Текст книги "Книга юного мотоциклиста"
Автор книги: Иван Серяков
сообщить о нарушении
Текущая страница: 3 (всего у книги 11 страниц)
Что такое мотороллер?
Как называется машина, изображенная на рисунке 14 и очень похожая на мотоцикл? Это мотороллер.
В 1946 году такие машины появились в Италии, а через несколько лет – почти во всех странах. Почему они успешно соревнуются с мотоциклом и получили большое распространение?
Рис. 14. Мотороллер «Вятка»-150.
На мотоцикле сидеть не совсем удобно и одеваться надо либо в кожаные брюки, либо в комбинезон. Плохо защищен ездок от грязи при езде по мокрой дороге. Попробуйте сесть на мотоцикл в длинной юбке или длинном пальто. Это очень неудобно.
А мотороллер имеет удобное сиденье, на нем водитель сидит, как на стуле. Ноги при этом стоят на площадке, как на полу. Все механизмы закрыты капотом – на водителя и пассажира грязь не попадает. От встречного ветра пассажиров хорошо защищает ветровой щиток, а от солнца – козырек.
Правда, проходимость его по сравнению с мотоциклом несколько хуже – он более приземист, колеса его меньше. Мотороллер сделан проще, чем мотоцикл. При массовом производстве он значительно дешевле мотоцикла.
Мотороллер можно использовать для разных целей; можно, например, сделать специальный прицеп и развозить почту, доставлять молоко, хлеб.
В нашей стране выпускаются мотороллеры «Вятка»-150 и «Тула»-200.
«Вятка»-150 выпускается вятско-полянским заводом. Два человека могут ехать на этом мотороллере со скоростью 70 километров в час. Бак вмещает 12 литров бензина, которого хватает на 350–400 километров пробега.
В Туле делают мотороллер «Тула»-200 (рис. 15). С полной нагрузкой он может по шоссейной дороге развивать скорость до 80 километров в час. Расход топлива на 100 километров составляет 3,5 литра. Этот мотороллер выпускается как с коляской, так и без коляски.
Рис. 15. Мотороллер «Тула»-200.
Главные механизмы
Главная часть мотоцикла и мотороллера – двигатель. Чтобы заставить мотоцикл или мотороллер двигаться, надо передать усилия, развиваемые двигателем, на колеса (рис. 16).
Рис. 16. Главные механизмы мотоцикла.
Достаточно передать усилие на одно колесо, обычно заднее. Оно толкает мотоцикл вперед, а переднее колесо дает направление движению. Заднее колесо называется ведущим.
На мотоциклах имеется силовая передача, по которой, словно по мосту, усилия от двигателя передаются на заднее колесо.
Одним из механизмов силовой передачи является сцепление. При помощи его на короткое время можно отключать двигатель от силовой передачи. Оно дает возможность бесшумно переключать передачи и обеспечивать плавное, без рывков трогание мотоцикла с места.
Другой важный механизм – коробка передач. Она позволяет при одной и той же мощности двигателя создавать разные усилия на ведущее колесо. В каких случаях это требуется, мы расскажем ниже.
А как же усилия от коробки передач передаются на ведущее колесо? Какие здесь применены механизмы? Существуют два способа передачи: при помощи цепи и при помощи карданной передачи.
На мотоциклах, где передача производится при помощи цепи, есть цепь и зубчатая передача, примерно такая, как у велосипеда.
Если передача производится при помощи кардана, она имеет кардан, вал и зубчатую главную передачу.
Важную группу механизмов составляет ходовая часть. К ней относятся рама, колеса, передняя и задняя вилки, седло и коляска.
Для управления мотоциклом служат руль с рычагами управления и тормоза.
Для воспламенения горючей смеси, освещения, сигнализации есть приборы электрооборудования.
Вот и все главнейшие механизмы мотоцикла.
На рис. 17, а, б показаны главные части мотороллера, назначение которых такое же, как и у мотоцикла.
Рис. 17. Главные части мотороллера: а) вид слева; б) вид справа.
В отличие от мотоцикла мотороллер имеет кузов, укрепленный на раме. Кузов сделан из легкого металла, имеет красивую обтекаемую форму. Под сиденьем помещены бензобак и двигатель. Двигатель, сцепление и коробка передач выполнены вместе, или, как говорят, сделаны в одном агрегате.
