412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Игорь Кветной » Вездесущие гормоны » Текст книги (страница 11)
Вездесущие гормоны
  • Текст добавлен: 29 сентября 2016, 01:17

Текст книги "Вездесущие гормоны"


Автор книги: Игорь Кветной


Жанры:

   

Медицина

,

сообщить о нарушении

Текущая страница: 11 (всего у книги 16 страниц)

Сердечные тайны

Есть в организме человека орган, пользующийся особым вниманием. Это наш «вечный двигатель» сердце. Именно оно – источник жизни, с ним олицетворяют чувства, характер, его состоянием определяют помыслы, мечты, стремления. Да и вообще вся жизнь людей в длинной многовековой истории человеческого общества издавна связывалась с сердцем. Когда мы говорим «добросердечный человек», «легко или тяжело на сердце», «сердцем почувствовал», мы уже тем самым выделяем сердце из общего перечня всех органов и отводим ему особое место в нашей жизни.

Если подходить формально и считать, что сердце, как впервые в 1628 году написал древнеримский врач и анатом В. Гарвей, не что иное, как насос, перекачивающий кровь, то даже эта его функция уже настолько важна и уникальна, что дает право относиться к нему с должным уважением.

Работая без устали, сердце в течение всей жизни перекачивает кровь и днем и ночью. Почему оно не устает и не останавливается? Откуда оно знает, с какой скоростью сокращаться и когда менять свой ритм? Что заставляет его поддерживать общий объем циркулирующей крови равномерно в артериальном и венозном руслах? Таких вопросов можно задать десятки.

До 50-х годов нашего столетия ответ на все вопросы был однозначен: регуляция деятельности сердца осуществляется нервно-рефлекторными механизмами. И это правда. Но только ли ими? И все ли проявления сердечной деятельности контролируются нервной системой? Ведь, например, для поддержания кровяного давления на строго определенном уровне необходимо участие, наряду с внутренними механизмами самого сердца, и клеток надпочечника и канальцевого аппарата почек. Но ведь трудно даже представить существование такой сложной (и просто длинной!) рефлекторной дуги, которая бы замыкала сердце через надпочечники с почками. Сама собой напрашивалась гипотеза о существовании в сердце какого-то химического фактора, участвующего в регуляции объема циркулирующей крови, давления крови, выведении из организма натрия, калия и воды. Косвенно об этом свидетельствовал и факт увеличения выведения из организма натрия и воды при растяжении верхних отделов сердца у экспериментальных животных.

Если химический фактор, обладающий биологической активностью, в сердце существует, то где он может находиться? Подозрение стали вызывать описанные в 60-х годах нашего века американцами Б. Кишем, Дж. Джеминсоном и Дж. Паладе электронно-плотные гранулы в мышечных клетках предсердий, очень похожие на секреторные гранулы эндокринных клеток. И действительно, при проведении тщательных сравнительных исследований в 1974 году группа канадских ученых из университета в Монреале во главе с M. Кантеном и Ж. Жене установила структурное сходство этих гранул с эндокринными гранулами апудоцитов гипофиза и поджелудочной железы.

Если химический фактор, обладающий биологической активностью, в сердце существует, то где он может находиться?

Проведенные авторадиографические исследования с введением в организм животных меченых аминокислот позволили установить пептидную природу этих гранул. Не имея подходов к прямой идентификации пептидного гормона, синтезируемого в гранулах предсердий, исследователи предприняли «обходной маневр» – решили посмотреть, существует ли зависимость между изменением количества секреторных гранул в миокардиальных клетках и такими важными физиологическими процессами для саморегуляции деятельности сердца, как выведение из организма воды и натрия. Эксперименты подтвердили такую связь: сотрудник Парижского университета П. Атт в 1976 году обнаружил увеличение количества гранул в мышечных клетках сердца при гипонатриевой диете животных, а в 1981 году в Королевском университете Кингстона (Канада) А. де Болд и X. Зонненберг установили быстрое, кратковременное, но значительное увеличение диуреза (выведения жидкости из организма) и натрийуреза у крыс с введенным гомогенатом предсердий других крыс. Пептидный фактор, содержащийся в гомогекате, решили назвать предсердным натрийурическим фактором (ПНФ). Таким образом, впервые появились основания считать сердце эндокринным органом. Уже упоминавшиеся нами Марк Кантен и Жак Жене так и назвали свою статью о ПНФ, опубликованную в журнале «Scientific American», «Сердце – эндокринная железа».

