Текст книги "Вездесущие гормоны"
Автор книги: Игорь Кветной
сообщить о нарушении
Текущая страница: 12 (всего у книги 16 страниц)
Феромоны – гормоны общения
Эндокринная клетка, синтезируя определенный гормон, посылает с ним клетке того или иного органа «руководство к действию».. Иными словами, гормоны – это слова и фразы в химическом языке жизни, средство общения различных органов между собой. Но гормоны могут выполнять координирующую роль и в поведении живого существа. Они определяют взаимоотношения даже в мире животных, стоящих на низших ступенях эволюционной лестницы, – у птиц, рыб, насекомых.
Такие вещества, которые выделяются особыми клетками у животных, имеющие характерную для гормонов пептидную или стероидную структуру и специфически влияющие на поведение или физиологическое состояние других представителей того же вида, названы феромонами (от греческого phero – несу и hormao – привожу в движение, возбуждаю).
Феромоны – это гормоны общения. Они тоже служат химическими почтальонами, передают информацию. Только не от клетки к клетке, а от одних особей к другим. Разнообразие феромонов велико. Существуют половые феромоны, обеспечивающие встречу и узнавание особей разного пола и стимулирующие половое поведение; феромоны тревоги; следовые феромоны; агрегационные феромоны, вызывающие скопления большого числа особей; территориальные феромоны. Наиболее важны феромоны для насекомых. Они играют в их жизни исключительно важную роль, регулируя всю сложную систему иерархии в колонии, активность и характер деятельности различных каст насекомых.
Феромоны даже в минимальных концентрациях обладают чрезвычайно сильным запахом. Улавливая его, животные реагируют определенным образом, что и отражает непосредственную связь между феромонами и гормонами. Если гормон – это замок, запирающий и отпирающий определенную дверь, то феромон – ключ к нему. Представители различного пола по-разному воспринимают запахи, отсюда их неодинаковая реакция па один и тот же феромон. Ученые установили, что мужчины и женщины обладают неодинаковым обонянием. В парфюмерии в качестве фиксатора при приготовлении различных кремов и лосьонов широко применяется особое вещество – экзальтолид. Физиологи убедительно пока зали, что женщины его ощущают, а мужчины нет, они вообще не знают, как пахнет это вещество. Но если мужчинам ввести женский половой гормон, они становятся чувствительными к запаху экзальтолида и к другим, ранее неведомым для них веществам. Свидетельством того, что различие в ощущениях запахов определяется именно половыми органами, является и тот факт, что девочки до наступления половой зрелости тоже не ощущают запах экзальтолида.
Мужские и женские особи благодаря феромонам и сами пахнут по-разному. Например, специфический запах у пчелиных маток привлекает самцов настолько сильно, что ощущается ими даже на расстоянии нескольких сот метров. Интересно, что феромоны, определяющие этот запах, не только способствуют привлечению самцов, но и заставляют их спариваться с матками. Классический опыт, демонстрирующий это явление, описан во многих учебниках по физиологии. Если смочить кусочек бумаги секретом желез пчелиной матки и подвесить его на уровне полета пчел (примерно на высоте 5 метров), то трутни будут стараться спариться с этой мнимой маткой.
Самки шелкопряда выделяют феромон бомбикол. Его название произошло от латинского наименования тутового шелкопряда – Bombyx mori. Для его идентификации исследователям пришлось удалить пахучие железы у более чем 300 тысяч самок шелкопряда, из которых путем многоразовых экстракций выделили 4 миллиграмма феромона. Эта поистине гигантская многолетняя работа увенчалась успехом. Ученые показали, что бомбикол – чрезвычайно активный феромон. Достаточно одной миллионной доли пикограмма (а 1 пикограмм равен миллионной доли грамма) феромона, чтобы самец шелкопряда пришел в возбужденное состояние.
