Текст книги "Вездесущие гормоны"
Автор книги: Игорь Кветной
сообщить о нарушении
Текущая страница: 5 (всего у книги 16 страниц)
Где еще есть мелатонин?
Последующие исследования, проведенные в нашей лаборатории, показали, что мелатонинпродуцирующие клетки есть и в других органах: печени, почках, поджелудочной железе, надпочечниках, вилочковой железе, симпатических ганглиях и т. п. Интересные данные были получены В. Гуляевым и Р. Манохиной. Они установили присутствие мелатонина и некоторых других гормонов (серотонина, гистамина, инсулина, катехоламинов) в эндотелиальных клетках сосудов. Обнаружение мелатонина и других химически активных веществ в стенке сосудов является отражением существования местного механизма непосредственного изменения концентрации гормонов в кровеносном русле конкретного органа. Такой механизм физиологически оправдан. Посредством его обеспечивается необходимое биологическое действие гормонов в кратчайший срок именно на те функциональные звенья, включение которых необходимо в определенной сложившейся ситуации. Особое значение имеет исследование физиологической роли гормонов, синтезирующихся в клетках сосудов в условиях воздействия ионизирующей радиации и развития в организме опухолей. И в том и в другом случаях сосуды являются тем звеном, которое играет далеко не последнюю роль и в реализации лучевого воздействия, и в развитии опухолевого процесса. Раджи биологам и онкологам хорошо известно, что именно нарушение сосудистой проницаемости значительно отягощает течение лучевой болезни, а распространение клеток первичной опухоли по сосудам вместе с током крови (метастазирование) приводит к смертельному исходу у значительной части онкологических больных. Проведенная нашими сотрудниками оценка поведения эндотелиальных клеток, вырабатывающих мелатонин и другие гормоны при лучевом поражении и опухолевом росте, дает основы для разработки возможных способов повышения эффективности лучевой и химиотерапии злокачественных новообразований.
Использование современных методов исследования позволило установить еще ряд положений, интересных с позиций дальнейшего изучения их в онкологий и радиологии. Так, В. Южаков установил присутствие мелатонина в так называемых тучных клетках. Эти клетки известны давно. Они были названы П. Эрлихом по их внешнему виду, поскольку очень похожи на набухшие шары. Электронная микроскопия показала, что их форма обусловлена большим количеством секреторных гранул, изнутри распирающих клетку. Тучные клетки определяются практически в каждом органе. В содержащихся в них гранулах находят разнообразные химические вещества. После описанных исследований теперь известно, что в них синтезируется и мелатонин. Дальнейшие эксперименты показали: введенные извне серотонин и мелатонин очень быстро накапливаются именно в тучных клетках, которые в дальнейшем разносят их по организму. Таким образом, роль тучных клеток заключается в захвате гормонов и других биологически активных веществ из окружающей ткани для последующего транспорта к месту назначения в зависимости от сложившейся конкретной ситуации. Учитывая, что серотонин и мелатонин обладают радиозащитными свойствами, дальнейшее изучение гормональной функции тучных клеток открывает определенные перспективы для оценки возможности целенаправленного управления радиочувствительностью органов через эти клеточные элементы.
Уже упоминавшийся нами канадский ученый Г. Бубеник не только подтвердил наши данные о синтезе мелатонина в желудочно-кишечном тракте, но и провел серию тонких экспериментов, которые позволили ему впервые определить наличие мелатонина в сетчатке глаза. Эти данные представляют довольно большой интерес, потому что ритм образования мелатонина неодинаков ночью и днем и зависит от освещенности. Ночью и в условиях искусственной темноты его синтезируется гораздо больше, чем днем и на свету. Кроме того, оказывается, если в сетчатке мелатонин не вырабатывается, глаз не способен различать цвета. Работы Бубеника подтвердили наличие функциональных связей между сетчаткой глаза и эпифизом.
