Текст книги "Вездесущие гормоны"
Автор книги: Игорь Кветной
сообщить о нарушении
Текущая страница: 2 (всего у книги 16 страниц)
Вот и породнились три регуляторные системы. У всех есть общие родственники. И цель у них одна – регуляция гомеостаза. Как они это делают? К чему это приводит? Узнать все тонкости сложных процессов не под силу одному ученому и даже специалистам одного профиля.
Залог успеха – в содружестве, в союзе, в тесном контакте ученых различных специальностей и школ. Спортсмены-велосипедисты хорошо знают, что в спринтерской гонке сопротивление внешней среды можно преодолеть только командой, тесно, почти вплотную группируясь друг около друга, помогая себе и товарищу вырваться на финишную прямую. Не столь важно, кто придет первым, главное – результат. Достижения науки – свидетельство тому. Тайны природы уступают, когда за них берутся различные специалисты вместе, сообща.
Поэтому для того чтобы полнее оценить современные успехи эндокринологии и тем самым лучше понять ход дальнейших событий, описываемых в нашей книге, познакомимся с некоторыми чувствительными методами, разработанными в последние годы, позволяющими следить за судьбой гормонов, узнавать, где они синтезируются, куда доставляются, что делают в организме.
На гормоны заводится досье
Любой сыщик знает: для успешной слежки надо сделать все, чтобы объект себя обнаружил. Так и в нашей истории – многие успехи эндокринологии последних лет связаны прежде всего с разработкой надежных способов идентификации гормонов.
Рассказывая об открытии Пирсом функции светлых клеток, мы упомянули имя американского ученого Альберта Кунса – основоположника применения в гистохимии иммунологических методов. Иммуногистохимический метод оказался особенно перспективным для исследования синтеза и транспорта гормонов. Поскольку при введении гормонов организм начинает вырабатывать специфические белки – антитела, то, введя животному (чаще всего используют кроликов и морских свинок) какой-либо гормон, можно впоследствии взять кровь этого животного, в которой будут содержаться антитела именно к данному гормону, после специальных процедур получить антисыворотку и затем использовать ее для обнаружения в клетках и тканях того самого гормона.
Любой сыщик знает: для успешной слежки надо сделать все, чтобы объект себя обнаружил
Казалось, с появлением иммуногистохимического метода проблема обнаружения гормонов в организме должна быть решена. И действительно, за время, прошедшее после 1941 года, когда Кунс впервые предложил метод, было открыто много мест синтеза гормонов и изучены разные стороны их обмена в живом организме. Однако, появились и свои ограничения, связанные, с одной стороны, с недостаточной чувствительностью метода, а с другой – с потребностью изучения гормонов не только в клетках, но и в крови, доступной для массовых исследований в клинической практике. Эти препятствия были преодолены с разработкой радиоиммунологического метода определения гормонов.
Суть метода, автором которого является американский радиохимик из госпиталя в Бронске (Нью-Йорк) Р. Ялоу, заключается в том, что антисыворотка к гормону в процессе ее приготовления метится дополнительно еще и радиоактивным изотопом, чаще всего йодом-125. При смешивании антисыворотки с исследуемой кровью человека или животного антитела взаимодействуют с содержащимся в крови гормоном. По уровню радиоактивности, излучаемой изотопом, соединившимся с определенным гормоном, определяется количество этого вещества. Чувствительность данного метода очень высока: он способен зарегистрировать количества гормона, измеряемые в десятых долях нанограмма.
Радиоиммунологический метод нашел широкое применение в медицине, животноводстве, других отраслях биологии. С его развитием появилась возможность следить за изменением уровня и скорости синтеза, секреции и метаболизма гормонов, в нужных ситуациях активно регулировать функцию гормональной системы. За разработку, широкое внедрение радиоиммунологического метода и изучение с его помощью синтеза и метаболизма пептидных гормонов Розалин Ялоу в 1977 году была удостоена Нобелевской премии.