Глава третья
СТАЛЬНОЕ СЕРДЦЕ
Газ работает
Двигатели мотоциклов относятся к категории двигателей внутреннего сгорания. Весь процесс преобразования тепловой энергии в механическую происходит внутри цилиндра. Полученная механическая работа затем приводит в движение различные механизмы. Как заставить работать двигатель?
Для этого использовали свойства упругости газов. То, что окружающий нас воздух и другие газы обладают свойством упругости и, расширяясь, могут производить работу, известно было давно.
…Высоко над домами старой Вены подымались башни. Зоркие глаза пожарников день и ночь внимательно осматривали крыши домов.
Над городом спустилась ночь. Все спали. С Дуная дул сильный ветер. Вдруг пожарник заметил вспышку пламени. Сомнений нет – пожар.
Быстро написав что-то на бумажке, пожарник свернул ее трубкой, вложил в металлический патрон, патрон вставил в трубу и изо всей силы начал качать кузнечные меха, пристроенные здесь же, на каланче. Качнув несколько раз, он бросил рычаг и стал всматриваться в разгоравшийся пожар.
Не прошло и минуты, как сонный город был разбужен ударами пожарного колокола и тревожными звуками рожка.
Что же написал пожарник? Почему он качал рычаг кузнечного меха? И, наконец, почему на башне оказался кузнечный мех?
Пожарник передал в пожарную команду сообщение о замеченном им пожаре. На записке он написал адрес горевшего дома. Записка была вложена в металлический патрон. Патрон вставлен в трубу, которая шла от помещения пожарной команды до башни. Когда пожарник качал за рычаг меха, сжатый воздух направлялся в трубу. Патрон сжатым воздухом в одно мгновение был доставлен в комнату к дежурному.
Такая сигнализация была установлена в Вене в 1792 году. В этом примере показана работа сжатого воздуха.
Возьмем металлический стакан (рис. 18) и вставим в него хорошо притертую пробку.
Рис. 18. Превращение теплоты в механическую работу.
Давайте нагреем стакан лампой. Воздух в стакане станет нагреваться и делать попытки расшириться. Чем больше нагреется стакан, тем больше возрастет давление воздуха. Наконец, пробка не выдержит давления воздуха и медленно пойдет вверх.
Воздух, расширяясь, произведет работу.
Мы затратили тепловую энергию для нагревания воздуха – взамен получили механическую работу. Наш цилиндр (стакан), пробка и лампа – простейший тепловой двигатель.
Проделаем теперь другой опыт. Возьмем тот же цилиндр и станем с силой давить на пробку сверху вниз. Сначала пробка пойдет легко, но чем ближе она начнет подходить ко дну, тем больше будет чувствоваться сопротивление воздуха. Газ сжимается.
Если бы мы теперь измерили давление и температуру газа, то установили бы, что они повышаются. На этих свойствах газа и основана работа двигателей, установленных на мотоциклах и автомашинах. В нашем примере воздух нагревался от источника теплоты, расположенного вне цилиндра. В мотоциклетных же двигателях теплота, необходимая для нагревания газов, получается от сжигания топлива непосредственно в цилиндре. Такие двигатели называются двигателями внутреннего сгорания.
Как работает двигатель внутреннего сгорания
Каждый из вас знает, как стреляет ружье. В казенную часть вставляют патрон, заряженный порохом. Когда боек ударяет по капсюлю, порох воспламеняется, начинает гореть. Получаемые от сгорания пороха газы нагреваются. Давление газов сильно возрастает, и они выталкивают пулю из ствола. И здесь тепловая энергия превращается в механическую работу. А нельзя ли эту работу использовать для приведения в действие машин? Практически нельзя. Получаемая при выстреле энергия слишком велика, да и давление газов нарастает рывком. Вместо пороха надо взять вещества, которые при сгорании дают толчок более плавный. Пригодными оказались пары бензина.
Возьмем цилиндр, зарядим его смесью паров бензина с воздухом и закроем пробкой. Воспламеним смесь. Наша пробка вылетит из цилиндра, словно пуля. Но мы один раз выстрелили – и пробка улетела. Чтобы второй раз выстрелить, надо, очевидно, иметь другую пробку. А если стрелять час, сколько понадобится таких пробок! А, кроме того, нам ведь нужна не пушка, а двигатель, который приводил бы в движение другие механизмы. Что если нашу пробку при помощи рычага прикрепить так, чтобы она не улетала, а после каждого «выстрела» возвращалась обратно в цилиндр. Теперь осталось соединить рычаг от пробки-поршня с деталями так, чтобы работа поршня не пропадала даром. Как же все это выглядит в двигателе?