Познакомившись накоротке с новым гормоном, ученые решили детально разобраться с его родословной и способностями. В июне 1983 года M. Каитен, Ж. Жене и Р. Натт сумели выделить, очистить и впоследствии синтезировать ПНФ. Он оказался полипептидом, состоящим из 28 аминокислотных остатков. Совсем недавно был идентифицирован геи, кодирующий синтез ПНФ, налажен биотехнологический выпуск этого гормона и моноклональных антител к нему. Получение специфических антител к ПНФ дало возможность в короткие сроки изучить распределение ПНФ в организме человека и животных и оценить его биологические эффекты.

Клетки, вырабатывающие ПНФ, не являются истинно эндокринными. Это – кардиомиоциты (мышечные клетки предсердий), которые в процессе своего развития приобрели специфическую функцию эндокринных клеток – способность синтезировать гормоны. Подобные кардиомиоциты – не единственный и далеко не уникальный пример клеток-сфинксов, или, как их еще называют, клеток-химер, сочетающих одновременно структурные и функциональные черты клеток различных тканевых типов. Мы уже упоминали о том, что способность к синтезу гормонов присуща и остеобластам (костным клеткам), и гепатоцитам – клеткам печени, и некоторым клеткам крови – моноцитам, тромбоцитам, эозинофилам, лимфоцитам. Это не случайно. Тем самым проявляются ауторегуляторные свойства клеточных структур – заложенный природой механизм их быстрой (иногда моментальной) адаптации к изменяющимся условиям существования. Кардиомиоциты, синтезирующие ПНФ, – прекрасный пример проявления природой той функциональной разумности, которая не перестает поражать ученых и конструкторов. Признавая это, они создали особую науку – бионику, разрабатывающую технологические механизмы на основе устройства и функционирования биологических систем.

Саморегуляция работы сердца – "вечного двигателя" человеческого организма, далеко еще не познана. Во многих странах и лабораториях группы различных специалистов разгадывают его тайны. Настойчивость и целеустремленный поиск способствуют успеху. Открытие ПНФ – еще один важный этап в этом неустанном поиске.

Итак, ПНФ находится в секреторных гранулах мышечных клеток предсердий. Обладая важными биологическими свойствами – способностью менять ритм деятельности сердца через иоино-натриевые механизмы, которые, в свою очередь, включают целую цепь обменных процессов, он, как верный страж порядка в организме, готов в любую минуту по первому зову прийти на помощь. Что же служит сигналом к его выбросу в кровь и началу его деятельности? Пусковым фактором, как установили ученые, является растяжение кардиомиоцитов. Как только увеличивается объем циркулирующей крови в силу различных причин (например, при физических нагрузках, эмоциональных переживаниях – прилив крови при волнениях, родовой деятельности и т. п.), сразу увеличивается концентрация ПНФ в крови. Причем это повышение довольно значительно. Так, у экспериментальных животных при создании стрессорной ситуации уровень ПНФ возрастает в 10-20 раз, у больных сердечными пороками с увеличенным объемом циркулирующей крови концентрация ПНФ в крови повышается в 6-8 раз.

Увеличение содержания ПНФ сразу же влечет за собой уменьшение концентрации натрия в содержимом почечных канальцев, что, в свою очередь, стимулирует выработку почками особого гормона – ренина, который ответственен за изменение уровня артериального давления. Патология выработки ренина лежит в основе многих форм гипертонической болезни, особенно развившейся в молодом возрасте. Кардиомиоциты, регулируя выработку ПНФ, "следят" за изменением концентрации ренина и тем самым контролируют уровень артериального давления в организме.

ПНФ также определяет тонус сосудистой стенки, участвует в процессах изменения калибра сосудов путем влияния на мышечную стенку артерий и вен. И если добавить, что ПНФ действует на процессы переноса кальция на мембраны кардиомиоцитов, которые лежат в основе возбудимости и сократимости миокарда, то становится очевидным, что именно ПНФ является универсальным регулятором всех проявлений сердечной деятельности. Как раз этим объясняется такой повышенный интерес к данному гормону, наблюдаемый сейчас не только среди теоретиков, но и среди клиницистов-кардиологов. Он уже находит выход в практику.

