![](/files/books/160/oblozhka-knigi-ledenyaschie-zvezdy.-novaya-teoriya-globalnyh-izmeneniy-klimata-168873.jpg)
Текст книги "Леденящие звезды. Новая теория глобальных изменений климата"
Автор книги: Хенрик Свенсмарк
Соавторы: Найджел Колдер
Жанры:
Астрономия и Космос
,сообщить о нарушении
Текущая страница: 9 (всего у книги 15 страниц)
Увы, электрическое поле никак не влияло на результат. Что их ждет, удача или провал, зависело от того, как быстро они смогут найти объяснение. Свенсмарк размышлял: а вдруг электроны – легкие отрицательно заряженные частицы, выбиваемые космическими лучами из обычных молекул воздуха, – способны формировать ядра каплеобразования намного быстрее, чем это рисовалось ему – или кому бы то ни было еще – ранее? Это могло происходить только в том случае, если бы электроны скакали от «точки» к «точке», бросая одни недостроенные капли серной кислоты и принимаясь за другие, подобно учителю, пытающемуся построить толпу ребятишек парами.
Если допустить такую возможность, то электроны могли бы успеть оказать значительный эффект меньше чем за секунду, еще до того, как их сметет электрическое поле. Вместо того чтобы пытаться избавляться от ионов, возможно, следует, напротив, добавить еще и посмотреть, увеличится ли тогда число «точек». С этой работой могли справиться гамма-лучи, но те радиоактивные источники, что были в распоряжении группы, не оказывали нужного воздействия, если их размещали за пределами камеры. Однако когда радиоактивные источники стали вводить – через специальную трубку – непосредственно в короб, гамма-лучи начали провоцировать быстрое образование «точек», и это сильно обнадежило экспериментаторов.
Поразительный эффект обнаружился случайно, через несколько дней после начала экспериментов с гамма-лучами. Аспирант Мартин Энгхофф и инженер Йозеф Полни заметили, что вскоре после того, как они помещают радиоактивные источники в камеру, детекторы начинают регистрировать большое количество сверхмалых «точек». Это происходило еще до включения ультрафиолетовых ламп, которые должны были помочь двуокиси серы превратиться в пары серной кислоты. Стало очевидно, что эта химическая история могла спокойно развиваться и без участия ультрафиолета – спасибо ему, конечно, большое.
Хотя первые результаты, говорившие о возросшем количестве ионов в камере, все же развеяли воцарившееся было уныние, тем не менее дело пока еще попахивало импровизацией, и формально эта серия не могла считаться состоявшимся экспериментом. Следующие пять недель группа провела, занимаясь другими испытаниями и поджидая, когда из Бельгии привезут более подходящие радиоактивные источники, которые должны были распределять гамма-лучи равномерно по всей камере. После получения необходимого оборудования ученые приступили к новым исследованиям возросшей ионизации.
Опыты отчетливо показывали: чем больше свободных заряженных частиц в воздухе, тем эффективнее образуются сверхмалые «точки». Удвоение количества «точек» требовало четырехкратного увеличения количества ионов. (Другими словами, производство «точек» растет в обратной квадратичной зависимости от плотности ионов.) Это означает, что при любых вариациях космических лучей наибольший эффект в производстве «точек» достигается в том случае, когда общая интенсивность ионов довольно невысока.
Таким образом, ионное ядрообразование было действительно возможным, и Свенсмарк сделал вывод, что электроны способны в мгновение ока создавать ядра еще до того, как электрическое поле удалит их из камеры. За шесть месяцев ученые провели самые разнообразные испытания – с использованием постоянной либо же периодической светимости ультрафиолетовых ламп – и накопили много согласованных результатов. Когда Свенсмарк убедился, что сможет объяснить полученные результаты теоретически, он вернулся к своей первоначальной идее о том, чтобы подавлять активность заряженных частиц электрическим полем.