После фундаментальных работ Ялоу многие химические фирмы приступили к массовому выпуску специальных коммерческих наборов реактивов для определения гормонов. В Советском Союзе выпускаются, например, наборы для определения инсулина, некоторых гормонов гипофиза. Производственные базы для этого созданы в Минске и Риге в соответствующих химических институтах республиканских академий наук. Широкое распространение таких наборов привело к резкой интенсификации исследований эндокринной системы как в научном, так и в прикладном плане. Во многих клиниках открылись специальные радиоиммунологические лаборатории. Однако в процессе развития метода стали появляться серьезные препятствия для его широкого внедрения. Во-первых, необходимо довольно большое количество антигенов, то есть гормонов для иммунизации, и соответственно большое число животных. Были открыты специальные заводы по искусственному синтезу гормонов (здесь тоже есть свое ограничение – не все гормоны можно искусственно синтезировать, да еще в больших количествах) и фермы, на которых выращивались и содержались животные: кролики, морские свинки, обезьяны и овцы. Затраты на получение синтетических гормонов и содержание животных обусловили высокую стоимость соответствующих наборов.
Вторая проблема относилась к самим антисывороткам. Дело в том, что при обработке вместе с антителами к определенным гормонам из крови животных выделялись, хоть и в небольших количествах, другие антитела, которые в ряде случаев снижали специфичность антисывороток, реагируя не только с одним определенным гормоном, но и с веществами, близкими к нему по антигенной структуре, например с белками. Да и видовые особенности антител в какой-то мере затрудняли анализ.
Развитие науки требовало качественно нового подхода к решению проблемы получения антител. Необходим был метод, позволяющий в искусственных условиях получать большое количество антител строго заданной специфичности. И такой метод был разработан. Его создание связано с именами трех известных иммунологов: Нильса Ерне, Цезаря Милстейна и Георга Келлера – нобелевских лауреатов 1984 года.
Нильс Ерне заслуженно пользуется уважением в научном мире. 73-летний ученый за всю свою жизнь работал во многих научных учреждениях разных стран, его блестящие лекции слушали в Европе, Америке и Азии, в том числе и в СССР, куда он приезжал несколько раз. Работы Ерне по механизмам образования антител явились теоретической почвой для последующих практических разработок Ц. Милстейном и Г. Келлером нового метода получения специфических антител.
Цезарь Милстейн с 1962 года занимается исследованием антител, происхождением их разнообразия, генетическими основами их специфичности. В начале 70-х годов он стал изучать лимфоциты – клетки, продуцирующие антитела, как у здоровых людей, так и у людей с опухолевым поражением крови. Эти работы привели его к открытию так называемых "гибридных клеток", возникающих при слиянии различных лимфоцитов. Неизвестно, как все сложилось бы, если б в это время в лабораторию Милстейиа не приехал Г. Келлер…
Интерес Георга Келлера к разнообразию антител возник при выполнении им докторской диссертации у Н. Ерне в Базеле. Для продолжения исследований Ерне посоветовал Келлеру поехать к Милстейну в Кембридж, Ни Келлер, обратившийся к Милстейну с просьбой о разрешении приехать, ни Милстейн, давший свое согласие, учитывая рекомендацию Ерне, ни сам Ерне не предполагали, что эти обстоятельства приведут их через 10 лет к Нобелевской премии.
Приехав в 1974 году в Кембридж, 28-летний Келлер начал заниматься получением гибридов разных миеломных (опухолевых) клеток мышей. Однако, быстро поняв, на что годен новый сотрудник, Милстейн буквально через несколько месяцев ставит ему более сложную, но вполне определенную задачу – получить такие гибридные клетки, которые бы синтезировали антитела с любой заданной специфичностью. И Келлер блестяще справляется с этим. В конце 1974 года он вместе со своим шефом проводит опыты по слиянию миеломных клеток, способных длительно расти в культуре ткани с лимфоцитами мышей, образующими антитела, но неспособными к длительному росту вне организма. Эти эксперименты принесли желаемые результаты, гибридные клетки продуцировали антитела. В августе 1975 года появилась ныне знаменитая статья Г. Келлера и Ц. Милстейна, в которой описывалась техника получения гибридом.
Огромное преимущество гибридомной техники заключается в том, что для получения антител не нужно большого количества антигена. Достаточно один раз проиммунизировать мышь, взять от нее кровь, выделить лимфоциты, продуцирующие данные антитела, слить их с миеломными клетками, способными к быстрому росту, затем отобрать гибридную клетку, синтезирующую введенные антитела, размножить ее на питательной среде и клонировать (получать от нее потомство) сколь угодно долго и в любом нужном количестве. В результате появляется возможность неограниченного получения гибридом, образующих лишь один-единственный вариант антител (то есть моноклональные антитела), что полностью снимает проблему их специфичности.