Половые феромоны очепь быстро нашли широкое применение в сельском хозяйстве. С их помощью удается заманить на ограниченную территорию большое количество вредных насекомых, подлежащих уничтожению, и воздействовать на них определенным специфическим химическим веществом. Использование феромонов значительно повышает эффективность борьбы с вредителями й удешевляет проведение подобных мероприятий. Так, например, достаточно посадить в ловушку одну самку жука-пилильщика (вредителя древесины), чтобы в очень короткий срок в ней оказалось до 11 тысяч самцов! Чем не пример коварства и любви?!
Способствуя уничтожению вредных насекомых, феромоны оберегают от гибели полезных или безвредных особей, которые, не реагируя на безразличные для них запахи, остаются вне ловушек или зон, подвергаемых химической обработке.
Феромоны играют определяющую роль в возникновении сообществ и организации взаимоотношений между их членами. Особенно это заметно в пчелиных семьях. Феромон гераниол, запах которого неудержимо влечет трутней к матке во время брачного периода, способен предотвращать появление новых маток в улье. Виляющий танец пчел, определяющий поведение особей во время сбора цветочного нектара, также реализует свою информацию через выработку феромонов.
Английские ученые К. Бутлер и Дж. Симпсон показали, что пчелиная матка выделяет особое гормональное вещество, которое она передает рабочим пчелам в тот момент, когда они ее кормят. До тех пор, пока этот гормон воспринимается в достаточных количествах всеми рабочими пчелами, они чувствуют себя спокойно и не выводят новых маток. С увеличением численности пчелиной семьи гормона, выделяемого маткой, не хватает на всех рабочих пчел, и это служит сигналом к разделению рода: старая матка улетает с отделившимся роем, а остальные пчелы начинают кормить личинок "молочком" – смесью секрета своих слюнных желез с медом. При этом способе кормления развивается пчелиная матка. Как только замена произошла, оставшихся подрастающих личинок пчелы прекращают кормить подобным образом, а переходят на кормление их пыльцой. При таком варианте кормления из личинок вырастают рабочие пчелы. Р. Каллоу и П. Джонстон, соотечественники Бутлера и Симпсона, выделили, а затем искусственно синтезировали феромон, выделяемый пчелиной маткой. Его применение в пчеловодстве позволяет регулировать роение пчел и тем самым целенаправленно вмешиваться в жизнедеятельность этих очень полезных представителей животного мира.
Феромоны регулируют общественные связи не только у насекомых и животных. Даже у человека феромоны служат специфическими настройщиками поведения людей, зачастую проявляемого бессознательно. Американские гинекологи описали наблюдения поразительной синхронизации менструального цикла у девушек, живущих в замкнутых сообществах (например, в общежитиях колледжей). Специалисты считают, что в основе этого явления лежит выработка определенных феромонов, взаимно регулирующих физиологические процессы, протекающие в организме женщины.
Очень активно пользуются химическим гормональным языком муравьи. Их экзокринные железы вырабатывают множество разнообразных феромонов. Так, у красного муравья – соленопсиса, играющего роль вожака в муравьином царстве, открыта железа Дюфура, названная по имени зоолога, впервые описавшего ее. В ней вырабатывается феромон, который метит путь муравья. Насекомое выпускает его, прижимаясь к земле, и тем самым направляет рабочих муравьев в сторону пищи или к месту строительства нового муравейника. В лабораторных условиях создавали на бумаге искусственные лабиринты, смоченные растворами феромонов, извлеченных у красных муравьев, и рабочие муравьи всегда шли по смоделированному следу. Увеличивая количество феромона, выделяемого железой Дюфура, можно добиться того, что практически все муравьи, населяющие муравейник, покинут свое жилище и перейдут в то место, где заканчивается след соленопсиса.
Запахи феромонов, синтезируемых муравьями разных типов, существенно отличаются друг от друга. Многочисленные эксперименты показали, что муравьи реагируют только на свои, присущие им вещества. Если перед жилищем муравьев искусственно нанести следы чужого феромона, никакого изменения в укладе их жизни не произойдет.
Кроме следовых феромонов, муравьи вырабатывают еще много разных биологически активных веществ. Среди них – феромон тревоги. Если рабочего муравья, выполняющего роль часового (у муравьев есть и такие обязанности), потревожить, тут же его встревоженное состояние передастся другим сородичам и в течение 1-2 минут вся колония муравьев будет взбудоражена. Причина этого – выделение особых гормональных веществ муравьями-дневальными.