В последние годы ведутся обширные исследования по изучению возможности применения ПНФ в качестве лекарственного средства для лечения различных заболеваний сердца. Так, имеются данные о хорошем терапевтическом эффекте ПНФ при гипертонии, застойной сердечной недостаточности, нарушениях ритма сердца после перенесенных инфекций и инфаркта миокарда.

ПНФ способен связываться с различными структурными элементами ресничного тела глаза и принимает непосредственное участие в регуляции внутриглазного давления. Это открывает новые методические возможности в успешном лечении такого тяжелого и распространенного заболевания, как глаукома, которая ежегодно приводит к слепоте десятки тысяч человек.

Поскольку ПНФ существенно влияет на выделение солей и воды почками, в последние годы начали изучать возможность его применения у больных с соответствующей патологией.

Поиск ведется, но существует еще много препятствий на пути создания лекарственных препаратов на основе ПНФ. Пока еще неизвестны все факторы, вызывающие выброс ПНФ из кардиомиоцитов, неясны механизмы воздействия ПНФ на почечные канальцы. К сожалению, пока еще не разработаны надежные методы получения аналогов ПНФ, способных избирательно связываться с теми или иными структурами, что крайне необходимо для прицельного лечения различных заболеваний. Эти вопросы требуют своего выяснения. И здесь есть все основания для оптимизма. Ведь решение подобных частных проблем гораздо проще, чем установление фактов о наличии ПНФ (предсердного натрийурического фактора) и его локализации.

Можно надеяться, что к концу XX столетия медицина получит новые мощные кардиотропные лекарственные препараты, которые будут успешно применяться при лечении различных заболеваний.

Так история с загадочным незнакомцем ПНФ опять подтверждает революционизирующую роль эндокринологии в современной биологии и медицине.

С «убийц» срывается маска

Органы кроветворения (селезенка, костный мозг) и сама кровь очень богаты различными клеточными элементами. Это и эритроциты – красные кровяные тельца, переносящие кислород, и лейкоциты, с которыми связана антимикробная функция крови, и лимфоциты – особые клетки, защищающие организм от любого чужеродного влияния.

Среди лимфоцитов в середине семидесятых годов нашего столетия были обнаружены клетки, в цитоплазме которых содержалось большое количество секреторных, гранул (их так и назвали – большие гранулярные лейкоциты – БГЛ). БГЛ обладали удивительной, только им присущей функцией – они убивали опухолевые клетки. Достаточно было к культуре опухолевых клеток прилить взвесь БГЛ, как опухолевые клетки погибали. Причем, что интересно, БГЛ не обладали видовой специфичностью и действовали на клетки любых опухолей. Например, мышиные БГЛ убивали опухолевые клетки и у подобных им животных, и у крыс, кроликов, собак и т. д. Ученые были ошеломлены установленным фактом и назвали эти клетки естественными киллерами (от английского слова killer – убийца). С тех пор интерес к киллерам растет день ото дня, количество опытов по изучению их противоопухолевых свойств, проведенных в различных вариантах, не поддается подсчету, и какие бы модификации экспериментов ученые ни придумывали, киллеры всегда убивают опухолевые клетки. Казалось бы, все – наконец-то найден путь к успешному излечению рака – вводи взвесь киллеров в опухоль, и она рассосется! Увы, нет. В жизни все посложнее, чем в сказке, и те же волшебники-киллеры, побеждающие раковые клетки-злодеи, успешно сражались с ними только в культуре тканей, а в живом организме работали гораздо хуже. Что же мешает им действовать в живом организме? Какие механизмы надо выключить (или включить), чтобы сделать их такими же активными, как в условиях лабораторного эксперимента?

Для ответа на этот вопрос нужно найти разгадку другого: за счет чего киллеры поражают опухоль? В этих двух направлениях ученые и устремили свои поиски. Пройден большой путь. За короткий срок уже расшифровано их строение, описаны различные их типы, всесторонне изучены их биохимические свойства, найдены специфические протеолитические ферменты, способствующие расплавлению мембраны опухолевых клеток и оголяющие их. Опухолевые клетки тем самым становятся доступными воздействию активных противоопухолевых факторов киллеров.

Но свою главную загадку киллеры хранят строго. Что же это за активный фактор, так чудесно побеждающий опухоль? Его истинного лица пока никто не знает. Оно в маске. Несмотря на энергичные попытки, ученые сорвать ее не смогли, но заглянуть под нее все-таки удалось.