Это тем более значимо и интересно, если учесть, что аминокислота триптофан, служащая сырьем для образования серотонина и мелатонина, при расщеплении у насекомых образует полуфабрикаты для синтеза пигментов глаза. Кроме того, палеонтологические и сравнительно-биологические исследования доказали, что эпифиз аналогичен непарному теменному глазу, присутствующему и сейчас у некоторых круглоротых и пресмыкающихся. Ученые установили, что первоначально на ранних этапах эволюции теменные глаза появились тоже парой, как и обычные боковые. В дальнейшем по мере изменения условий существования и возникновения у млекопитающих более сложных движений, боковое расположение глаз становилось более удобным, и примитивные теменные глаза, оказавшись лишними, видоизменились. Один из них и превратился в эпифиз, который и поныне является обязательной частью организма высших млекопитающих и человека. Возможно, способность теменного глаза (то есть эпифиза) к синтезу триптофана, из которого в одном случае образуется мелатонин, а в другом пигменты зрения, лежит в основе происхождения, эволюции и функции эпифиза (в определенных случаях как органа свето– и цветоощущения, в других – как гормональной железы).
Неожиданное подтверждение роли мелатонина, вырабатываемого сетчаткой глаза, в формировании цветоощущения принесли исследования канадского ученого Г. Вохлфарта. Он установил, что цвет и освещение одинаково действуют как на зрячих, так и на слепых (!) людей. Красный цвет возбуждает, голубой успокаивает. Это действие проявляется у тех и других однотипными изменениями кровяного давления и частоты дыхания. В одной из школ в Эдмонтоне по просьбе Вохлфарта перекрасили стены из оранжевого в голубой цвет и заменили люминесцентное освещение обычными лампами накаливания. Спустя некоторое время и у зрячих, и у слепых учащихся кровяное давление снизилось на 17 процентов. Опыты на крысах показали, что электромагнитная энергия света через мелатонин сетчатки глаза действует на синтез нейропептидов в головном мозге, усиливая выработку веществ, снижающих артериальное давление.
Исследования Вохлфарта уже повлекли за собой практические мероприятия: лондонский мост Блэк Фриар, печально знаменитый как "мост самоубийц", перекрасили в голубой цвет, в США в красный цвет окрашивают спортивные арены, автострады, интерьеры ресторанов, в голубой – стены помещений, в которых проходят политические митинги и дискуссии.
Мелатонин является универсальным регулятором биологических ритмов
Журнал «Ньюсуик» в 1985 году опубликовал интересную статью об эпифизе как о своеобразных биологических часах, пружиной которых служит чередование света и темноты. В ней рассказывается об исследованиях американских ученых. Так, Дж. Брейнард считает, что причиной воздействия света на психическое состояние является расстройство деятельности мелатонина. Брейнард и его коллеги из медицинского колледжа имени Т. Джефферсона в Филадельфии показали, что увеличение продукции мелатонина осенью и зимой, когда день намного короче ночи, вызывает у людей апатию, легкую депрессию, упадок сил, снижение внимательности, замедление реакций. А. Леви рекомендует больным, страдающим депрессией, для уменьшения синтеза мелатонина проводить некоторое время по утрам при ярком свете. Н. Розенталь вылечивал депрессию, помещая больных на несколько часов утром и вечером перед лампами, свет которых по спектру близок к солнечному.
Мелатонин, по-видимому, действительно является универсальным регулятором биологических ритмов. Английские ученые создали лекарство на основе вещества, полученного из мелатонина, предотвращающее нарушения биоритмов, возникающие у 78 процентов летчиков и пассажиров при перелете через 3 часовых пояса из Нью-Йорка в Лондон. Это лекарство оказывает лечебный эффект и при уже происшедших нарушениях биоритмов.
Мелатонин – гормон сна?!