По оценке ученого, «скачущему» электрону нужно было около одной пятой секунды, чтобы образовать гроздь капелек серной кислоты. Предположение можно было проверить, если бы с помощью более сильного поля удалось очистить воздух от электронов раньше этого срока. Сначала предел электрического напряжения, подаваемого в камеру, составлял 10 000 вольт. Затем – это было в конце июня 2005 года – ученые попытались дать 20 000 вольт, и, к их удовлетворению, пиковое количество сверхмалых «точек» уменьшилось вдвое.
На следующий день они подсоединили генератор в 50 000 вольт, который Ульрик Уггерхёй раздобыл в Орхусском университете. Когда электрическое напряжение прошло отметку 40 000 вольт, в камере проскочила искра, и раздался удар грома. Электромагнитный импульс вышиб электронику и один из измерителей скорости потока. Команда бросилась приводить систему в порядок, а Свенсмарк даже выразил некоторое удовольствие: «С искрами и взрывами это действительно похоже на настоящую науку» [61]61
Из сообщения Хенрика Свенсмарка Найджелу Колдеру, 2005 г.
[Закрыть].
На третий день они попробовали повторить эксперимент, ограничившись напряжением 40 000 вольт. Повисла пауза – «затянувшееся короткое замыкание», как выразился Свенсмарк, – и вновь грянул гром. К сожалению, в этот раз оборудование пострадало сильнее, и на то, чтобы починить приборы, ушло три месяца. Поскольку продолжать экспериментальную часть не было возможности, Свенсмарк решил, что пришло время сесть за стол и описать полученные результаты для публикации в научном журнале.
Электроны сеют семена
К счастью, данных набралось уже достаточно, чтобы они могли полнозвучно пропеть свою песню. Свенсмарку и его коллегам оставалось лишь услышать мелодию и постараться понять ее. Вопреки их предположениям образование сверхмалых «точек» шло слишком быстро, и даже последняя теория Фанцюнь Юя и Ричарда Турко не объясняла этого явления. Здесь был нужен совершенно новый механизм.
За то время, пока продолжались опыты, Свенсмарк разработал математическое описание всех событий, произошедших после того, как приборы показали появление первых «точек». Будучи заложенной в компьютер, эта математика очень хорошо прогнозировала результаты. С тем же успехом она работала и в обратном направлении, рисуя убедительную картину того, должно было происходить с «точками» размером меньше трех нанометров, до того как приборы могли их уловить.
Последовательность и скорость событий говорили о том, что процесс ядрообразования начинается слишком рано. Впрыскивание двуокиси серы и озона в камеру происходило за час до того, как в дело вступало Солнце в исполнении ультрафиолетовых ламп. В течение этого часа должны были формироваться кластеры молекул. По размеру они даже меньше, чем сверхмалые «точки», и, следовательно, были неуловимы для имевшихся в распоряжении ученых приборов. Как случайно выяснили Мартин Энгхофф и Йозеф Полни, для образования капелек серной кислоты помощь ультрафиолета была не нужна.
Ключевыми игроками оказались электроны. Достаточно всего лишь одного электрона, прилепившегося к молекуле кислорода, чтобы она стала привлекательной для молекул воды. Несколько таких молекул собираются вместе и создают водяной кластер. Будучи активирован озоном и имея в достатке двуокись серы, водяной кластер становится центром, где начинает образовываться – и накапливаться – серная кислота. Таким образом, старое представление о том, что молекулы серной кислоты сначала образуются под действием ультрафиолетового света и лишь затем медленно стекаются в группы, как мысли, с запозданием приходящие в голову, – можно признать недействительным. Здесь мы видим, как они рождаются в виде молекулярных кластеров – во всяком случае, на самой первой стадии образования «точек».
