355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Игорь Новиков » Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла » Текст книги (страница 11)
Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла
  • Текст добавлен: 8 октября 2016, 11:17

Текст книги "Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла"


Автор книги: Игорь Новиков


Соавторы: Александр Шаров
сообщить о нарушении

Текущая страница: 11 (всего у книги 15 страниц)

И все-таки, читая номер газеты, испытываешь чувство недоумения и протеста. Не потому, что о Хаббле написано что-то не так, а потому, что рядом со скорбными словами о нем помещено, и даже с портретом, сообщение о смерти бывшего нациста Ганса Фриче, любимого радиокомментатора Гитлера, глашатая режима, борьбе с которым отдавал свои силы ученый. Едва ли уместная «свобода печати»...

Во многих научных журналах коллеги Хаббла – Хьюмасон, Адаме, Боуэн, Мейол и другие – воздали ему должное. В хаббловском архиве хранится листок, исписанный гусиным пером. Это стихи, которыми Эдвин Джон Планкетт, 18-й барон Дансени, откликнулся на смерть исследователя Вселенной:

ПАМЯТИ ДОКТОРА ЭДВИНА ХАББЛА

Нет больше глаз, которые взирали

Сквозь Млечный Путь в неведомые дали

На блеск таинственных светил, чьи стаи

В той тёмной пустоте вкруг нас блуждали.

В них погружаясь, он открыл воочью

Мильоны солнц, похожих на земное,

И постоянно видел пред собою

Вселенными увенчанные ночи,

Гордитесь же, что рядом с нами жил

Тот человек, на удивленье всем

Не хвастаясь и не гордясь ничем.

Должно быть, он познал секрет светил

И то, как мириады их от века,

Сияя, скромности учили Человека.

(Перевод П. Н. Холопова)

Весть о кончине выдающегося астронома нашего столетия быстро облетела семью астрономов всего мира. На заседании английского Королевского астрономического общества его президент доктор Джексон сказал: «Только несколько месяцев назад доктор Хаббл прочел здесь свою Дарвиновскую лекцию и его внезапная смерть оказалась для нас тяжким ударом. Он войдет в историю как один из выдающихся астрономов-наблюдателей всех времен... Счастливой судьбой для него и для нашей науки было то, что в его распоряжении находились огромные телескопы. Его работы по туманностям – вот основание для того, чтоб связать его имя с именем Гершеля, предшествовавшего ему более столетия назад».

На другом континенте, независимо, но как бы вторя этим словам, Мейол сказал: «Вероятно во временной перспективе нужны менее субъективные оценки, но хочется думать, что для наблюдаемой области Вселенной Хаббл был тем же, кем был Гершель для системы Млечного Пути, а Галилей – для Солнечной системы».

Прошли годы и свою оценку, только уже с полной убежденностью, Мейол повторил и в биографии Хаббла. Но вероятно полнее и точнее всех сказал о Хаббле Алан Сендидж, назвав его величайшим астрономом со времен Коперника. Этими словами и открывается наша книга.

 «Никто не знает, где похоронен Хаббл. Есть некая тайна в том, что произошло. Не было панихиды, не было церемонии похорон... Милтон Хьюмасон, вероятно, единственный человек, который когда-либо знал, что происходило после смерти Хаббла. Его жена не хотела никакой огласки по поводу случившегося» (Сендидж). Ни на Маунт Вилсон, ни на Маунт Паломар, нигде на Земле нет памятников Хабблу.

Много лет после кончины астрономы скромно отметили память Хаббла на небе. Его именем назвали один из кратеров на Луне возле Краевого моря. Между орбитами Марса и Юпитера движется астероид № 2069 «Хаббл». Астероиду со следующим номером присвоено имя Хьюмасона, с которым над проблемой красного смещения долгое время работал ученый.