Главные части двигателя
Двигатель внутреннего сгорания (рис. 19) имеет цилиндр, по которому вверх и вниз движется поршень.
Рис. 19. Главные части двигателя.
Сверху цилиндр закрывается крышкой с углублением. Это головка цилиндра с камерой сгорания.
Поршень вверх может подниматься до определенного уровня. Самое верхнее положение поршня называется верхней мертвой точкой (в. м. т.). Вниз поршень может двигаться тоже до определенного положения. Это положение называется нижней мертвой точкой (н. м. т.).
В верхней части цилиндра сделано два отверстия – каналы, которые могут закрываться и открываться при помощи клапанов. Через один из этих каналов в цилиндр поступает смесь паров бензина с воздухом. Он называется впускным. Через другой, он называется выпускным, из цилиндра уходят продукты горения – отработавшие газы.
Горючую смесь надо чем-то воспламенить. Воспламенение производится электрической искрой, которая появляется в свече зажигания, ввернутой в головку цилиндра.
Поршень при помощи стального стержня-шатуна соединен с валом, имеющим изгиб – колено. Это коленчатый вал с кривошипом. Коленчатый вал вращается в подшипниках. На одном конце коленчатого вала насажено массивное колесо, которое называется маховиком.
Если мы станем поворачивать коленчатый вал с того положения, когда поршень находится в верхней мертвой точке, то колено будет уходить в сторону и через шатун потянет поршень вниз. Это будет происходить до тех пор, пока поршень не пройдет половину пути. Продолжая движение, колено повернется вниз, а поршень достигнет мертвой точки. Коленчатый вал повернется на 180°, поршень опустится вниз. Из нижнего положения коленчатый вал будет, продолжая движение, поворачиваться вверх. Конечно, и поршень пойдет вверх из н. м. т. в в. м. т. Расстояние от в. м. т. до н. м. т. называется ходом поршня.
Объем цилиндра, заключенный между мертвыми точками, называется рабочим объемом. Его принято измерять в кубических сантиметрах. Сумма объемов камеры сгорания и рабочего объема называется полным объемом цилиндра.
Четыре такта
Мы уже знаем, что для того, чтобы двигатель мог работать, надо сначала зарядить его горючей смесью.
Как же это делается? Поставим поршень в верхнюю мертвую точку и станем вращать коленчатый вал. Поршень будет уходить вниз, и пространство над ним увеличится. Давление воздуха в цилиндре станет меньше атмосферного. В цилиндре образуется разрежение. Одновременно с этим открывается впускной клапан, и горючая смесь, приготовленная в особом приборе – карбюраторе, быстро заполнит цилиндр (рис. 20).
Рис. 20. Рабочий цикл четырехтактного двигателя.
Процесс заполнения цилиндра горючей смесью получил название такта впуска.
Коленчатый вал за это время повернется на 180°, и впускной клапан закроется. Цилиндр «заряжен». Но поршню некуда «лететь», так как дальше н. м. т. он никуда не может уйти. Вспомните двигатель Ленуара. Газ сжигался после того, как он заполнял цилиндр. Двигатель был неэкономичным, «пожирателем газа». Необходимо перед воспламенением смеси сжать ее – коэффициент полезного действия двигателя от этого значительно повысится.
Коленчатый вал продолжает подниматься кверху и толкает поршень. Горючая смесь сжимается. Давление и температура ее повышаются. Сжатие будет закончено, когда поршень придет в верхнюю мертвую точку.
У современных двигателей давление в конце сжатия достигает 8 атмосфер и более, а температура —300° и выше. Само собою разумеется, что впускной и выпускной клапаны при этом закрыты.
Процесс сжатия горючей смеси называется тактом сжатия. Коленчатый вал за это время повернется на 180°.