В самом начале электрон выступает в роли клея, крепко скрепляющего всю конструкцию. Но когда кластер, пусть еще очень маленький, накапливает несколько молекул серной кислоты, он становится достаточно устойчивым, чтобы вести самостоятельное существование. Электрон теперь может двигаться дальше, найти другую молекулу кислорода и начать строить новый кластер. Таким образом, он действует как катализатор, который стимулирует химические реакции и при этом не расходует себя.
![](i_009.jpg)
Быстродействие космических лучей в создании строительного материала для ядер облачной конденсации (тех ядер, на которых формируются водяные капельки) зависит от энергичной деятельности электронов, комплектующих кластеры из молекул.
Процесс шел очень быстро, а так как в коробе эксперимента «SKY» работало много электронов, количество молекулярных кластеров успевало достигнуть миллионов на литр, прежде чем включались ультрафиолетовые лампы. Когда подается ультрафиолет и молекул серной кислоты становится намного больше, уже существующие кластеры готовы захватить их и присоединить к себе. К тому времени как кластер накопит около семидесяти молекул серной кислоты, он увеличится в диаметре от 1 до 3 нанометров, и его уже можно будет распознать как сверхмалую «точку».
Если новая теория правильно объясняет события, произошедшие в реакционной камере, и если «SKY» – это реалистическая модель атмосферы, тогда такой же процесс должен происходить в небе над нашими головами. Сверхмалые «точки» вырастают в полноразмерные ядра облачной конденсации и ежедневно высеивают зерна для образования новых облаков. Можно сказать, мы получили наконец ответ на головоломку и разобрались в том, что сеет зерна, что образовывает ядра ядер и что заставит поросенка перепрыгнуть через ограду, – это электроны, высвобожденные космическими лучами.
Летом 2005 года эксперимент был завершен, и группа подготовила научный труд по его результатам. А затем члены группы столкнулись с долгими проволочками, так как ведущие научные журналы один за другим под разными предлогами отказывались печатать доклад, не ставя, впрочем, под сомнение технические заслуги экспериментаторов. Особенно расстраивало ученых то правило, согласно которому журналы часто запрещают разглашать предварительную информацию, а это означает, что вы не можете ничего рассказать о проведенном эксперименте до момента публикации. Больше года результаты эксперимента нигде открыто не упоминались, и об опыте знал лишь узкий круг коллег.
В конце концов престижный лондонский научный журнал «Труды Королевского общества» принял этот доклад, озаглавив его «Экспериментальные доказательства роли ионов в ядрообразовании в атмосферных условиях». И хотя бумажный номер журнала должен был выйти из печати не раньше 2007 года, журнал опубликовал доклад в Сети в октябре 2006-го. Статья сопровождалась комментариями Королевского общества [62]62
Королевское общество (полное название – Лондонское королевское общество по развитию знаний о природе, The Royal Society of London for the Improvement of Natural Knowledge) – ведущее научное общество Великобритании, одно из старейших научных обществ в мире; создано в 1660 г.
[Закрыть]и Датского национального космического центра, от лица которого высказался его руководитель Айгиль Фриис-Кристенсен:
«Многие климатологи считали, что связь между космическими лучами и облаками недоказуема. Некоторые утверждали, что вообще нет мыслимого способа, каким космические лучи могли бы воздействовать на облачный покров. Сейчас эксперимент „SKY“ показал нам, что заряженные частицы способны на это, и нам следует включить космические лучи в список тем международных исследований климата» [63]63
Цит. по пресс-релизу Датского национального космического центра, публикация которого была разрешена только 4 октября 2006 г.
[Закрыть].
Оставляя в стороне все межличностные и научные перебранки 1996–2006 годов, краткое изложение истории выглядит так. Согласно измерениям метеоспутников, облачный покров Земли ритмично изменялся на протяжении нескольких лет, идя след в след за изменением количества пятен на Солнце. А точнее говоря, он ориентировался на эффективность солнечного ветра, регулирующего потоки космических лучей, которые достигают Земли. Это подтолкнуло ученых провести эксперименты в области химии атмосферы. Состоявшиеся опыты продемонстрировали, как электроны, высвобождаемые заряженными частицами, ускоряли процесс образования кластеров молекул серной кислоты – наиболее важного источника ядер облачной конденсации.