Именем Хаббла названо рукотворное светило – космический телескоп. От него, инструмента с зеркалом почти такого же размера, как и у 100-дюймовика, но Вынесенного за атмосферу, астрономы ожидают, многого. Сам же 100-дюймовый рефлектор, прославивший Хаббла и прославленный им, теперь остановлен. Далее финансировать его работу институт Карнеги уже не смог.

Ночью 25 июня 1985 г. у телескопа собрались опечаленные астрономы. Быть может в последний раз навели его на небо и в фокусе установили Бегу, звезду, на которую в далеком 1917 г. Хейл впервые заглянул в окуляр. Как символ грустного события журнал «Скай энд Телескоп» поместил фото последнего наблюдателя – английского астронома Роджера Гриффина с табличкой в руках: «100-дюймовый телескоп закрыт». Эра замечательного инструмента, на котором были сделаны крупнейшие открытия первой половины XX века, кончилась. Он «пережил» Хаббла на 32 года.

Подлинные герои человеческой истории, культуры, науки не умирают со своей физической кончиной. Передав следующим поколениям свои деяния, открытия, идеи, они обретают бессмертие на века. Таким героем науки нашего столетия, богатого самыми удивительными достижениями, несомненно был Эдвин Хаббл. Он оставил нам грандиозное наследие – открытие управляемого законом его имени эволюционирующего мира галактик, который мы вправе назвать Вселенной Хаббла. С каждым годом значение сделанного им мы понимаем все глубже.

О фундаментальных результатах, полученных после Хаббла, о замыслах новых исследований, продолжающих его дело, рассказывается во второй части книги.


Часть вторая
ПРОДОЛЖЕНИЕ ЕГО ДЕЛА

Расстояния до галактик и постоянная Хаббла

 Со времени классических работ Хаббла, открывших взрывающуюся Вселенную, проходили годы и десятилетия и становилось все более ясным, что это открытие поставило перед астрономией грандиознейшие задачи, которые предстояло решать новым поколениям астрономов – и наблюдателей, и теоретиков.

Из крупных проблем, над которыми работали астрономы, продолжившие дело Хаббла, следует выделить проблему определения расстояний во внегалактической астрономии и связанную с ней проблему определения важнейшей характеристики Вселенной – постоянной Хаббла Н.

Достаточно точное определение расстояний до галактик, и тем более до очень удаленных, представляет сложнейшую задачу из-за огромности этих расстояний. Не приходится удивляться, что и сегодня мы знаем межгалактические расстояния все еще с большой ошибкой, возможно с точностью лишь до двойки. Эта неопределенность станет понятной, если вспомнить, что за исключением самых близких звезд (до которых расстояние определяется методом тригонометрических параллаксов) расстояния даже внутри нашей Галактики известны с точностью не лучше десятков процентов.

Установление шкалы внегалактических расстояний и во времена Хаббла, и сегодня проводят в несколько приемов, шаг за шагом, уходя ко все более далеким объектам и выстраивая как бы своеобразную лестницу. На каждой ступеньке этой лестницы применяют свои методы, используют свои индикаторы расстояний.

Ими являются объекты с достаточно надежно определяемой светимостью (абсолютной звездной величиной). Тогда сравнением с видимым блеском объекта фотометрическим путем находят расстояние. Другими индикаторами могут быть объекты с известными линейными размерами. В этом случае измерение их видимых угловых размеров на небе также позволяет вычислить расстояние.

Разумеется, вся трудность состоит в определении светимости или линейных размеров индикаторов, как говорят астрофизики – в их калибровке.

Типичная цепочка измерения все более далеких расстояний может выглядеть следующим образом.

Первым шагом является определение расстояния до одного из ближайших рассеянных звездных скоплений – Гиад. Это расстояние находится достаточно уверенно геометрическим путем и составляет около 45 парсеков. Зная расстояние до Гиад и измеряя видимую звездную величину т, можно вычислить абсолютную звездную величину М всех звезд – членов скопления.