Это открытие за короткий срок оказало революционное влияние на различные области биологии и медицины. Получение моиоклональных антител составляет сейчас важнейшую часть биотехнологического производства. Подсчитано, что в ближайшие годы оборот фирм, участвующих в продайте моноклональных антител, достигнет миллиарда долларов.
Моноклональные антитела являются строго специфическим реагентом – прекрасным маркером химических веществ. С помощью моноклональных антител с каждым годом открываются все новые и новые активные вещества и места их синтеза. Отрывочные сведения о процессах, в которых участвуют гормоны, теперь можно дополнить и создать самые настоящие досье, учитывающие перемещения молекул, оценивающие взаимодействие их в различные периоды жизни и при разных заболеваниях. Получив метку – моноклональное антитело, гормон обнаруживает себя повсюду, находясь даже в самых минимальных количествах.
Именно с помощью гибридомной техники, метода моноклональных антител ученые установили в последние годы многие неизвестные ранее закономерности гормональной регуляции. Были сделаны принципиально новые важные открытия в познании механизмов различных заболеваний, поиске методов их диагностики и лечения.
Мы перелистали некоторые страницы истории эндокринологии. Узнали общие свойства гормонов. А теперь познакомимся с ними поближе. Ведь от этих веществ зависит очень многое – наша жизнь, здоровье, настроение, то есть наше благополучие.
Симфония жизни
Симфония жизни
Когда мы входим в зал перед началом симфонического концерта, мы прежде всего слышим тихую разноголосицу настраиваемых инструментов. Через несколько минут громко и стройно зазвучит весь оркестр. У каждого инструмента своя партия, своя роль и значение в исполнении произведения. У одного более значимая, у другого – менее, но потеря любого из них приведет к утрате полноты и красоты звучания всего оркестра, а значит, и самой симфонии.
Так и в организме. Эндокринные клетки, расположенные в разных органах и продуцирующие различные гормоны, составляют оркестр. Оркестр, исполняющий симфонию жизни. От согласованности их действий, синхронности и четкости ведения своих партий, сыгранности всех участников большого ансамбля зависит качество исполнения этой трудной и ответственной симфонии.
Дирижер и первая скрипка
Клетки и вырабатываемые ими гормоны – это инструменты эндокринного оркестра. Ими руководит очень опытный и строгий дирижер – гипоталамус, пульт его находится в основании головного мозга. Его правая рука, верный помощник, проводник всех его идей и стремлений – гипофиз, лежащий под полушариями мозга тоже на его основании в специальном месте – четверохолмии, образующем углубление для этого важного органа. Гипофиз связан с гипоталамусом системой специальной связи: нервными волокнами и кровеносными сосудами.
Гипофиз – первая скрипка, концертмейстер оркестра. Он многозвучен – очень разносторонний музыкант. Вырабатывая около 10 важных гормонов, гипофиз практически ведет за собой все другие инструменты оркестра: щитовидную и поджелудочную железы, надпочечники, яичники, другие органы. Если гипофиз – скрипка, то клетки, его составляющие, – струны. В них синтезируются гормон роста (соматотропин, или СТГ), ведающий развитием и ростом различных тканей и клеток; адренокортикотропный гормон (АКТГ), регулирующий выработку гормонов корой надпочечников – кортикостероидов; меланоцитстймулирующий гормон (МСГ), определяющий пигментный обмен (по существу, от него зависит цвет и степень окраски кожи животных и человека); фолликулостимулирующий (ФСГ) и лютеотропный (ЛТГ) гормоны, играющие важную роль в обеспечении нормальной деятельности половых органов; вазопрессин и окситоцин – вещества, участвующие в регуляции водно-солевого обмена и других функций организма; тиреотропный гормон (ТТГ), без которого невозможна нормальная функция щитовидной железы.