Цепочка научных объяснений, протянувшаяся от звезд через облака к климату, сейчас, по существу, выкована, хотя в ней всегда найдется место для новых звеньев. Ими могут стать результаты, полученные в ходе тщательных лабораторных экспериментов, таких как «CLOUD», или при зондировании реальной атмосферы с борта самолета. Эксперимент «SKY» удачно воспроизвел условия в нижних слоях атмосферы, где колебания в интенсивности космических лучей ведут к очевидным изменениям в облачности. Результаты эксперимента придадут уверенности любому человеку, желающему понять, какую роль вечно меняющийся поток космических лучей играет в вечно меняющемся климате нашей планеты. Об этой роли речь пойдет в следующих главах. А пока вы благодарите вашу счастливую звезду за облака, которые поят мир дождями, помните, что в их власти и заморозить всю планету целиком.
5. Галактический путеводитель для динозавров
Климат ритмично меняется на протяжении миллионов лет.
Холодные периоды на Земле совпадают с теми временами, когда она оказывалась в ярких рукавах Млечного Пути.
Климат влияет на эволюцию – например, на появление птиц.
Потепление, вызванное двуокисью углерода, может быть меньше, чем об этом говорят.
Сегодня климатические данные могут рассказать нам о Галактике.
В Балтийском море в 80 километрах южнее Копенгагена лежит датский остров Мён. Фермеры острова всегда будут помнить о том, как некогда они не захотели предложить сено коню Клинтеконгена, чтобы защитить свои посевы. Про Клинтеконгена говорили, что он преемник скандинавского бога Одина, создателя мира, и в обличье птицы защищает остров от врагов. Домом ему служила пещера в утесе Мёнс Клинт, самом впечатляющем из морских утесов Дании.
Взмывающие в небо белоснежные известняковые горы Мёнс Клинт рассказывают геологам не менее захватывающую историю, которая поспорит с любой легендой, о том, как менялся климат в древности и как формировался современный облик мира. Отложения мела накапливались на дне океана 70 миллионов лет назад, когда миром правили тираннозавры и другие гигантские рептилии. На планете было так тепло, что на полюсах не было льда, а динозавры обитали даже в Антарктиде. Уровень моря был очень высоким. Слои карбоната кальция на дне океана предоставляли убежище миллиардам микроскопических водорослей и постепенно нарастали, когда их обитатели погибали. В Балтийском регионе эти накопления образовали отложения мела стометровой толщины.
Мел накапливался по всей планете в широчайших масштабах, отчего этот геологический период и получил название мелового. Не очень далеко от Мёна, в южной Англии, огромный пласт мела позднее вздыбился, и морские ветры и волны вылепили из него Белые скалы Дувра. Там и по сей день слои мела сложены так же аккуратно, как и раньше, когда они много миллионов лет назад лежали на морском дне.
Утесы Мёнс Клинт настолько не похожи на скалы Дувра, что это послужило причиной ожесточенных споров в XIX веке. В 1851 году датский геолог Кристофер Пуггор опубликовал доклад, где выразил свое смятение от того, что он увидел:
«Слои мела скручиваются, извиваются и изгибаются во всевозможных направлениях, в виде букв S или Z, в полукруглой форме или форме стремени, или же их разрезают расселины, образующие глубокие провалы, отчего они переплетаются самым невероятным образом. Примерно посередине обрыва, в месте, называемом Дроннингестоль, неразбериха достигает максимума, и именно там находится вершина утеса… В падении пласта слои также чрезвычайно изменчивы, и в некоторых местах они резко переходят от горизонтального положения в вертикальное» [64]64
С. Puggaard. Geological Magazine.Vol. 33, pp. 298–309, 1896 (в оригинале на французском языке).