Описанные феромоны – основные для муравьев. Но, кроме них, у этих насекомых вырабатываются вещества, стимулирующие муравьев к другим функциям, например к уходу за своими собратьями, обмену пищей, выкармливанию молоди, сбору отбившихся муравьев и даже к ритуалу обслуживания "царицы" муравейника.
Обоняние, по-видимому, единственный способ получения информации муравьями из внешнего мира. Даже за умершим муравьем они продолжают ухаживать, как за живым заболевшим. Поскольку зрение у муравьев фрагментированное, их не смущает неподвижность и скрюченный вид погибших сородичей. Только через 2-3 дня, когда умерший муравей начинает выделять специальные феромоны его относят на кладбище. Если на живого муравья нанести "феромон смерти", то его тоже, несмотря на отчаянное сопротивление, выбросят за пределы муравейника. Конечно, будучи живым, он поползет назад, но его опять удалят, и так будет продолжаться до тех пор, пока прошедший дождь не смоет с бедняги мизерные остатки подобного клейма.
Феромоны тревоги выделяют также и рыбы и другие водные животные. Э. Фриш впервые в 1938 году описал реакцию испуга у рыб, а Э. Кульцер и В. Пфейфер в 1957-1962 годах определили, что она вызывается действием специфических гормональных веществ, выделяемых поврежденной кожей раненых особей. Феромоны испуга вырабатываются у рыб в особых колбовидных клетках, имеющихся повсеместно па коже. Если из кожи испуганных рыб выделить экстракт, то подмешивание его в соотношении 1:50000 в аквариум с другими рыбами вызывает у них соответствующую тревожную реакцию.
Каждое живое существо обладает инстинктом сохранения своего жилища. У животного роль сторожевых служб играют опять-таки феромоны. И действуют они подчас не хуже, чем искусственные запоры. Так, у многих видов оленей и антилоп в предглазничных железах вырабатываются особые вещества, запах которых отпугивает других животных от той территории, где олень потерся мордой о дерево. У барсуков феромоны жилища вырабатываются железами, находящимися у основания туловища. Животные прижимают заднюю часть тела к камням или стволам подрубленных деревьев, и тем самым оставляют свою метку, служащую пограничным столбом их суверенной территории.
Личинки морских желудей – своеобразных представителей ракообразных, проплавав определенное время в воде, должны прикрепиться к камням для того, чтобы, создав "домик со створками", обеспечить развитие взрослых особей. Но как им найти хорошее удобное место? Очень просто. Оказывается, о них позаботились собратья. Предшественники оставляют свой след опять же с помощью феромона. Запах этого вещества личинки не воспринимают. У них нет органов обоняния. Но есть гораздо более сложные анализаторы, "ощупывающие" конфигурацию белковых молекул. Удивительно?! Ни физики, ни химики пока не имеют такого высокочувствительного прибора. Еще один пример роли эндокринных механизмов регуляции в развитии бионики.
Изучение феромонов продолжается. Являясь потенциально эффективными средствами управления поведением животных, они уже сегодня используются в народном хозяйстве и в еще большей степени принесут ощутимую пользу в животноводстве и других важных отраслях агропромышленного комплекса в будущем.
Чего не знал Дарвин?
Чарлз Дарвин знал многое. Но в тот день 1880 года, когда он со своим сыном Фрэнсисом изучал влияние света на изгибы проростков злака, великий биолог даже не предполагал, что мог бы стать автором еще одного выдающегося открытия: впервые обнаружить гормоны у растений. Правда, в 1880 году биология только вступала в эпоху развития эндокринологии и понятия «гормон» не существовало, поэтому у автора «Происхождения видов» не было теоретических предпосылок для такого суждения.