Смесь можно сжимать в несколько раз. Узнать, во сколько раз сжата смесь, легко. Для этого надо разделить полный объем цилиндра на объем камеры сгорания. Получится отвлеченная величина, которая называется степенью сжатия. При более высокой степени сжатия лучше идет процесс горения. Чем сильнее сжата смесь, тем больше мощность двигателя. В современных мотоциклетных двигателях степень сжатия составляет примерно 5–6, а у гоночных достигает 9,5 и больше.
Сжатую смесь надо воспламенить. Это делается при помощи электрической искры. Температура в цилиндре повышается до 2000 °C, а давление – более чем до 20 атмосфер. Под действием давления газов поршень начинает быстро двигаться вниз, с силой давя на шатун. Этот процесс называется тактом расширения, или рабочим тактом. Рабочий такт происходит на протяжении хода поршня от в. м. т. до н. м. т. Коленчатый вал за это время повернется на 180°. При этом впускной и выпускной клапаны закрыты. Тепловая энергия, выделяемая сгоревшим топливом, превратилась в механическую работу. Вместо горючей смеси в цилиндре создались продукты горения – отработавшие газы. Надо очистить от них цилиндр и освободить место для свежей смеси. Когда поршень придет в нижнюю мертвую точку, открывается выпускной клапан. Так как давление газов, хотя и понизилось в конце рабочего такта, все же выше атмосферного, то часть газов сразу же устремляется наружу. Продолжая вращаться, коленчатый вал толкает поршень вверх. Идя вверх, поршень выталкивает газы через выпускной канал, ускоряя очистку цилиндра. Когда поршень придет в верхнюю мертвую точку, цилиндр очистится от отработавших газов.
Процесс очистки цилиндра от отработавших газов называется тактом выпуска. Такт выпуска происходит на протяжении хода поршня от н. м. т. до в. м. т. За это время коленчатый вал повернется на 180°. Цилиндр снова можно заряжать горючей смесью.
Такты последовательно повторяются. Сумма этих последовательно повторяющихся тактов получила название рабочего цикла двигателя. Двигатель, в котором рабочий цикл происходит за четыре такта, называют четырехтактным. Весь цикл происходит за два оборота коленчатого вала. По такому циклу работает двигатель мотоцикла М-72.
Вдумайтесь в работу этого двигателя. Из четырех тактов только один – рабочий такт – дает энергию для вращения коленчатого вала. Только при рабочем такте теплота превращается в механическую работу. Чтобы могли совершаться такты впуска, сжатия, выпуска, надо затратить работу – значит коленчатый вал должен вращаться.
Откуда же берется энергия для вращения вала? Эту энергию дает маховик.
Проделайте простой опыт. Попробуйте с одинаковой силой толкнуть два шарика. Но вес одного из них должен быть раза в три больше веса другого. Легкий шарик быстро сдвинулся с места, но остановить его легче. Тяжелый шарик толкнуть труднее и труднее остановить.
Газы с силой давят на поршень только во время рабочего хода, т. е. один такт из четырех. Почему же коленчатый вал движется равномерно, а не рывками? Главная роль в этом принадлежит маховику. Маховик – тяжелая и большая деталь. Трудно сдвинуть ее с места. Зато, вращаясь по инерции, коленчатый вал с маховиком обеспечивают равномерное движение поршня. Маховик делает вращение коленчатого вала более плавным.
Два такта
Есть двигатели, у которых весь рабочий цикл происходит за два хода поршня, за один оборот коленчатого вала. Это двухтактные двигатели (рис. 21).
Рис. 21. Рабочий цикл двухтактного двигателя.
Они устанавливаются на многих мотоциклах и мотороллерах, например ИЖ-56, К-55, М-1-М, «Вятка»-150 и «Тула»-200.
Как же они работают? Цилиндр двухтактного двигателя имеет несколько окон: впускное, два перепускных и выпускное. Иногда бывает одно перепускное окно. Через впускное окно горючая смесь из карбюратора поступает в картер двигателя.
Перепускные окна служат для перепуска горючей смеси из картера в цилиндр двигателя.
А через выпускное окно отработавшие газы выходят наружу.
Предположим, что поршень находится в верхней мертвой точке.