[Закрыть].
Споры между геологами, по-разному объясняющими перемещения меловых пластов в северо-западной Европе, не утихали полвека. Некоторые, к ним принадлежал и Пуггор, отстаивали ту точку зрения, что скалы, находящиеся под мелом, опустились или разрушились. Это, по их мнению, приводило к тому, что мел или более молодые слои других пород скользили вниз, сталкивались и падали, как если бы в помещении вдруг обрушился потолок. Другие предполагали, что причиной возникновения высокого откоса могло стать движение льда.
Сегодня картина стала много понятнее. В течение последнего ледникового периода, начавшегося около 70 тысяч лет назад, большой ледник наступал на запад через область, которую сейчас занимает Балтийское море. Язык ледника взломал мел, словно бульдозер, образовав десятка два отколов, каждый толщиной около ста метров. Ледник беспорядочно толкал их перед собой, пока не остановился. Затем наступило длительное потепление, и остров Мён остался стоять как «конечная морёна» в том месте, где ледник сбросил свой груз.
Таким образом, Мёнс Клинт – это дитя двух контрастных состояний мира, условно их можно назвать «парник» и «ледник». Когда планета гостила в «парнике», организмы, производящие мел, нежились и процветали в спокойных водах. Когда пришел черед переместиться в «ледник» – меловые захоронения раскурочила двигающаяся гора льда. Переход от одного состояния к другому был впечатляющим, но не внезапным.
50 миллионов лет назад температуры заметно упали. А 30 миллионов лет назад долговечные льды уже обосновались в Антарктиде. По-настоящему холодные условия в североатлантическом регионе наступили 2,75 миллиона лет назад, и сейчас мы живем в «леднике», где ледовые поля и снежные покровы составляют неотделимую часть пейзажа.
Специалисты по-разному пытаются объяснить эту поразительную перемену в климате. Может быть, виной всему были географические изменения. Континенты, как обычно, перемещались по земному шару, и Австралия отделилась от Антарктиды, оставив ту в одиночестве на Южном полюсе. Это одиночество усугубило Антарктическое круговое течение, отрезавшее Южный континент от теплых океанских потоков, и Антарктика стала идеальным местом для накопления ледяных запасов. Столкновение Индии с Азией подтолкнуло Гималаи и Тибет выше к небу и создало бассейн прохлады в тропиках. По другим предположениям, причиной похолодания стало уменьшение углекислого газа в атмосфере.
Астрофизик из Института физики им. Дж. Рака в Иерусалиме, Нир Шавив, предложил совершенно иное объяснение такого переключения с теплого периода, благоприятного для накопления мела, на холодный, безжалостно это накопление разрушивший. По мнению ученого, ответ на загадку следует искать в Млечном Пути. И главным образом, утверждает он, в той очень светлой области, называемой рукавом Стрельца – Киля, которая хорошо заметна в Южном полушарии зимними вечерами.
Около 60 миллионов лет назад Солнце в компании Земли и остальных планет посетило эту область – тогда, как, впрочем, и сейчас, она была населена яркими, но недолговечными звездами. Солнечная система пришла с дальней стороны того яркого рукава, который мы видим в небе и сегодня, называя его «Млечный Путь». И вынырнула на ближней стороне приблизительно 30 миллионов лет назад. В этом спиральном рукаве было огромное количество взрывающихся звезд, и, соответственно, интенсивность космических лучей, производимых ими, была также очень высока.