Для звезд, в центральных частях которых водород в ядерных реакциях превращается в гелий, М зависит только от их цвета.

Если построить диаграмму видимая звездная величина – цвет для звезд скопления (диаграмму Герцшпрунга—Рессела), то такие звезды выстраиваются на ней в цепочку, называемую главной последовательностью, и их легко отличить от других звезд. Теперь, наблюдая звезды главной последовательности в других скоплениях, можно по их цвету вычислить М и, сравнивая с m, найти расстояния до скоплений. Так находят расстояния до скоплений в нашей Галактике. В некоторых скоплениях имеются цефеиды. Их абсолютные звездные величины М могут быть найдены по m и расстоянию. Суть дела состоит в том, что цефеиды подчиняются зависимости период – абсолютная величина М. Теперь, после нахождения М хотя бы нескольких цефеид, можно считать известным, какому периоду соответствует та или иная абсолютная звездная величина. Как говорят, эта зависимость теперь откалибрована. Цефеиды являются очень яркими звездами («сверхгигантами») и они видны в близких галактиках. Их называют первичными индикаторами расстояний. Если обнаруживают цефеиду в другой галактике, то, сравнивая видимую звездную величину m с М (найденную по периоду), вычисляют расстояние до нее, а значит, и расстояние до всей галактики. К сожалению, цефеиды видны только в ближайших галактиках (на расстояниях до нескольких миллионов парсеков). Чтобы продвинуться дальше, приходится делать следующий шаг – находить более мощные по светимости, чем цефеиды, индикаторы расстояний, как говорят – вторичные индикаторы. В качестве их используют, например, ярчайшие звезды галактик или ярчайшие шаровые звездные скопления. Как показывают наблюдения, абсолютные величины каждого из этих типов индикаторов достаточно одинаковы у галактик, принадлежащих к одному и тому же типу.

Величины М вторичных индикаторов находят (калибруют их), наблюдая их в ближайших галактиках, расстояния до которых уже известны. По вторичным индикаторам можно уже измерить расстояния до ближайших скоплений галактик (расстояния порядка десяти миллионов парсеков). Наконец, чтобы продвинуться еще дальше вглубь Вселенной, используют индикаторы третьего порядка.

Такими индикаторами могут быть сверхновые звезды в максимуме их блеска или же сами ярчайшие галактики в скоплениях.

Кроме указанных индикаторов используются и другие. Так, в качестве первичных индикаторов используются, например, новые звезды в максимуме их блеска, в качестве вторичных – линейные диаметры облаков ионизованного водорода и т. д.

Разумеется, всегда надо учитывать поглощение света в межзвездном пространстве и множество других технических факторов, на которых мы здесь не имеем возможности останавливаться.

Ясно, что на каждой ступени этой длинной лестницы неизбежные ошибки будут накапливаться.

Не приходится удивляться, что первые оценки расстояний грешили существенными систематическими ошибками, да и сейчас возможная неопределенность шкалы внегалактических расстояний еще очень велика.

Еще при Хаббле стали постепенно вырисовываться несоответствия, показывающие, что в оценках расстояний до галактик не все в порядке.

Так, в ближайших к нам галактиках: Большом и Малом Магеллановых Облаках не были найдены переменные звезды типа RR Лиры. Это означало, что их блеск столь слаб, что они не запечатлеваются на пластинках, сделанных с помощью имевшихся телескопов. Если бы эти галактики находились на расстоянии, как тогда считали, около 30 тысяч парсеков, то звезды типа RR Лиры были бы видны! Значит, в действительности они по-видимому дальше от нас, чем считалось.

