оставалось ничего другого, как вернуться во Франкфурт, чтобы приступить к работе вместе с отцом. Он направился в химическую лабораторию, чтобы собрать к отъезду свои вещи. Звание доктора медицины нисколько не радовало Вёлера.

Он тихо вошел в лабораторию, не замечая сидевшего у окна Гмелина.

– Ну что ж, расстаемся? – спросил Гмелин. Вёлер поднял голову.

– Извините, я не заметил вас. Пришел собрать вещи. Гмелин подошел к нему.

– Что-то вы не веселы. Отчего так? У вас нет желания вернуться во Франкфурт или, может быть, есть на то другая причина?

– Я буду тосковать без вашей лаборатории, и мне, конечно, будет плохо без ваших советов, профессор, – сказал Вёлер. – Мое сердце не может жить без химии.

– Так отдайте его этой науке! Возьмите пример с меня. Я тоже учился медицине и готовился стать врачом, а теперь я профессор химии.

– Посвятить себя химии? Но ведь у меня нет систематизированных знаний в этой науке.

– У вас достаточно знаний, Вёлер. Если хотите, мы напишем письмо Берцелиусу и попросим его принять вас в свою лабораторию.

Вёлер колебался не долго. Окончательное решение он принял, получив ответ от Берцелиуса. И зимой 1823 года он уже работал в личной лаборатории выдающегося шведского ученого в Стокгольме. За три года до этого в этой лаборатории проводили свои исследования Митчерлих и братья Розе. Теперь здесь работали Берцелиус и Вёлер. Шведский исследователь находился в расцвете своих творческих сил. Его открытия следовали одно за другим, его огромные познания, непревзойденное экспериментаторское мастерство являлись тем чудотворным источником, к которому уже много лет тянулись молодые ученые.

В это время Берцелиус изучал соединения фтора, кремния, бора. Вёлер освоил много новых методов анализа и получения элементов; параллельно с этим он продолжал изучать циановую кислоту. Противоречия с результатами Либиха не давали ему покоя. Эта проблема заинтересовала и самого Берцелиуса, но быстро пролетело время, и Вёлер не сумел закончить исследования: ему пришлось возвращаться на родину.


    Ваша оценка произведения:

Популярные книги за неделю