Помните, мы писали, что в киллерах есть секреторные гранулы? Это свойство и отличает их от других лимфоцитов. Но ведь случайного ничего не бывает. Если есть гранулы, значит, в них что-то хранится? А если в гранулах содержится какое-то вещество, следовательно, оно необходимо для выполнения какой-то функции? Эту абстрактную последовательность вопросов мы конкретизировали применительно к антиопухолевым свойствам киллеров. Проблема, требующая своего разрешения, зазвучала так: не содержится ли в секреторных гранулах какое-то биологически активное вещество, которое действует на опухоль разрушающе?

Постановка такого вопроса оказалась настолько серьезной, что требовала отложить все дела и взяться за ее разрешение. И группа сотрудников Института медицинской радиологии АМН СССР решила попробовать приоткрыть лицо киллеров, спрятанное под таинственной маской. Хотя маска тщательно скрывала его, что-то неуловимо знакомое угадывалось в общих очертаниях скрытого лика. Что же? Чем дольше и внимательнее смотрели мы на фотографии "убийц", тем меньше и меньше оставалось сомнений в том, что "родимые пятна" киллеров – гранулы – очень похожи на гранулы эндокринных клеток – апудоцитов. Возражения некоторых исследователей (они считали их лизосомами – особыми клеточными структурами, содержащими ферменты, переваривающие чужеродные частицы, попавшие в клетку) были поколеблены тем, что специфическая электронно-микроскопическая реакция (так называемый уранафинный метод), характерная для гранул эндокринной природы, оказалась положительной по отношению к гранулам киллеров. А тут появилась и дополнительная улика – японские ученые И. Тсутсуми и И. Шиода в 1984 году сообщили о том, что специфический маркер естественных киллеров – антиген Leu-7 положительно реагирует и с мембранами эндокринных клеток. Оставалось подтвердить возникшее подозрение. Что мы и сделали.

С убийцсрывается маска

Из крови людей особым способом была выделена фракция естественных киллеров. На этой фракции была проведена иммуногистохимическая реакция с использованием специфических антисывороток против различных 17 гормонов. Реакция оказалась положительной в трех случаях: с антисыворотками против серотонина, мелатонина и β-эндорфина. В остальных 14 случаях она была отрицательной. Таким образом, впервые был установлен принципиально новый научный факт – естественные киллеры способны синтезировать гормоны.

Электронно-микроскопические исследования показали, что эти гормоны содержатся именно в секреторных гранулах. Воодушевленные успехом, исследователи решили Попытаться ответить на второй вопрос: связана ли выработка серотонина, мелатонина и β-эндорфина в гранулах киллеров с их цитотоксическими антиопухолевыми свойствами?

В последующих экспериментах определилось наличие прямой связи между действием киллеров на опухолевые клетки и синтезом гормонов в их гранулах. При слиянии клеток-киллеров с опухолевыми клетками на электронно-микроскопическом уровне было видно, как гранулы проходили через мембрану киллеров и внедрялись в опухолевые клетки, вслед за чем наступала деструкция последних.

Несмотря на интересные данные, полученные в ходе экспериментов, успех нельзя считать полным. Это только хорошее предисловие, пролог к основным действиям, которые могут разыграться очень успешно, если их продуманно и правильно поставить. Теперь все зависит от режиссеров и актеров, труппа должна быть сильной и разносторонней. Дело в том, что хотя серотонину, мелатонину и β-эндорфину присущи довольно выраженные антиопухолевые свойства, однако несомненно, что противоопухолевый эффект действия естественных киллеров не связан только с ними. Ведь и до этого изучалось действие данных гормонов на опухолевый рост. Было отмечено, что в ряде наблюдений они замедляют рост опухолей, но результативность их действия не идет ни в какое сравнение с эффектом киллеров: последние всегда убивают опухолевые клетки!