Кроме того, согласно тогдашним оценкам расстояний по цефеидам туманность Андромеды удалена от нас на примерно 300000 парсеков. Эта галактика того же типа, что и наша, а рассчитанные с использованием такого расстояния светимости шаровых звездных скоплений и новых звезд в ней оказывались заметно меньше светимостей тех же объектов в нашей Галактике. Да и размеры туманности Андромеды не соответствовали размерам нашей – они оказывались существенно меньше, хотя обе галактики одного типа. Все говорило о том, что туманность Андромеды находится дальше, чем считалось.

С другой стороны, французский астроном X. Минёр, пересмотрев оценки расстояний до цефеид внутри нашей Галактики, пришел в 1944 г. к выводу, что их абсолютная величина по-видимому на 1,5 mярче, чем считалось со времен определений Шепли.

Все эти указания не принимались, однако, астрономами всерьез до 1952 г., когда Бааде на очередной Генеральной Ассамблее Международного астрономического союза в Риме сообщил, что по его исследованиям цефеиды на 1,5 mярче, чем полагали, и это означает, что всю шкалу внегалактических расстояний надо примерно удвоить, так как вторичные индикаторы для более далеких расстояний калибровались по ближайшим галактикам.

Вывод Бааде был подтвержден в работе А. Теккерея, выполненной в то же время, а затем и в многочисленных последующих работах.

Но на этом, пересмотр шкалы внегалактических расстояний не закончился.

Начиная с середины пятидесятых годов, настойчивая работа по определению внегалактических расстояний проводится учеником Э. Хаббла американским астрономом А. Сендиджем и его коллегами. А. Сендидж уточнил расстояния до ближайших галактик. Оказалось, что они втрое больше, чем думал Хаббл. Кроме того, он обнаружил и ошибку в работе своего учителя. Дело в том, что на снимках галактик, находящихся достаточно далеко, за границами Местной группы, ярчайшие точечные изображения оказались вовсе не звездами, как считал Хаббл, а целыми облаками светящегося ионизованного водорода (их называют областями HII). Хаббл не мог отличить их от звезд, так как из-за большого расстояния они видны на пластинках как точки. Только с появлением пластинок достаточно чувствительных к красным лучам стало возможным это сделать, сравнивая снимки в красных и синих лучах.

Компактные области HII в галактиках в скоплении Девы оказались, согласно Сендиджу, ярче самых ярких звезд на 1,8 m. Поэтому, когда Хаббл определял во сколько раз скопление Девы дальше ближайших к нам галактик, используя, как он думал ярчайшие звезды, а на самом деле области HII, то недооценивал расстояние этого скопления примерно в два раза. Выяснилось также, что и звезды самой высокой светимости в галактиках примерно в 25 раз ярче, чем принималось во времена Хаббла. В первой половине семидесятых годов считалось, что если учесть поправки в шкале расстояний до ближайших галактик, а затем еще в расстояниях до более далеких, то скопление в Деве и еще более удаленные скопления окажутся от нас раз в 6—10 дальше, чем принимал Хаббл. Соответственно во столько же раз уменьшалась оценка и величины постоянной Хаббла Н. От значения около 500 км/с на мегапарсек, данного Хабблом, она понизилась до 50—100 км/с на мегапарсек.

Еще в 1968 г. Сендидж использовал в качестве индикатора расстояний ярчайшие галактики в скоплениях, содержащих много членов. Это позволило ему продвинуться до расстояний, на которых скорость удаления объектов составляет 140 000 км/с! Определенная им таким способом постоянная Хаббла составила Н=75 км/ (с ∙ Мпк).

Последние десять-пятнадцать лет работы по определению шкалы внегалактических расстояний и постоянной Хаббла велись по меньшей мере столь же интенсивно, как и в предыдущие годы. Появились новые методы, уточнялись и детализировались старые.

Из новых методов надо отметить обнаруженную Р. Талли и Дж. Фишером (США) зависимость между шириной спектральной радиолинии нейтрального водорода (с длиной волны 21 см) и светимостью галактики. Ширина линии определяется скоростями движения газа, а скорости в свою очередь зависят от сил тяготения, а значит от массы галактики. С другой стороны, светимость галактики связана с ее массой. Так объясняется найденная зависимость. Она позволяет калибровать абсолютные звездные величины галактик.