Шавив взял на вооружение открытие Свенсмарка о том, что космические лучи могут влиять на климат и остужать мир, создавая низкую облачность. Согласно этой трактовке, в период между отметками на шкале времени «60 миллионов лет назад» и «30 миллионов лет назад» среднемировая температура резко снизилась, и Антарктику сковали льды. Когда рукав Стрельца – Киля отступил, похолодание приостановилось, и снова наступило бы потепление, если бы прогулка по Галактике не привела нашу планету к еще одному району, где сконцентрировались яркие звезды, – рукаву Ориона. Мы и сейчас находимся в нем, все еще в глубине «ледника», в комнатке, где относительно теплые условия позволяют Земле отдохнуть в перерыве между ледниковыми периодами. Нам просто дали отсрочку от оледенения, подобного тому, что перетряхнуло меловые отложения острова Мён.
Работа Шавива была опубликована в 2002 году, и там объяснялся не только самый последний переход от теплой к холодной фазе, но и все четыре главных похолодания, включая и то, когда многоклеточные впервые стали играть заметную роль на планете, что случилось немногим ранее 500 миллионов лет назад.
Все, что мы успели рассказать вам о космических лучах и климате, касается недавних событий, настолько краткосрочных с геологической и астрономической точек зрения, что приток заряженных частиц из Галактики в Солнечную систему можно считать почти неизменным. В течение последних ста тысяч лет основной причиной, по которой менялась интенсивность космических лучей, проникающих в нижние слои земной атмосферы, были изменения в поведении Солнца. Но так как Солнце и Земля путешествуют по обширным царствам времени и пространства, измеряемым миллионами лет и тысячами световых лет, им приходилось сталкиваться и с другими, более значительными и более длительными колебаниями потоков космических лучей.
Послания в метеоритах
Хотя вы не сможете обойтись без телескопа, чтобы рассмотреть в подробностях какую-нибудь из спиральных галактик, поверьте, что они – одно из самых прекрасных явлений на небе. Эти рои из многих миллиардов звезд так организованы, что самые яркие и голубые звезды рассеяны главным образом вдоль изящно изогнутых рукавов, исходящих из центрального шара или перемычки, где находятся более старшие красные звезды. Гравитация сплющивает спиральную галактику, и сбоку она похожа на глазунью из одного яйца (как если бы вы и глазунью рассматривали тоже сбоку) с выпуклостью посередине.
Так как мы с вами находимся внутри нашей Галактики, нам она кажется просто лентой света, идущей по небу, – ее назвали Млечным Путем задолго до того, как люди узнали, что это «островная вселенная», похожая на многие далекие объекты, разбросанные по всему ночному небу. До 1950-х годов, пока один датский радиотелескоп не снабдил ученых данными о распределении водорода в обозримой части Вселенной, астрономы не могли с уверенностью сказать, что Млечный Путь представляет собой спиральную галактику, такую же, как галактика Андромеды, галактика Водоворот и многие другие.
Сила притяжения, действующая между звездами, порождает волны вещества с большей или меньшей плотностью. Эти волны приводят к образованию спиралей, медленно кружащихся вокруг центра Млечного Пути. Волны плотности возмущают межзвездный газ и заставляют его собираться в относительно плотные облака, из которых потом рождаются новые звезды, омолаживая Галактику. В результате рукаваукрашают массивные яркие голубые звезды, но их жизнь слишком коротка, и они взорвутся и извергнут из себя космические лучи, прежде чем смогут уйти далеко от места своего рождения.