Исследования продолжаются. Мы полагаем, что серотонин, мелатонин и β-эндорфин участвуют в цитотоксическом эффекте, возможно модулируя (то есть создавая условия) осуществление киллерного действия. Но в киллерах скорее всего "прячется" еще какой-то волшебник пептидной природы. Может быть (и вполне вероятно, что это так), он нам еще вообще неизвестен. Но его обязательно надо найти. Здесь нужна кооперация квалифицированных специалистов различного профиля: патологов, онкологов, биохимиков, морфологов и т. п. Если этот волшебник действительно существует и при проверке покажет свои уникальные способности без промаха убивать опухолевые клетки, тогда появятся все предпосылки, чтобы "приручить" его и привлечь к борьбе против рака. Ну что же, впереди увлекательный поиск с находками и потерями, успехами и неудачами, радостями и разочарованиями, но цель поставлена, и будем к ней идти.

Организм – фабрика лекарств

Любое лекарство вредно. «Как, удивится читатель, – лекарства же лечат!» Совершенно правильно лечат, но одновременно оказывают и отрицательное действие на организм. Просто из двух зол выбираешь меньшее – борешься с болезнью, закрывая глаза на мелкий вред другим, здоровым органам. Но из малого слагается большое, поэтому все большее и большее внимание ученых привлекают идеи поиска лекарств в самом организме, другими словами – использование естественных эндогенных продуктов в качестве лекарственных препаратов.

Действительно, уже обнаружено немало лекарств, синтезируемых в самом организме. Это уже знакомые вам эндорфины и другие гормоны, используемые в клинической практике (инсулин, кортизол, гормон роста, соматостатин и др.), витамины. Совсем недавно сотрудники Национального центра психического здоровья США сообщили об обнаружении в головном мозге человека веществ, родственных транквиллизаторам – препаратам о успокаивающим действием.

В последние годы появляются работы об идентификации одних и тех же химических продуктов, в том числе и гормонов у животных и растений. Недавно группа американских авторов сообщила об обнаружении в растениях инсулина и других биологически активных веществ. Кажущиеся на первый взгляд парадоксом, эти сведения свидетельствуют о единстве живого мира, об унитарности происхождения жизни на Земле и создают почву для более успешного поиска естественных лекарственных средств.

Среди лекарственных препаратов важное место занимают сердечные гликозиды – вещества, содержащиеся в растении наперстянке. Эти лекарства широко применяются для лечения сердечно-сосудистых расстройств, связанных с нарушениями ритма и сердечной проводимости. В нашей лаборатории была предпринята попытка выявить эндогенные (собственные) источники синтеза веществ, обладающих физиологическими и фармакологическими свойствами, характерными для сердечных гликозидов. Медицинские и социальные последствия успеха этого поиска очевидны. Регулируя активность продукции таких веществ в организме, можно предупреждать и успешно лечить нарушения деятельности сердца, не прибегая к помощи сердечных капель и пилюль.

Проведенные на собаках исследования показали, что в организме существуют клеточные источники выработки сердечных гликозидов. Клетки, продуцирующие эти вещества, располагаются в различных отделах головного мозга, стенке предсердий, печени и поджелудочной железе. Таким образом, впервые были получены данные о наличии эндогенных клеточных источников синтеза веществ, подобных сердечным гликозидам, в живом организме. По аналогии с эндорфинами – эндогенными аналогами морфия растительного происхождения, сердечные гликозидоподобные вещества, синтезирующиеся в организме, можно обозначить термином "эндокорзиды" (эндогенные сердечные гликозиды).

Выделение эндокорзидов и выяснение их химической природы – дело ближайшего будущего. Но уже сейчас ясно, что обнаружение эндогенных источников возможного синтеза сердечных гликозидов открывает новое перспективное направление в исследованиях по фармакотерапии сердечно-сосудистых заболеваний.

С каждым годом фабрика лекарств в организме продолжает расширяться. Растут новые цеха, осваиваются новые мощности, модернизируются конвейерные линии. Научно-технический прогресс, охватывая все большие и большие сферы жизни человеческого общества, не только активно вторгается в биологию и медицину, но и использует их достижения. Совсем недавно возникла новая отрасль современной индустрии – биотехнологическая промышленность. Дрожжи, микробы, бактерии, вирусы, культуры клеточных колоний успешно работают по программам, заданным учеными, синтезируя белки, гормоны, ферменты, витамины, необходимые народному хозяйству.

Возможно, наступит такой день, когда закроется последняя аптека. Люди прекратят принимать лекарства, а врачи научатся лечить болезни, используя не фармацевтические средства, а сам организм, его обширные кладовые с огромным запасом чудесных молекул. Фантазия? Пока да, но в пей очень много реального…


    Ваша оценка произведения:

Популярные книги за неделю