Используя эту зависимость, можно по наблюдаемой ширине радиолинии водорода определить светимость галактики, и, сравнивая с видимым ее блеском, вычислить расстояние.

Метод Талли—Фишера неприменим к эллиптическим галактикам, где нет большого количества нейтрального водорода. Для таких галактик может быть использован аналогичный, метод калибровки их светимостей, только вместо скоростей движения газа спектральным путем определяются скорости движения звезд.

Другой перспективный метод состоит в совместном определении линейной скорости расширения оболочек взрывающихся сверхновых звезд в галактиках (это делается по доплеровскому смещению линий в их оптических спектрах) и измерении скорости роста угловых размеров разлетающихся оболочек. Последние измерения проводятся с помощью современных радиоинтерферометров со сверхдлинными базами, обеспечивающими угловое разрешение до 10 -4угловой секунды. Сравнивая линейную скорость с угловой, находят расстояние до сверхновой, а значит и до материнской галактики.

Еще один способ был предложен в СССР Я.Б. Зельдовичем и Р.А. Сюняевым. Он основан на совместных наблюдениях рентгеновского излучения горячего газа в скоплениях галактик и рассеянного им реликтового радиоизлучения (с. 166—172) горячей Вселенной.

Новые методы хотя и позволили сделать отдельные уточнения, но все же не привели пока к резкому увеличению надежности измерения расстояний.

При определении постоянной Хаббла помимо трудностей измерения больших расстояний возникла еще одна проблема. Начиная с шестидесятых годов становилось все более очевидно, что на движения сравнительно близких к нам галактик, удаляющихся со скоростью не более 4000 км/с должны существенно влиять силы тяготения крупных местных сгущений вещества – скоплений галактик. Эти силы могут в сравнительно небольших масштабах заметно искажать общее хаббловское расширение. Такие местные искажения совершенно необходимо специально учитывать при определении постоянной Хаббла.

В последние десятилетия прослеживается четкое разделение ведущих специалистов по внегалактическим расстояниям на две группы. Одна из этих групп во главе с Сендиджем и швейцарским астрономом Г. Тамманом настаивает на том, что постоянная Хаббла приблизительно равна H = 50 км/(с∙Мпк).

Подытоживая результаты длительной работы, Тамман на симпозиуме «Наблюдательная космология» в Китае в 1986 г. сказал: «Для всех практических целей рекомендуется удобное число Н = 50 км/(с∙Мпк); вероятно потребуется длительное время прежде чем существенно иное значение станет необходимым».

Оценка Тамманом возможной систематической ошибки в определении Н такова: «Неточность в значении хаббловской постоянной вероятно определяется реалистическим 99% доверительным интервалом 35 < H < 75» (числа соответствуют единицам: км/(с∙Мпк)).

Многие астрономы не согласны, однако, с таким заключением. Приверженцы второй группы специалистов по внегалактическим расстояниям считают, что постоянная Хаббла близка к H = 100 км/(с∙Мпк). Глава этого направления французский астроном Ж. де Вокулёр в обзорной работе 1982 г. приходит к заключению: «Наиболее вероятное значение хаббловской постоянной... есть H = 95 ± 10 (среднеквадратичная ошибка) км/(с∙Мпк) ..., или в более общем виде ... 116 ≥ H ≥ 81...» (в единицах км/(с∙Мпк). Первую группу астрономов часто называют сторонниками «длинной» шкалы внегалактических расстояний, вторую – сторонниками «короткой».

Почему такая большая разница в оценке Н крупнейшими специалистами? Безусловно, в основе этого противоречия лежит недостаточность нашего знания, связанная с колоссальной трудностью проблемы. Более конкретно разница в выводах вызвана разными методиками, используемыми теми и другими специалистами.