А для того, чтобы партия первой скрипки звучала как подобает, для того, чтобы каждая струна знала, когда ей вступать в игру, дирижер-гипоталамус сообщает гипофизу об этом с помощью своего смычка – особых чрезвычайно активных веществ – либеринов и статинов. Либерины и статины – тоже пептидные гормоны. Либерины – значит "ускоряющие, стимулирующие". Статины – "ингибирующие, замедляющие". Количество либеринов и статинов, вырабатываемых в гипоталамусе особыми нейроэндокринными клетками, строго соответствует числу гормонов гипофиза. На каждый гормон гипофиза приходится по одному соответствующему либерину и по одному статину. Например, гормону роста – соматотропину – соответствует соматолиберин и соматостатин. И так для всех остальных гипофизарных гормонов.
Как только гипоталамус вырабатывает какой-либо Либерии, сразу же в гипофизе увеличивается выработка соответствующего ему гормона. Начинается продукция статина – гипофиз незамедлительно отвечает понижением продукции определенного гормона. Инструменты оркестра чутко улавливают взмах смычка и изменение тональности в игре первой скрипки, подстраиваются и начинают звучать с ней в унисон.
Но, как и в каждом оркестре, и дирижер, и пер"вая скрипка, несмотря на свой опыт и способности, могут ошибаться; в конце концов, они тоже подвержены усталости и влиянию факторов извне. Тогда игра оркестра расстраивается, хор инструментов звучит нестройно, возникают болезни, подчас очень тяжелые.
Карлики и гиганты
Рост человека – величина непостоянная. Он прогрессивно увеличивается до 25 лет, сохраняется неизменным примерно до 60 лет, после чего уменьшается на 2-3 сантиметра к 70 годам. Кроме того, показатели роста варьируют у разных людей. Однако для «условного человека» (такой термин принят Всемирной организацией здравоохранения при определении различных параметров жизнедеятельности) средний рост достигает 160 сантиметров у женщин и 170 – у мужчин. А вот цифры ниже 140 и выше 195 сантиметров – это уже патология, и связана она с нарушением синтеза гормона роста – СТГ.
Впервые предположение о наличии в гипофизе специфического гормона роста было высказано в 1921 году американскими учеными X. Эвансом и Г. Лонгом. Им удалось стимулировать рост крыс до размеров, вдвое превышающих обычные, путем ежедневного введения экстрактов гипофиза. В 1964-1968 годах в серии сложных экспериментов С. Ли сумел выделить СТГ в виде очищенного препарата сначала из гипофизов быка (переработав при этом примерно 200 тысяч гипофизов), затем лошади и человека. Оказалось, что гормон роста обладает видовой специфичностью.
Химический синтез соматотропина впервые был осуществлен группой американских и японских ученых (А. Шелли, С. Савано и А. Аримура) в 1970 году. На примере выработки гипофизом гормона роста можно отчетливо проследить роль гипоталамуса – основного дирижера эндокринной системы в реализации гипофизарных функций. Годом ранее та же группа, переработав, как и Ли (удивительное совпадение!), 200 тысяч, но свиных (а не бычьих) гипоталамусов, выделила из них соматолиберин и определила его структуру. Соматолиберин обладал мощным действием: в короткий срок он освобождал выделение гормона роста из гипофиза и резко повышал его концентрацию в сыворотке крови.
Далее события нарастали с невероятной быстротой. В 1971 году Г. Вебер с сотрудниками (ФРГ) осуществил синтез свиного соматолиберина, а академик Н. Юдаев с 3. Евтихиной в Институте экспериментальной эндокринологии и химии гормонов АМН СССР выделили соматолиберин из гипоталамусов быков. Наиболее урожайным оказался 1973 год – французские исследователи П. Брази и К. Гуйлемин оказались первыми исследователями, открывшими соматостатин. Они сумели выделить этот пептид из гипоталамусов овец и показать его высокую активность в опытах по торможению секреции СТГ. Через несколько месяцев после их открытия группа Ч. Коя (США) сумела синтезировать соматостатин.