Одним из частных нарушений суточного ритма является бессонница. Человек при этом испытывает не только тягостные неприятные субъективные ощущения. Наступает так называемый десинхроноз – тяжелое болезненное состояние, характеризующееся утомляемостью, нервозностью, сердцебиением и другими патологическими проявлениями. Поиски эффективных методов лечения нарушений сна и бодрствования продолжаются уже несколько веков. Различные способы базируются на разных теоретических подходах к выяснению природы сна – важнейшего биологического процесса (ведь из 60 лет жизни человек в среднем спит 20 лет, из них 5 лет проводит в сновидениях). Зачем нужен сон, в той или иной мере известно всем – для восстановления сил, отдыха организма. Подчеркнем – отдыха активного: во сне совершаются важные физиологические и психологические процессы. Создатель кибернетики Н. Винер писал: «…наилучший способ избавиться от тяжелого беспокойства или умственной путаницы – переспать их».
Существует немало теорий сна. В последние годы большое внимание ученых привлекает химическая теория. Ее сторонники считают, что наступление и продолжительность сна во многом зависят от выработки в головном мозге определенных "субстанций сна", обеспечивающих данный физиологический процесс. Действительно, существует достаточно много убедительных данных, свидетельствующих об этом. Так, из спинномозговой жидкости больных, страдающих нарколепсией – патологической сонливостью, экстрагировано вещество, вызывающее сон у животных. Экстракт мозга животных, находящихся в состоянии зимней спячки, при введении его кошкам и собакам вызывал у них сонное состояние. Швейцарский нейрофизиолог А. Монье в 1965 году провел эксперимент: он наладил перекрестное кровообращение у двух собак таким образом, что кровь от мозга одной оттекала в туловище другой и наоборот. У одной из собак вызывали сон электрическим раздражением определенных отделов мозга, и, хотя нервных связей между собаками не было, вторая тоже засыпала. Монье убедительно объяснял этот эффект переносом какого-то вещества, вызывающего сон.
Совсем недавно пристальный интерес специалистов стал вызывать так называемый "быстрый сон" – особый тип сна, занимающий у взрослого человека 20-22 процента от общего времени сна со средней продолжительностью одного цикла 70-90 минут. Фаза быстрого сна – период активной психоэмоциональной деятельности мозга. Ученые установили, что сновидения посещают человека только во время быстрого сна; при этом они, как правило, насыщены эмоциональной окраской. У творческих личностей во время быстрого сна могут наступать "озарения". Д. Менделеев во сне ясно увидел построение периодической таблицы элементов, Лафонтен во сне сочинил басню "Два голубя", Вольтер – первый вариант "Генриады", А. Пушкин стихи "Пророк" и "Лицинию". А. Грибоедов во время сна составил план комедии "Горе от ума" и написал несколько сцен первого акта, Бетховен сочинил канон, а Шуман вскакивал по ночам и спешил записать мелодии, уверяя домашних, что ему их дали явившиеся во сне Шуберт и Мендельсон. Музыкальные образы "Снегурочки" приходили Н. Римскому-Корсакову во сне, спящему Вагнеру пригрезилась увертюра "Золотой Рейн", а Рафаэль во сне увидел образ своей знаменитой Мадонны. Эти примеры далеко не единичны.
Три западногерманских ученых, Л. Воллратх, П. Семм и Г. Гэммел, на добровольцах установили, что закапывание в нос нескольких капель 0,85-процентного раствора мелатонина вызывает глубокий сон длительностью 70-100 минут у 70 процентов людей
Быстрый сон к тому же характеризуется «вегетативной бурей» – у человека снижается тонус мышц, возникают подергивания конечностей, гримасы, быстрые движения глаз. Учащается дыхание и сердцебиение, повышается артериальное давление. Что же лежит в основе быстрого сна? Специалисты считают, что выработка неизвестного гипотетического вещества. Предпринимаются попытки идентифицировать это вещество, и в последние годы все большие и большие подозрения надают на мелатонин. Какие же улики имеются против него? Проведем настоящий юридический анализ.
Прежде всего главный вопрос: может ли мелатонин вызывать сон? Да, может. Три западногерманских ученых, Л. Воллратх, П. Семм и Г. Гэммел, на добровольцах установили, что закапывание в нос нескольких капель 0,85-процентного раствора мелатонина вызывает глубокий сон длительностью 70-100 минут у 70 процентов людей.