Главное различие в методике состоит в том, что Сендидж и Тамман выбирают минимальное число наиболее надежных, по их мнению, индикаторов расстояний (первичных, вторичных и т. д.) и так же минимальное число надежных способов их калибровки, в то время как Ж. де Вокулёр, С. ван ден Берг и другие астрономы предпочитают брать большое число индикаторов и калибровать их всеми возможными способами. По образному выражению Ж. де Вокулёра первая группа предпочитает «ставить все свои деньги на одну лошадь», а вторая группа исповедует философию «распределения риска». Надо подчеркнуть, что разница вдвое в «короткой» и «длинной» шкалах расстояний получается только для самых удаленных объектов, находящихся от нас заметно дальше, чем ближайшее крупное скопление галактик в созвездии Девы. Оценки расстояний до ближайших галактик, в которых видны цефеиды – наиболее надежные первичные индикаторы внегалактических расстояний – у обеих групп приблизительно совпадают или же во всяком случае не сильно отличаются. Здесь разница составляет всего около двадцати процентов. С увеличением расстояний растет и расхождение между шкалами, достигая полутора на расстоянии скопления Девы и примерно двух для гораздо более далекого скопления в созвездии Волос Вероники.

Говоря о разных значениях Н – 50 и 100 км/с на мегапарсек – надо помнить, что из них следуют разные оценки возраста Вселенной. Так, в простейшей модели Эйнштейна – де Ситтера H = 50 км/(с∙Мпк) соответствует времени, прошедшем с начала расширения, t = 13∙10 9лет, а H = 100 км/(с∙Мпк) – вдвое меньшему. Между тем, оценки возраста шаровых скоплений, как правило, превышают 15 миллиардов лет, доходя до 18 миллиардов лет. Неопределенности в возрастах этих, вероятно, самых старых объектов во Вселенной, не меньше, чем неопределенности оценки постоянной Хаббла. Тем не менее, даже с учетом возможной ошибки, по-видимому, очень трудно, а может быть и невозможно, согласовать возраст шаровых скоплений в 15 миллиардов лет с возрастом Вселенной в 6,5 миллиардов лет (в простейшей космологической модели), следующим из значения постоянной Хаббла H = 100 км/(с∙Мпк).

Совместить космологическую теорию и наблюдения в этом случае можно вероятно, только возвращаясь к первоначальной идее Эйнштейна о существовании сил отталкивания, описываемых космологической постоянной Λ в уравнениях поля. Введение этих сил позволяет, в принципе, сколь угодно «растянуть» время, прошедшее с начала расширения Вселенной.

Обо всей ситуации, сложившейся с двумя шкалами внегалактических расстояний, Ж. де Вокулёр пишет: «Путь прогресса в астрономии редко бывает прямым, он усыпан развалинами ложных теорий, ошибочных наблюдений, неправильных интерпретаций, которые хотя и могли задержать на некоторое время продвижение науки, часто делали положительный вклад в нее, концентрируя внимание исследователей на данном вопросе. Разрешение противоречий между конфликтующими точками зрения или результатами является признанным механизмом прогресса. И хотя через несколько лет путаная история с длинной и короткой шкалами расстояний станет главным образом уделом историков астрономии, неоспоримо, что рассматриваемая ситуация была последние восемь лет непосредственной причиной огромных усилий многих астрономов. В процессе исследований были установлены и исключены источники систематических ошибок, были развиты новые и лучшие методы определения расстояний, местная анизотропия поля скоростей была, наконец, окончательно признана всеми и, вероятно, неожиданно были получены указания на ненулевую космологическую постоянную».