Опыт Дарвина был прост. У проростков злаковых растений есть колеоптиль – первый зародышевый лист, который, подобно футляру, защищает почку проростка и первым пробивает почву. Поместив светонепроницаемые цилиндрические стеклянные экраны на колеоптили, Дарвин с сыном обнаружили, что, хотя свет воспринимает только верхушка проростка и изгибается под влияпием этого, точно такой же изгиб возникает в экранированной зоне, расположенной ниже верхушки. Анализируя эти наблюдения, Дарвин в своей книге "О способности растений к движению", опубликованной в 1881 году, высказал предположение (и как впоследствии оказалось, был совершенно прав) о том, что свет вызывает активизацию какого-то химического фактора, который проходит от верхушки в глубь колеоптиля и вызывает специфический эффект.
Идея великого биолога о "ростковых веществах" дала толчок к проведению многочисленных экспериментов по проверке этого предположения. Они длились много лет, и только в 1928 году датский ботаник Ф. Вент получил убедительные данные об образовании в верхушках колеоптилей злаков биологически активного вещества, способного к диффузии и контролирующего рост нижележащих зон.
Это вещество было названо ауксином (от греческого auxanomai – расти) и явилось первым идентифицированным растительным гормоном, открытие которого, по существу, совершило переворот в сельском хозяйстве, поставив его на рельсы химизации.
Если Венту принадлежит честь обнаружения первого гормона растений, то саму концепцию растительных гормонов (фитогормонов) выдвинул в 1927 году советский ученый академик Н. Холодный. Отдавая дань уважения двум известным ученым, концепция гормональной регуляции жизнедеятельности растений именуется в учебниках и руководствах по ботанике теорией Вента-Холодного.
Справедливости ради следует отметить, что хотя ауксины были открыты намного позднее, чем первые гормоны животных, указания на существование растительных гормонов содержались и в работах конца прошлого века. Так, В. Бейеринк в 1888 году связывал развитие листьев у ивы с действием, как он писал, "ростового фермента". Немецкий естествоиспытатель Ф. Фиттинг сообщал в работах 1909-1910 годов об обнаружении им в пыльце орхидеи вещества, вызывающего отцветание цветка. Позднее было установлено, что это – гормон, идентичный ауксину. Изучив химическую природу вещества, Ученые убедились в том, что он и по химической структуре соответствует гормональным веществам, являясь производным аминокислоты триптофана, близким по строению к одному из активнейших гормонов животных – серотонину.
Ауксины, как и другие фитогормоны, вызывают разнообразные физиологические эффекты. Кто из нас не радуется распусканию почек у деревьев весной и быстрому росту молодых побегов? Это "дело рук" ауксина. Мягкое падение листьев осенью тоже зависит от ауксина – он застилает землю красно-желтым ковром листвы.
Функциональные свойства ауксина нашли широкое применение не только в сельском хозяйстве, но и в… военном деле. США в ходе агрессии во Вьетнаме использовали синтетический ауксин для преждевременного опадения листвы, что, естественно, затрудняло маскировку сил освобождения. Искусственные аналоги ауксина используются в садоводстве и огородничестве для борьбы с сорняками, ускорения созревания плодов и ягод. Рациональное применение ауксинов способствует получению стабильных урожаев из года в год, улучшает сахаристость таких фруктов, как ананасы и виноград.
С помощью ауксинов была решена проблема приживаемости черепков айвы в Афганистане. Из-за особенностей почвы там плохо укоренялись саженцы. Обработка их ауксином способствовала быстрому и сильному росту корней, благодаря чему теперь эти фруктовые деревья нормально растут и плодоносят.
Известно, что в пауке большое значение для обнаружения новых фактов имеет объект исследования. Так было и в истории с растительными гормонами. В то время как в Европе обнаружили ауксины в злаковых растениях, в Японии, работая с рисом, сумели открыть другой класс фитогормопов – гиббереллины. Своим названием они обязаны грибу, именуемому Gibberella, который достаточно часто поражает растения риса. Больные растения усиленно растут, стеблям их недостает жесткости и упругости и поэтому длинные всходы теряют вертикальное положение и полегают. Японцы называют их "баканэ" – бешеные всходы. В течение нескольких веков причина этой таинственной болезни оставалась неясной. В 1912 году японский ботаник Т. Савада предположил, что в этом повинно какое-то вещество, выделяемое грибом-паразитом. В 1926 году его ученик С. Куросава подтвердил правильность взглядов своего учителя, доказав, что обработка здоровых растений экстрактом гиббереллы вызывает симптом баканэ.