Смесь при этом сжата. Горючая смесь у двухтактного двигателя поступает в нижнюю часть двигателя – картер и заполняет его. В это время впускное окно открыто. Поршень, идя от нижней мертвой точки к верхней, уходит от картера. В картере давление падает – образуется разрежение. Сжатая в цилиндре над поршнем смесь воспламеняется. Поршень идет вниз. Отойдя на некоторое расстояние от в. м. т., он открывает выпускное окно. Отработавшие газы немедленно устремляются наружу. Начинается процесс очистки цилиндра. Двигаясь вниз, поршень оказывает давление на горючую смесь, находящуюся в картере. Давление в картере повышается. Поршень открывает перепускные окна, смесь из картера по перепускным каналам быстро двигается в верхнюю часть цилиндра и заполняет его. Но в цилиндре еще много отработавших газов. Свежая смесь направляется в камеру сгорания и выталкивает оттуда оставшиеся продукты горения. Цилиндр окончательно очищается.
А не уйдет ли свежая смесь вместе с отработавшими газами наружу? Безусловно, некоторое количество ее уйдет. Это, конечно, нежелательное явление, но оно неизбежно. Когда свежая смесь попадает в цилиндр, происходит продувка двигателя.
Если вы хотите быстро и хорошо проветрить комнату, вы открываете окно и двери. В комнате образуется сквозняк. Ветер быстро проносится по комнате и уносит с собой загрязненный воздух. Нечто подобное происходит и при очистке цилиндра. Но вот поршень пришел в нижнюю мертвую точку. За один ход совершилось три процесса: рабочий такт, выпуск и впуск.
Коленчатый вал продолжает вращаться. Поршень идет вверх. Сначала он открывает впускное окно. В картере снова образуется разрежение, и он начинает заполняться горючей смесью. Поршень закрывает продувочные и выпускные окна. Смесь снова сжата.
Снова появляется искра, и цикл повторяется. Эти двигатели более просты по своему устройству и не сложны в обращении. Правда, они менее экономичны по сравнению с четырехтактными.
Устройство двигателей мотоциклов
Двигатель, установленный на современных мотоциклах и мотороллерах, устроен гораздо сложнее того, о котором мы только что говорили (рис. 22).
Рис. 22. Двухтактный двигатель мотоцикла М-1-М.
К основным механизмам четырехтактного двигателя относятся: кривошипно-шатунный механизм, механизм газораспределения, система смазки, система охлаждения, система питания и зажигания. В двухтактных двигателях нет самостоятельных механизмов газораспределения и смазки.
Совместная дружная работа всех механизмов и систем обеспечивает бесперебойную работу двигателя. Познакомимся с работой каждого из них.
Кривошипно-шатунный механизм. Этот механизм состоит из цилиндра, поршня, шатуна, коленчатого вала и маховика. Кривошипно-шатунный механизм воспринимает давление горящих газов, превращает прямолинейное движение поршня во вращательное движение коленчатого вала.
Цилиндр. Мотоциклы ИЖ-56, К-55, М-1-М имеют по одному цилиндру, установленному вертикально. Мотоциклы М-72, М-52 имеют по два цилиндра, расположенных горизонтально (рис. 23).
Рис. 23. Левый цилиндр двигателя мотоцикла М-72-Н.
Обычно цилиндр отливается из чугуна, иногда – из алюминия, но тогда для прочности в них вставляются чугунные гильзы. Такие цилиндры лучше охлаждаются и имеют меньший вес. У четырехтактных двигателей при боковом расположении клапанов имеется прилив, в котором расположены впускной и выпускной клапаны. Внутренняя часть цилиндра хорошо обработана. Она называется рабочей поверхностью, или зеркалом, цилиндра.
Головка цилиндра также делается из алюминия. Чтобы головка плотно присоединилась к цилиндру, – а это очень важно, так как в противном случае газы будут проходить через щель, – между ними поставлена прокладка – алюминиевая или асбестовая. Прокладка должна хорошо переносить высокую температуру.
В головке цилиндра двухтактного двигателя установлен декомпрессор (рис. 24).
Рис. 24. Цилиндр двухтактного двигателя М-1-М.
Он состоит из корпуса и клапана. Клапан при помощи пружины всегда держится в закрытом положении.
Клапан декомпрессора можно открыть. Для этого он соединен при помощи троса с рычагом, расположенным на руле. Достаточно нажать на рычаг, как усилия руки передадутся на трос, трос сожмет пружину декомпрессора и откроет клапан.
Для чего же нужен декомпрессор? Само название говорит о том, что он снижает «компрессию» – т. е. давление в конце сжатия. Когда клапан декомпрессора открыт, то сжатая горючая смесь через него выходит наружу.