Если числовое значение постоянной Хаббла известно недостаточно хорошо, то сама форма зависимости – пропорциональность скорости удаления галактик их расстоянию, установлена весьма надежно. Для проверки формы закона расширения Вселенной необязательно знать численное значение коэффициента Н. Действительно, если мы знаем, что какой-то индикатор расстояний имеет постоянную (хотя и неизвестную точно) светимость, то, сравнивая между собой видимые звездные величины этих объектов, находящихся на разных расстояниях, можно непосредственно узнать отношение их расстояний. Таким образом, видимые звездные величины таких индикаторов служат указателями относительных расстояний.

Еще Хаббл предложил использовать в качестве индикаторов целые галактики в скоплениях. Отдельные случайные галактики не могут служить индикаторами расстояний, так как их светимости весьма различны. Имеются галактики, совокупная светимость звезд которых в десятки раз больше светимости нашей Галактики. Но есть и такие, которые светят в сотни раз слабее. Однако ярчайшие галактики в скоплениях, как правило, имеют близкие светимости (сам Хаббл использовал не первую, а пятую по яркости галактику скопления, но это, конечно, не меняет сути дела). Поэтому для проверки пропорциональности скорости расширения Вселенной расстоянию строят зависимость между видимой звездной величиной ярчайших галактик в скоплениях и красным смещением, характеризующим скорость удаления скопления. Эту последнюю величину обычно обозначают буквой z и она определяется как изменение длины волны линий в спектре, деленное на длину волны той же линии в случае неподвижного источника: z = Δλ/λ.

На рис. 3 (с. 92) приведена такая зависимость по данным А. Сендиджа и Г. Таммана 1981 г. Как видно, линейная зависимость между логарифмом z и звездной величиной, предсказываемая законом Хаббла, соблюдается весьма точно вплоть до z ≈ 0,7.

В левом нижнем углу рисунка изображен черный прямоугольник. Он соответствует области данных, которыми располагал Хаббл в 1929 г., когда открывал свой закон. Это сравнение наглядно демонстрирует, как далеко продвинулась астрономия за последние полвека.

Еще недавно казалось, что прогресс будет даже большим. Надежды связывались с открытыми в начале шестидесятых годов квазарами. История открытия этих объектов начинается в сентябре 1960 г., когда Т. Метьюз и А. Сендидж получили на знаменитом 200-дюймовом телескопе фотографию очень компактного радиоисточника, носящего номер ЗС48 в Третьем Кембриджском каталоге. Объект выглядел, как звезда 16 m, окруженная слабой туманностью. Через месяц Сендидж получил его спектр. В нем имелись широкие линии излучения, которые, однако, не соответствовали линиям какого-либо известного химического элемента. В последующие два года Метьюз и Сендидж, а затем и другие астрономы показали, что и еще некоторые точечные радиоисточники также отождествляются в оптических лучах со слабыми звездоподобными объектами.

В 1963 г. работавший на Маунт Паломар голландский астрофизик М. Шмидт получил спектр звездоподобного оптического изображения компактного радиоисточника ЗС273. На фотографии объект выглядит звездой 13 m. М. Шмидт установил, что необычные линии излучения в спектре источника принадлежат водороду – самому распространенному элементу в природе, только они смещены в красную сторону на z = 0,16, но большие красные смещения могут вызываться только быстрым удалением объекта из-за расширения Вселенной. Применяя закон Хаббла, нетрудно показать, что объект находится необычайно далеко и его светимость в сотню раз превышает светимость самых крупных галактик. Вскоре большие красные смещения были обнаружены и у других подобных объектов. Несколько позже все такие объекты стали называть квазарами.

Уже само открытие необычайно мощных источников излучения во Вселенной было сенсационным. Но по настоящему удивительным оказалось свидетельство о чрезвычайно малых размерах этих мощнейших излучателей. Оценка размеров квазаров была получена в результате открытия переменности их блеска.