А дальше… Помните, в детских сказках часто встречается выражение: "А дальше случилось чудо"? Так и в эндокринологии. Сегодня чудеса стали уже привычным Делом, но 25 лет назад открытие необычных для того состояния науки явлений поражало ученых. Проведенные биологические испытания соматостатина показали, что, помимо ингибирования секреции гормона роста, он обладает чрезвычайно широким спектром действия: тормозит секрецию инсулина, глюкагона, тиреотропного гормона и пролактина. Одновременно соматостатин угнетает секрецию соляной кислоты, панкреатического сока и ферментов желудочно-кишечного тракта. Он уменьшает освобождение глюкозы печенью, сокращение желчного пузыря, кровоснабжение органов брюшной полости. Позднее клетки, продуцирующие соматостатин, были обнаружены, помимо гипоталамуса, еще в поджелудочной и щитовидной железах, слизистой оболочке желудка и кишечника, надпочечниках и других органах. В силу вышеописанных свойств соматостатин, прямая обязанность которого – контроль над секрецией гормона роста, открыл, по образному выражению М. Гроссмана, "новую эру", в лечении язвенной болезни желудка и двенадцатиперстной кишки.
Однако мы отвлеклись от основной темы нашего рассказа, хотя в эндокринологии такие отвлечения – обычное дело, гормоны многолики, они участвуют одновременно в реализации многих физиологических процессов. Но все-таки вернемся к основной функции соматотропина – регуляции роста живого организма.
СТГ очень четко руководит ростом человека, сначала пропорционально увеличивая его, а затем обеспечивая постоянство этого важного показателя. Нарушения роста могут вызываться различными причинами (опухолями гипофиза, инфекционным поражением, кровоизлияниями в него или гипоталамус и другими факторами), но механизм изменения величины человеческого тела в любом случае всегда одинаков – он реализуется через увеличение или уменьшение продукции соматотропного гормона.
Говоря о нарушениях роста человека, мы сразу вспоминаем различные персонажи детских книг: Мальчика-с-пальчик, Дюймовочку, гномов, дядю Степу… Сказочные герои всегда имеют прототипов в реальной жизни. Людей, страдающих нарушениями роста, немало. Среди них известны и исторические личности, например известный французский художник Анри де Тулуз-Лотрек – автор многих живописных полотен.
Карликовость возникает рано. Она может быть наследственно обусловлена, и тогда при рождении сразу же обнаруживается малый рост ребенка (20-35 сантиметров при весе его 500-1500 граммов). Такие дети рождаются в срок, все пропорции тела у них сохранены, и в дальнейшем их развитие протекает совершенно нормально, только формирование всех признаков происходит в уменьшенном виде. Эти больные способны к деторождению, у них сохранено умственное развитие. Они могут заниматься трудовой деятельностью. Продолжительность их жизни практически такая же, как и у остальных людей. Подобная патология носит достаточно мудреное название – гипофизарный нанизм (от греческого nanos – карлик), а в жизни этих людей называют лилипутами. Существуют и другие виды карликовости, но это уже тема специальной серьезной книги.
Увеличение роста человека может быть двояким. Все зависит от того, в каком возрасте возникла гиперпродукция гормона роста. Если в детском, то это истинный гигантизм. Тогда происходит пропорциональное увеличение всех частей тела, и человек превращается в гиганта. Люди-гиганты могут достигать 2,5 метра. Продолжительность их жизни, как правило, обратно пропорциональна размерам тела. Люди с ростом более 230 сантиметров редко живут дольше 35 лет.
Если же увеличение секреции СТГ возникает в зрелом возрасте у лиц с уже законченным физическим развитием, тогда развивается заболевание, известное под названием "акромегалия" (от греческого akron – конечность, megas – большой). Впервые оно было описано французским врачом П. Мари в 1896 году при наблюдении им, как он сам выразился, "страшного" больного. Действительно внешний вид больных акромегалией мягко говоря, неприятен: общее ожирение, голова увеличена в размерах, черты лица грубые, нос расширен, губы утолщены, лицо отечное, глаза "вылезают" из орбит, язык не помещается во рту, конечности (особенно руки) увеличены, пальцы имеют характерный вид сосисок. Рост при этом сохранен нормальным. Это объясняется тем, что эпифизарные (ростковые) хрящи костей уже закрыты, и поэтому длина скелета изменяться не может. Нарастание массы тела идет только за счет мягких тканей: мышц, жировой клетчатки, кожи.