Маленькие звезды, такие как Солнце, живут достаточно долго, чтобы совершить много оборотов вокруг центра Галактики. Но так как их скорость отличается от скорости вращения галактических рукавов, они периодически входят в спиральные рукава, а затем выходят с противоположной стороны. Поток космических лучей достигает максимума в то время, когда Солнце и сопровождающие его планеты выходят из спирального рукава. Причина кроется в том, что в «передней» кромке рукава находится много больших звезд, и они движутся даже немного впереди этой кромки, прежде чем взорвутся. Согласно расчетам Нира Шавива, спиральные рукава должны оказывать колоссальный эффект на климат:
«Изменения потока высокоэнергетических космических лучей, связанные с нашим галактическим путешествием, в десять раз значительнее, чем изменения, вызванные солнечной активностью, при этом именно космические лучи высоких энергий ответственны за ионизацию нижних слоев атмосферы Земли. Если Солнце отвечает за колебания среднемировой температуры Земли примерно на 1 градус Цельсия в ту или иную сторону, то эффект от прохождения через спиральный рукав может составить около 10 градусов. Этого более чем достаточно, чтобы переключить Землю с режима „парник“, когда умеренный климат охватывает полярные области, на режим „ледник“, когда полюса обрастают ледниковыми шапками, которые мы наблюдаем и сегодня. В сущности, можно ожидать, что для периодов, исчисляемых сотнями миллионов лет, главный двигатель изменений климата – это эффект галактических рукавов» [65]65
N. J. Shaviv. «Cosmic Rays and Climate», опубликовано в PhysicaPlus,онлайн-журнале Израильского физического общества, 2005 г.
[Закрыть].
Во время своего тура по Галактике Солнце и Земля пересекают четыре главных рукава, или, если быть точным, четыре сегмента рукавов. Эти рукава названы по именам созвездий, за которыми они кажутся более заметными в ночном небе. Небольшой коридор ярких звезд, называемый рукавом Ориона, где мы находимся сейчас, отходит от главного рукава – Персея, – к которому мы и движемся. Наше вхождение в рукав Персея состоится через 50–100 миллионов лет. В далеком будущем Земля снова посетит рукава Наугольника, Щита – Южного Креста и Стрельца – Киля.
![](i_010.jpg)
Продвигаясь вместе с Солнцем сквозь спиральные рукава Млечного Пути, Земля подвергается обстрелу космическими лучами различной интенсивности, и, соответственно, условия на планете меняются от парниковых к ледниковым и обратно. Изучение истории изменений климата может помочь избавиться от сомнений относительно точного маршрута Солнца в Галактике и расположения спиральных рукавов, обозначенных на рисунке кривыми линиями и тенями различного характера. (Масштаб дан в килопарсеках (кпк): 15 килопарсеков соответствуют 49 000 световых лет)
Хотя астрофизики пришли к единому мнению относительно скорости Солнца, путешествующего по своей галактической орбите, скорость вращения спиральных рукавов все еще остается предметом научных споров. За последние сорок лет ученые называли разные цифры: от половины скорости движения Солнца до даже большей, чем его скорость. Чтобы связать между собой вхождения в спиральные рукава и изменения климата, происходившие на Земле, необходимо установить, с какой скоростью движется Солнце относительно спиральных рукавов. Эту величину можно определить исходя из того, как часто и когда интенсивность космических лучей падала или росла.
Можем ли мы заглянуть так далеко в бездну времени и пространства, чтобы узнать, что происходило с космическими лучами сотни миллионов лет назад? Шавив дает замечательный ответ: да, можем. Заново проанализировав данные о радиоактивности железных метеоритов, собранные немецкими учеными, он обнаружил ритм, в котором космические заряженные частицы поступали на Землю.
Когда астероиды сталкиваются друг с другом где-то далеко в Солнечной системе, их фрагменты, выбрасываемые в пространство, могут включать в себя кусочки железа. Эти фрагменты продолжают вращаться вокруг Солнца сотни миллионов лет, и, пока они кружатся, под ударами космических заряженных частиц в них образуются радиоактивные атомы. В конце концов некоторые обломки астероидов попадают на Землю – мы называем их «железными метеоритами». Если вы попытаетесь узнать, сколько лет провел метеорит, блуждая в космосе, то, вероятно, вы захотите измерить соотношение атомов радиоактивного калия и стабильных атомов. Однако колебания интенсивности космических лучей в Солнечной системе исказят полученные результаты.