Вопрос второй: совпадает ли длительность фазы быстрого сна с фармакологическим действием мелатонина? Совпадает. Вспомним, быстрый сон продолжается 70-90 минут. Итак, основания для привлечения мелатонина к ответственности по делу о быстром сне имеются. Перейдем к дополнительным доказательствам. Быстрый сон, как правило, наступает три-четыре раза за ночь. Известно, что концентрация мелатонина в организме ночью резко возрастает, но она неодинакова, колеблется с тремя-четырьмя пиками в течение ночи. Кроме того, "вегетативная буря", характеризующая быстрый сон, может во многом объясняться физиологическим действием самого мелатонина и его основного предшественника – серотонина. Составные ее компоненты хорошо укладываются в картину известного клиницистам "карциноидного синдрома", возникающего у больных при гиперсекреции этих гормонов.
Ну как тут уйти мелатонину от ответственности? Да еще в XIX веке немецкий невропатолог Г. Штрюмпель, не зная о существовании этого вещества, уже нашел против него косвенную улику: он наблюдал мальчика, который был слеп на один глаз. Закрывание зрячего глаза повергало его в сон (вспомните связь сетчатки с эпифизом и увеличение выработки мелатонина при отсутствии световых импульсов). Так что обвинительное заключение по данному делу для мелатонина вполне готово, правда, здесь не обошлось без курьеза.
В 1982 году в 126-м томе "Журнала канадской медицинской ассоциации" появилась статья известного физиолога из Осло О. Иверсена "Вольволон – недавно открытый пептидный гормон эпифиза". Не пересказывая содержания этой занимательной статьи (интересующийся читатель может найти ее русский перевод в журнале "Природа", 1983, № 4, с. 124), отметим только, что она полна тонкого остроумия и хорошо передает атмосферу запутанности поисков "гормонов сна", сложившуюся в этой области исследований. Иверсен недаром опубликовал ее в первоапрельском выпуске журнала, чтобы даже у самого неискушенного читателя не возникло сомнений в том, что это – шутка, розыгрыш, пародия. Однако произошел курьез, который, к сожалению, не свидетельствует о высокой научной зрелости референтов некоторых информационных изданий: в ряде реферативных журналов появились вполне серьезные (без всякой тени юмора), со ссылкой на работу Иверсена, сообщения о том, что наконец-то открыт специальный гормон сна – вольволон. Автору пришлось опровергать эту информацию, а его друзья и коллеги вместе с ним, надо полагать, провели немало веселых минут в обсуждении удавшейся первоапрельской шутки.
Опухоли и мелатоник: новые идеи
Являясь универсальным регулятором биологических ритмов, мелатонин, естественно, контролирует течение многих физиологических процессов. Однако наиболее интересной и, на наш взгляд, важной является его способность снижать скорость и уровень пролиферации клеток, то есть их деления, роста, развития и дифференцировки. В эксперименте было замечено, что мелатонин обладает антиопухолевым действием. В литературе имеются сообщения о снижении темпов роста опухолей под действием искусственной темноты, что связано с возрастанием продукции мелатонина в организме. Наши исследования показали, что на ранних стадиях развития опухолей концентрация мелатонина в сыворотке крови онкологических больных возрастает в 1,5-2 раза по сравнению с нормой, резко снижаясь при метастазировании опухолей. И. Левин установил также, что при раковых опухолях у больных изменяется уровень суточной экскреции мелатонина. Наряду с другими клиническими и лабораторными данными эти тесты могут служить дополнительным информативным признаком для своевременной диагностики опухолей.
Недавно была обнаружена еще одна неожиданная особенность злокачественных опухолей. Сотрудница Куйбышевского медицинского института имени Д. И. Ульянова Г. Дейнеко показала, что примерно одна треть раковых опухолей содержит клетки, синтезирующие различные биогенные амины и пептидные гормоны (в том числе и мелатонин) внутри новообразований. Как правило, опухоли, содержащие мелатонин, растут медленнее и клинически протекают более доброкачественно. Возможно, это проявление самозащиты организма от дальнейшего прогрессирования опухолевого процесса. Появились идеи "прицепить" к антителам против мелатонина цитостатические антиопухолевые препараты с тем, чтобы при введении в организм они накапливались в опухолевых клетках и уничтожали их. Теоретически такие перспективы очень заманчивы. Будущее покажет возможность их реализации.