А разве надо выпускать смесь наружу? Ведь в этом случае на воздух будет выбрасываться и часть горючего.
Да, в некоторых случаях это нужно и с расходом горючего не считаются. Это бывает тогда, когда перед пуском двигателя его нужно продуть. Дело в том, что при стоянке мотоцикла, а особенно в холодную погоду, в цилиндре и на свечах оседает масло. Кроме того, там могут быть остатки несгоревшего топлива.
Все это затрудняет запуск двигателя. Вот тогда-то и приходит на помощь декомпрессор. Когда открывается его клапан, масло и остатки несгоревшего топлива вместе со свежим зарядом горючей смеси вылетают наружу. Полость камеры сгорания очищается.
Поршень и кольца. Поршень играет важную роль в работе двигателя. Он воспринимает на себя давление газов и передает это давление коленчатому валу. У двухтактных двигателей, кроме того, он открывает и закрывает окна. Поршень движется с огромной скоростью, и каждый раз, когда он переходит нижнюю или верхнюю мертвую точку, возникают огромные силы инерции, которые вызывают усиленный износ деталей двигателя. Величина сил инерции зависит от скорости движения поршня и от его веса. Ясно, что надо как можно больше уменьшить эти силы.
Чтобы уменьшить скорость движения, надо снизить число оборотов. Но это невыгодно, так как тогда уменьшится мощность двигателя. Значит, необходимо снизить вес поршня. Поршни делают пустотелыми, как стакан, и, кроме того, из легкого алюминиевого сплава. Этот сплав хорошо отводит теплоту, что позволяет повышать степень сжатия.
Верхняя часть поршня называется головкой, а нижняя – юбкой (рис. 25).
Рис. 25. Поршень двигателя мотоцикла М-72.
Головка поршня имеет днище, которое воспринимает непосредственное давление газов. Днище может иметь разную форму – выпуклую, как у поршня двигателя К-55, ИЖ-56, или плоскую, как у поршня двигателя М-72. У некоторых двигателей, например мотороллера «Вятка» и мотоцикла М-52, днища поршней имеют более сложную форму.
Юбка поршня служит для направления его движения по цилиндру. У двухтактных двигателей она имеет вырезы для открывания окон. У мотоцикла ИЖ-56 на юбке имеется прорезь. При нагревании поршня прорезь предохраняет поршень от заедания в стенках цилиндра. Примерно на середине поршня сделаны два сквозных отверстия. Эти отверстия с внутренней стороны снабжены приливами. Отверстия с приливами называются бобышками.
В бобышки вставляется поршневый палец, соединяющий поршень с шатуном. Палец делается пустотелым – это облегчает его вес. Материалом для него служит мягкая сталь, которая хорошо переносит удары, не ломается. А чтобы палец не изнашивался быстро, поверхность его термически обрабатывается.
При работе двигателя палец поворачивается в бобышках и в верхней головке шатуна. Такое крепление называется плавающим. Специальные стопорные кольца удерживают палец и не дают ему выйти из бобышек. Цилиндр и поршень при работе двигателя нагреваются и расширяются. Чтобы не произошло заклинивания поршня в цилиндре, поршень вставляют в цилиндр так, что между ним и стенками цилиндра всегда имеется некоторый зазор. В верхней части поршня, которая больше нагревается, этот зазор больше, а в нижней – меньше.
Зазор неизбежен, но при такте сжатия смесь сможет пройти в него, давление в двигателе упадет, а это вызовет понижение мощности. От этого предохраняют специальные кольца – поршневые. Они сделаны из чугуна и вставлены в кольцевые канавки на головке поршня. Кольцо имеет разрез – замок. Когда кольцо наденут на поршень и вставят в цилиндр, оно плотно прижимается к его стенкам. Кольцо заполняет зазор между стенками цилиндра и поршнем и преграждает путь газам. Такие кольца называются компрессионными: они сохраняют компрессию – давление.
На поршне четырехтактного двигателя, кроме компрессионных, устанавливается маслосбрасывающее кольцо. Это кольцо при движении вниз снимает масло со стенки цилиндра. Это уменьшает образование нагара.
Устанавливая кольца на поршне, надо следить, чтобы замки их не находились на одной линии. Если замки окажутся на одной линии – образуется сквозной канал из зазоров, по которому газы могут свободно проходить из верхней части цилиндра в картер.