"Выделив и очистив в 1938 году два соединения, вызывающие поражения риса, и назвав их гиббереллинами Д и В, ученые стали искать подобные вещества в высших растениях, не поражаемых этим грибом. Поиски увенчались успехом. Природные гиббереллины были обнаружены сначала в незрелых семенах и плодах. Сейчас известно уже более 50 гиббереллинов, идентифицированных в растениях.
Гиббереллины, как и другие гормоны, способны творить чудеса. Карликовые культуры кукурузы они превращают в гигантов. Кустовую фасоль делают вьющейся. Придают стреловидную форму листьям хризантем, что значительно повышает их ценность на цветочном рынке. В сельском хозяйстве эти гормоны используются для улучшения прорастания семян, ускорения цветения и усиления плодоношения фруктовых деревьев.
Заманчивые и не совсем обычные перспективы в разведении овощей и фруктов открываются в связи с обнаружением еще одного класса растительных гормонов – цитокининов, которые получили свое название из-за присущего им свойства стимулировать цитокинез – клеточное деление. Их открыл в 20-х годах нашего столетия немецкий ботаник Г. Габерландт. Ему же принадлежит идея, казавшаяся раньше, мягко говоря, нелепой, но впоследствии нашедшая совершенно блестящее подтверждение. Габерландт предложил выращивать изолированные растительные ткани на искусственных питательных средах. Понадобилось несколько десятилетий, прежде чем были разработаны подходящие среды, установлены компоненты, которые они должны были содержать, но дальше, чем культивирование отдельных растительных клеток, дело не шло. Не шло до тех нор, пока не попробовали добавить в питательные среды ауксин и цитокинины. Результат окапался поразительным. В короткий срок были получены оптимальные соотношения ауксина и цитокининов, открывшие возможность практически неограниченно долго не только культивировать растительные ткани разного происхождения на синтетических средах, но в выращивать на них отдельные растения. Наверное, читая это, многие читатели вспомнят один из сюжетов программы "Время", посвященный выращиванию помидоров японскими селекционерами на синтетической губке, пропитанной и орошаемой составом, секрет которого не раскрывался.
Конечно, мы не можем знать всех компонентов этого состава, но в том, что в него входят ауксин и цитокинины, сомневаться не приходится.
Цитокинины не могут функционировать без ауксина. Они без него беспомощны, как слепые котята без кошки. А в присутствии ауксина они показывают разные фокусы. Например, если пожелтевшие листья опрыскивать водным раствором цитокинина, они молодеют – восстанавливают свой зеленый цвет, становятся упругими и жизнеспособными. Быстрое увядание срезанных цветов объясняется прекращением притока цитокининов из корня. Если в воду добавить синтетический цитокинин, цветы будут стоять свежими намного дольше.
В тканях растений обнаружен еще один гормон – абсцизовая кислота. Она участвует в регуляции роста и старения растений. Специфический эффект действия абсцизовой кислоты, который служит биологическим тестом ее обнаружения в тканях, – закрытие устьицев листьев. Недавно французские биохимики обнаружили абсцизовую кислоту в головном мозге свиней и крыс. При введении экстракта абсцизовой кислоты из мозга животных в растения происходило закрытие устьицев листьев. Роль растительного гормона в центральной нервной системе животных пока неясна. Отсутствие параллелей между концентрацией абсцизовой кислоты в ткани мозга и характером пищи, потребляемой животными, свидетельствует о том, что этот гормон синтезируется в организме свиней и крыс, а не поступает с растительной пищей.
Заканчивая рассказ о фитогормонах, хочется еще раз подчеркнуть, что тезис натуралистов: "В природе все едино" – приобретает с каждым днем все большее и большее подтверждение.