Но уже сейчас на основе изучения способности мелатонина блокировать рост опухолей ленинградские ученые В. Анисимов, В. Морозов и В. Хавинсон создали препарат из ткани эпифизов крупного рогатого скота – "эпифизан", который при испытании замедлял рост экспериментальных опухолей. Эти данные вызывают большой интерес у онкологов, так как благодаря им появляется возможность целенаправленной регуляции процессов клеточного деления и дифференцировки, нарушение которых лежит в основе опухолевого роста. Онкологический аспект изучения физиологической роли мелатонина – увлекательная и многообещающая область современных исследований.
Заманчивые перспективы
А теперь давайте помечтаем… Тем более что роль эпифиза до конца не разгадана. Есть еще одна (может быть, самая важная) его загадка. Связана она с гипоталамусом – центральным органом управления эндокринной системой. Ученые установили, что на протяжении жизни активность его нарастает (это генетически запрограммировано). По современным представлениям, процессы старения, возрастные серьезные сердечно-сосудистые расстройства, опухолевый рост и даже сама биологическая смерть – результат достижения гипоталамусом определенного порога своей активности. Известный советский патолог академик И. Давыдовский в одной из своих работ даже писал: «…в принципе каждый человек когда-либо должен был бы умереть от рака, однако просто не все доживают до своего рака». Математический анализ показал, что активность гипоталамуса могла бы достичь своих критических (губительных для организма) величин не к 70 и более годам, а гораздо раньше. Что же противодействует ей в организме? Где расположены часы, отсчитывающие, образно говоря, продолжительность человеческого существования? Высказывается предположение, что… в эпифизе. Да, именно в этом маленьком органе… Биохимики показали, что в нем синтезируется новый гормон, названный антигипоталамическим фактором. Существование этого вещества подтверждают и косвенные данные: у детей, в эпифизах которых есть опухоли, разрушающие истинные клетки этой железы и замещающие их опухолевыми, что ведет к уменьшению функциональной активности эпифиза, происходит преждевременное старение.
Так давайте же помечтаем о том, чтобы ученые смогли выделить антигипоталамический фактор в чистом виде и синтезировать его. Профессор А. Хелимский в связи с этим справедливо пишет, что "в умелых руках эндокринолога он может оказаться одним из самых мощных средств воздействия на грозных врагов человечества! гипертонию, старость, рак, смерть".
…Вот вам и "еловая шишка". Недаром говорят, мал, да удал. Нам кажется, что почти фантастическая история разгадки эпифиза не закончена. Поиски продолжаются…
На этом можно было поставить точку, но как будто чувствуя, что эпифиз, подобно знаменитому лунному камню будет своим сиянием постоянно приковывать внимание исследователей, заставляя их идти все дальше и дальше в познании его тайн, мы поставили многоточие. Почта, пришедшая на следующий день после написания этой главы, подтвердила наше предчувствие. В пакете с марками и штемпелями США лежали проспекты нового международного журнала "Исследования эпифиза" и ежегодных сборников под таким же названием.
Главный редактор изданий профессор Рассел Рейтер из Научного центра по изучению здоровья в университете штата Техас – авторитетный специалист в этой области, сообщая о создании журнала, писал, что предпосылкой является растущий в последние годы интерес к эпифизу и той огромной роли, которую он играет в жизни живых существ. Действительно, перечень имен авторов и членов редколлегии, а также названий работ показывает, насколько велико внимание ученых к маленькой железе.
Будут ли разгаданы все тайны "еловой шишки"? И сколько их вообще? Хочется надеяться, что у этой истории наступит счастливый конец, тайное станет явным, а "диспетчер жизни" с помощью познавших его людей будет успешно осуществлять сложную функцию главного регулятора биологических ритмов.