В двухтактных двигателях замки должны быть установлены так, чтобы они не совпадали с окнами; а чтобы они во время работы не могли повернуться и не сломались бы, их закрепляют штифтами.
Шатун. Усилие от поршня коленчатому валу передается через поршневый палец и шатун.
Шатун состоит из трех частей: верхней головки, тела и нижней головки. В отверстие верхней головки запрессована бронзовая втулка. В нее входит поршневый палец. Бронзовая втулка служит для уменьшения трения. Головка имеет отверстие для смазки.
Нижняя головка шатуна служит для соединения шатуна с коленчатым валом (рис. 26).
Рис. 26. Шатун с коленчатым валом двигателя мотоцикла М-1-М.
В ней находится роликовый или игольчатый подшипник. Головка имеет прорезь, через которую масло поступает для его смазки. Тело шатуна имеет двутавровое сечение, похожее на сечение железнодорожных рельсов.
Шатун всегда обращен своей узкой частью в сторону вращения. Это сделано не случайно. Дело в том, что в узкой части он имеет большее сопротивление, чем в широкой. Возьмите обыкновенную деревянную линейку. Попробуйте ее сломать. По широкой стороне вам это удастся сравнительно легко. Но если вы попытаетесь сломать ее по ребру, то вам придется приложить значительно большие усилия, прежде чем она переломится.
Коленчатый вал. Воспринимая на себя усилия, передаваемые от поршня, коленчатый вал передает их через силовую передачу на ведущее колесо. Коленчатый вал мотоциклетных двигателей изготовляют или вместе с маховиком, или отдельно от него.
Например, в двигателе мотоцикла М-1-М он сделан вместе с маховиками, а в М-72 отдельно от маховика (рис. 27).
Рис. 27. Шатун с коленчатым валом двигателя мотоцикла М-72.
Кроме маховика, к коленчатому валу двигателя М-1-М относятся две коренные и одна шатунная шейки.
Шатунная шейка и два маховика (щеки) образуют колено, или кривошип вала.
Коренные шейки вращаются на шариковых подшипниках. На коренных шейках установлены два сальника, которые задерживают масло в картере и в двухтактном двигателе создают герметичность картера.
У двигателей с одним цилиндром коленчатый вал имеет одно колено.
Две коренные и две шатунные шейки коленчатого вала мотоцикла М-72 соединены между собой щеками. На крайних щеках вала имеются противовесы. Этот вал имеет два колена: двигатель имеет два цилиндра. На одном конце вала насажен маховик.
Коленчатый вал двигателя делает до 5000 оборотов в минуту. При такой скорости вращения в нем возникают большие центробежные силы. Достаточно излишка металла в несколько граммов на какой-нибудь щеке, как под влиянием центробежной силы он превращается в килограммы. Центробежные силы стремятся сдвинуть вал в сторону. Вал с силой давит на коренные подшипники, вызывая их усиленный износ. Надо нейтрализовать вредное действие центробежной силы. Для этого коленчатый вал М-72 снабжен противовесами.
Центробежные силы, возникающие при вращении коленчатого вала и щек, равны, но направлены в противоположные стороны. Силы уравновешивают друг друга и разгружают подшипники.
Картер. Картер служит основанием для механизмов. Кроме того, картер защищает внутренние части двигателя от загрязнения (рис. 28 и 29).
Рис. 28. Картер двигателя мотоцикла М-1-М.
Рис. 29. Картер двигателя мотоцикла М-72.
У четырехтактных двигателей в картере помещается масло для смазки двигателя, а в двухтактных находится горючая смесь, поступающая из карбюратора. Картеры изготовляются из алюминиевых сплавов. На мотоциклетных двигателях картеры бывают «сухие» и «мокрые». Есть двигатели, у которых основное количество масла хранится в масляном баке. Такие двигатели называются двигателями с сухим картером. У других двигателей в картерах помещается все масло, необходимое для смазки двигателя. Это двигатели с мокрыми картерами.
Устройство картеров тоже неодинаково. Бывают картеры разъемные и неразъемные. Картер мотоцикла М-1-М относится к типу разъемных. Он состоит из двух половинок, между которыми помещается прокладка. Половинки картера соединяются болтами.