Когда космических лучей мало, часы метеоритов идут медленно и «омолаживают» своих обладателей. Приступая к исследованию, Нир Шавив сперва исключил метеориты, похожие по характеру и возрасту, предположив, что они произошли в одинаковых космических обстоятельствах. После этого у него все еще оставалось около пятидесяти железных метеоритов, возраст которых доходил до миллиарда лет. Тщательно изучив их, Шавив пришел к выводу, что мощность космических лучей росла и падала циклично, и этот цикл длился 143 миллиона лет (плюс-минус 10 миллионов лет), что согласуется с движением Солнечной системы сквозь спиральные рукава Галактики.
Этот результат поразительным образом совпал с многолетними записями изменений климата. За последние полвека геологи многое узнали о медленных чередованиях теплых и холодных фаз климата, и датировка смен этих состояний все время уточнялась. Шавив попытался найти возможную периодичность в изменениях климата и обнаружил климатический цикл в 145 миллионов лет, что оказалось очень близко к его циклу космических лучей.
Анализ Шавива охватывал, как уже упоминалось, последний миллиард лет. Первая часть этого периода включала космические и климатические потрясения другого вида, оставим их до седьмой главы. А в данный момент давайте посмотрим, что может сказать астрономия об испытаниях, выпавших на долю многоклеточных. Окаменелости, хорошо сохранившиеся с кембрийской эпохи, которая началась 542 миллиона лет назад, говорят о появлении и бурном расцвете разнообразных организмов.
Весь временной этап с начала кембрия до сегодняшних дней носит название «фанерозойский эон», что означает «время явной жизни».
Жизнь в спиральной галактике полна стрессов
Пройдя через рукав Стрельца – Киля, Земля наконец вырвалась из ледяных оков. Жесткий климат, кажется, заставил жизнь задуматься над тем, что было бы неплохо разработать некоторые эволюционные новшества. В 1970-е годы Джеймс Валентайн из Калифорнийского университета в Беркли обнаружил, что, конструируя будущие тела животных, природа начала ставить эксперименты уже на первых поколениях червей, ползавших по морскому дну. Черви весьма неуязвимы к сезонным и долгосрочным изменениям климата, без жалости оставляющим других животных голодными.
Когда наступили теплые времена фанерозоя, предшественники всех основных ветвей царства животных уже были на месте. Пока Солнце и Земля двигались по отрезку между двумя спиральными галактическими рукавами, количество космических лучей было низким, а уровень моря – высоким. Жизнь нежилась на континентальных шельфах. Среди великого разнообразия беспозвоночных животных были похожие на головастиков личинки, получившие в дар от природы раннюю половую зрелость. Они основали династию, потомками которой стали рыбы и все остальные позвоночные.
Теплые условия сохранялись и в ордовикский период, но затем Солнечная система нанесла визит в рукав Персея. Около 445 миллионов лет назад ордовик внезапно закончился, на Землю пришла стужа, и уровень моря упал. Хотя этот период был относительно недолгим, ледники стартовали сразу, как по сигналу, – по схеме Шавива, это произошло, как только Солнечная система вышла из рукава Персея и попала в район максимальной интенсивности космических лучей.
В силурийский период вместе с теплом, вернувшимся после того ужасного перерыва, объявились и новые обитатели суши – первые растения и животные. Тогда же появились и костные рыбы, ставшие наиболее удачливыми из всех позвоночных животных. Следующий, девонский, период также был теплым.
В первом варианте работы Шавива оставались неточности, касающиеся местоположения следующего спирального рукава, куда предстояло отправиться Земле. Астрономические прогнозы расходились с предположениями Шавива, основанными на изучении им железных метеоритов. Впоследствии он разработал более четкую интерпретацию рисунка спиральных рукавов, и расхождения сошли на нет. Во всяком случае, метеоритные данные, касающиеся космических лучей, теперь вполне совпадали с геологическими данными, свидетельствующими о сильном похолодании, максимум которого пришелся на конец каменноугольного периода, около 300 миллионов лет назад.