Сообщение о странных объектах было получено в Москве в начале марта 1963 г. По инициативе И. С. Шкловского Ю. Н. Ефремов и один из авторов этой книги (А. Ш.) исследовали блеск квазара 3С273 по пластинкам Государственного астрономического института им, П. К. Штернберга. Было установлено, что квазар меняет свой блеск с амплитудой 0,7 m. В то же время американские астрономы X. Смит и Д. Хоффлейт также обнаружили переменность 3С273 с амплитудой 0,6 m. Любопытно, что статьи советских и американских исследователей были посланы в печать в один и тот же день – 9 апреля 1963 г.

Оказалось, что блеск квазара 3С 273 иногда заметно меняется и за несколько дней. Это означает,, что линейные его размеры не могут превышать нескольких световых дней. Если бы они были больше, то лучи света, одновременно приходящие к нам, должны покидать разные части объекта в существенно разное время: от более далеких частей выйти раньше, от расположенных ближе – позже. В результате в наблюдаемом суммарном свете изменения осреднялись бы и колебаний блеска за несколько дней наблюдать было бы нельзя.

Природа квазаров долгое время оставалась загадочной. Постепенно выяснилось что квазары являются ядрами гигантских далеких галактик.

Ядра наблюдаются в центрах многих галактик, но обычно их светимость не очень велика. В случае же квазаров по каким-то причинам ядра находятся в состоянии большого возбуждения и их светимость составляет 10 45—10 47эрг/с, что в десятки и даже сотни раз превышает светимости крупнейших галактик.

Естественно было бы весьма заманчивым использовать столь мощные излучатели, видимые с огромных расстояний, и для проверки закона Хаббла, и для решения других задач космологии. Однако выяснилось, что использовать их для этих целей крайне сложно. Дело в том, что в отличие от ярчайших галактик в скоплениях квазары имеют огромный разброс светимостей и тем самым не могут служить индикаторами расстояний. К тому же светимость квазаров сильно меняется с течением времени. Характерное время жизни квазара, вероятно, порядка 10 7лет. Возраст галактик – порядка 10 10лет. Гораздо более короткий период активности квазара по сравнению с возрастом галактики и обуславливает сравнительно сильную его изменчивость.

Проблема эволюции, изменчивости светимости и других свойств галактик и квазаров становится одной из кардинальных, когда мы обращаемся к объектам, имеющим красное смещение порядка z ≈ 1 и больше. Свет, приходящий к нам сегодня, покинул столь далекие объекты миллиарды лет назад, когда они были существенно моложе и светимость наших стандартных индикаторов расстояния была заметно иной, чем светимость в наше время, которую мы наблюдаем у близлежащих объектов. Эволюция же галактик и квазаров известна плохо.

Между тем, крайне важно изучать зависимость «видимая звездная величина – красное смещение» для объектов с красным смещением z больше единицы, так как при таких больших расстояниях начинают сказываться существенные факторы, характеризующие нашу Вселенную. Во-первых, важно, что при этом мы видим Вселенную в далеком прошлом, когда постоянная Хаббла была другой, ибо расширение тормозится тяготением вещества. Наблюдения объектов с большим z позволило бы определить замедление, а значит и вычислить среднюю плотность вещества во Вселенной, Во-вторых, на таких расстояниях сказываются уже релятивистские эффекты – изменение течения времени в сильных полях тяготения и искривленность пространства Вселенной. Как подчеркивал еще Хаббл, наблюдения в принципе позволяют определить эти эффекты. Однако они «перепутаны» с эффектами эволюции и разделить их – крайне сложная задача. Приходится с сожалением констатировать, что пока наблюдения далеких объектов не привели к сколько-нибудь определенным выводам и вся надежда на планируемые будущие исследования, к рассказу о которых мы переходим.

На начало 1988 г. наибольшие красные смещения, измеренные у галактик и квазаров, были соответственно z Г= 3,2 и z K= 4,4, Наибольшие же красные смещения, бывшие в распоряжении Хаббла, составляли всего z ≈ 0,004...


    Ваша оценка произведения:

Популярные книги за неделю