Увеличение продукции гормона роста влечет за собой извращение синтеза и других гормонов гипофиза. В результате развиваются сопутствующие эндокринные заболевания: сахарный диабет, зоб, расстройства половой Функции. Возникают нарушения обмена веществ, прогрессирование которых приводит к дистрофии мышцы сердца, печени, легких. Тяжесть состояния больных усугубляется достаточно быстро. Без соответствующего лечения в специализированных эндокринологических клиниках акромегалия может привести к инвалидности и смерти.
Нарушения выработки гормона роста встречаются несравнимо более часто, чем патология секреции других гипофизарных гормонов. Не только среди заболеваний этой железы, но и в общем перечне всех болезней патология, связанная с гормоном роста, занимает далеко не последнее место. Особенно карликовость. Единственным эффективным методом лечения этого поражения является введение в организм недостающего гормона роста.
Нарушения выработки гормона роста встречаются несравнимо более часто, чем патология секреции других гипофизарных гормонов
Метод прост, но, к сожалению, синтетический соматотропин не оправдал возложенных на него надежд – оказался недостаточно активным. Выход один – вводить в организм свой же, человеческий гормон роста. Именно человеческий, потому что, как вы помните, СТГ обладает видовой специфичностью. Где же взять настоящий человеческий гормон роста? Единственный источник сырья для получения СТГ человека – гипофизы умерших людей. Если учесть, что лечение больных длится долго (месяцы и годы), легко подсчитать, исходя из лечебной дозы препарата, что в год на лечение одного больного требуется 100-150 гипофизов человека. А ведь гипофиз – не спички, его в магазине не купишь, получить его можно только в патологоанатомических отделениях, причем получить быстро и в соответствующем виде: обработанным холодным ацетоном и высушенным. Только при соблюдении этих условий в гипофизе сохраняется гормонально активные вещества.
Высокая потребность в препаратах гормона роста обусловила необходимость сбора гипофизов в разных странах. Заслуживает внимания организация подобного мероприятия в США. После успешного применения М. Габоном в 1958 году соматотропного гормона при лечении гипофизарнсй карликовости в США была разработана национальная программа по сбору гипофизов, изготовлению и распределению препарата по всей стране. Для обеспечения руководства программы и координации работы различных учреждений в 1963 году было создано Национальное агентство по гипофизу (НАГ) в Балтиморе. Организованный сбор и обработка материала обеспечивает получение 80 тысяч гипофизов в год. Это позволяет лечить ежегодно около 1200 больных. Специалисты полагают, что в таком лечении нуждается в США 10-20 тысяч пациентов. Из этих цифр видно, что хотя в Америке собирается максимальное количество гипофизов, тем не менее СТГ человека остается очень дефицитным препаратом.
Следует отметить, что в США, помимо НАГ, большую работу по оказанию помощи больным-карликам проводит добровольная организация "Фонд роста человека" (ФРЧ). Располагая достаточно большими денежными средствами, ФРЧ финансирует исследования по эндокринологии гипофиза и закупает гипофизы человека в других странах (в основном слаборазвитых, где производство собственного гормона роста не налажено). Американские Ученые первыми разработали национальную программу по СТГ человека. Этот препарат распространяется в Америке ограниченно, но бесплатно.
К сожалению, большинство стран еще не занимается получением СТГ из собственных источников, и больным приходится тратить очень большие суммы денег и неимоверные усилия для приобретения дорогостоящих импортных препаратов.
СССР не уступает США по сбору гипофизов. В нашей стране собранные и обработанные гипофизы передаются Каунасскому заводу эндокринных препаратов, на котором налажено производство из них гормона роста человека. Отечественный соматотропин, по мнению авторитетных специалистов, обладает высокой активностью и является эффективным стимулятором роста.
В последние годы в СССР ведутся настойчивые исследования по изучению возможности получения СТГ (синтеза гормона роста) человека биотехнологическим путем. Успешное решение задачи значительно упростило бы и удешевило получение гормона роста и позволило бы обеспечить всех нуждающихся в препарате пациентов. Хочется надеяться, что трудная работа увенчается успехом и больные-карлики, избавившись от тяжелого физического недостатка, станут полноценными членами общества.
Пусть это будет еще одним чудом эндокринологии, а внуки и правнуки наших детей будут считать карликов действительно сказочными персонажами.