Текст книги "Леденящие звезды. Новая теория глобальных изменений климата"
Автор книги: Хенрик Свенсмарк
Соавторы: Найджел Колдер
Жанры:
Астрономия и Космос
,сообщить о нарушении
Текущая страница: 5 (всего у книги 15 страниц)
Такое вполне могло быть. В общей картине состояния климата эпизод Лашамп относится к событиям Дансгора-Ошгера, неоднократно случавшимся в течение последнего ледникового периода. Для этих событий характерен существенный рост температур, безусловно, связанный с увеличивавшейся солнечной активностью. Но активное Солнце также отталкивало от Земли космические лучи низких энергий, в противном случае во время экскурса Лашамп, когда земное магнитное поле действовало нерешительно, радиоактивных атомов могло бы образоваться гораздо больше.
Тем археологам, которые пытались установить возраст некоторых находок середины последнего ледникового периода, приходилось нелегко. Тот факт, что геомагнитное поле ослабло, привел к увеличению количества радиоактивного углерода, и ошибки археологов в датировке находок могли доходить до пяти тысяч лет. В 2004 году группа ученых во главе с Конрадом Хугеном из Океанографического института Вудз Хоул (Массачусетс) систематизировала данные об углероде-14, полученном с морского дна у берегов Венесуэлы.
Они увидели, что во время экскурса Лашамп количество углерода-14 росло. Быстрое образование радиоактивного углерода продолжалось до момента, отстоящего от нас во времени на 40,5 тысячи лет, а потом, после небольшой паузы, последовало резкое и почти непрерывное падение уровня радиоактивного углерода, закончившееся 37 тысяч лет назад. Согласно данным Бера, именно тогда совпали максимально высокие температуры и минимум образования бериллия-10 и хлора-36. Возможно, последние несовпадения между космическими лучами и климатом исчезнут, когда мы получим более точные данные.
Но, коснувшись темы Лашампа, наша история забежала вперед. С тех пор как Свенсмарк в 1996 году впервые предположил, что космические лучи напрямую воздействуют на климат, возражение Бера было самым убедительным с научной точки зрения. Нам показалось, что будет предусмотрительным пораньше разобраться с вызовом экскурса Лашамп, чтобы не отпугнуть хорошо информированного читателя от дальнейшего обсуждения теории. А сейчас самое время вернуться к открытиям, касающихся других важных персонажей в нашей космической драме – облаков.
3. Сияющая Земля – это прикольно (но очень уж холодно)
Модная наука о климате сбита с толку обычными облаками.
Спутники показывают, что облачность меняется в зависимости от количества заряженных частиц. Легче всего поддаются воздействию облака нижних слоев атмосферы, охлаждающие мир.
Облака подтверждают свою власть, согревая Антарктику.
Открытия, уменьшающие вероятность неотвратимого глобального потепления.
Во многом облака и есть погода. Это верно и для сторонних наблюдателей, и для метеорологов. В небесах над нашими головами и на горизонте облака разыгрывают непрерывную драму света и мрака, затишья и бури, дождя и снега и почти никогда не повторяются. Самые грозные из них мечут молнии, наскоро взбивают торнадо или выстраивают огромные облачные стены ураганов.
Любой, кто захочет описать, классифицировать, проанализировать и объяснить облака, вскоре будет озадачен их капризностью. Облака намекнули Гамлету, как вернее можно сойти за сумасшедшего, и он сказал, что облако похоже на верблюда, затем на горностая и, наконец, на кита. Прошли века, а облака все еще досаждают синоптикам – и тем, кто предсказывает погоду на завтра, и тем, кто составляет долгосрочные прогнозы изменений климата на суперкомпьютерах.
По всей планете рассеяно множество метеостанций; их данные, а также сведения со спутников обсчитываются на компьютерах, при этом компьютерные модели организованы так, что расстояние между двумя любыми расчетными точками составляет сто километров. Эта гигантская сеть расчетных точек покрывает всю планету, однако отдельные облака проваливаются в ячейки компьютерной сети, словно мелкая рыбешка, ускользающая из рыбацкого невода. Вместо точных данных разработчики компьютерных моделей вынуждены полагаться на теорию о приблизительном поведении облаков. «Погодные модельеры» выдают один за другим противоречивые прогнозы, потому что их программы не могут справиться с непредсказуемостью облаков. В 2004 году Кевин Тренберт, ведущий специалист по моделированию климата из Национального центра атмосферных исследований США, откровенно признался в этом:
«Климатические модели не справляются с облаками. Наверное, облака – это самая большая проблема, возникающая в тех случаях, когда мы используем климатические модели, чтобы делать прогнозы насчет глобального потепления» [23]23
Процитировано Дженни Хоган в: NewSciendst.com news service,27 мая 20 004 г.
[Закрыть].
В последующие годы стало очевидно, что имеющиеся компьютерные модели абсолютно бестолковы. Несколько институтов во Франции, Германии, Великобритании и США сравнили результаты десяти моделей атмосферы с данными, полученными со спутников, наблюдавших реальные облака с 1983 по 2002 год. Некоторые модели ощутимо недооценили количество облаков на средних и малых высотах.
Доклад Минхуа Чжана из университета Стоуни-Брук и его коллег был унизительным признанием провала:
«Что касается отдельных… типов облаков, разница между результатами моделирования и спутниковыми измерениями достигает нескольких сотен процентов» [24]24
М. Н. Zhang et al. Journal of Geophysical Research,110, D15S02,2005.
[Закрыть].
Климатологи давно мечтали получить более точные данные об облаках, и ответом на их просьбы стали два исследовательских спутника, которые были выведены на орбиту в апреле 2006 года с планируемым сроком службы в космосе около трех лет. Американо-французский «Калипсо» и американо-канадский «КлаудСат» летят поблизости друг от друга, наблюдая одни и те же облака с интервалом в пятнадцать минут, один с помощью поляризационного лазерного локатора, а другой – посредством чувствительного радара с миллиметровой длиной волны. Они способны разглядеть различные слои внутри густых облаков, измерять размеры капель и выделять из них те, которые выпадают в виде дождя. Все это и многое другое спутники выполняют впервые. Еще до их запуска научный руководитель программы профессор Грэм Стивенс из университета штата Колорадо так высказался о глубине нашего невежества:
«Новая информация с „КлаудСата“ ответит на элементарные вопросы о том, как в облаках образуются дождь и снег, как осадки распределяются в мире и как облака влияют на климат Земли» [25]25
Цит. no: NASA press release,15 сентября 2005 г.
[Закрыть].
Такие признания появились, когда огромные средства направлялись на то, чтобы создать суперкомпьютеры для моделирования климата и научиться предсказывать погоду на сто лет вперед. Несмотря на противоречивые результаты, некоторые ученые продолжали возвещать надвигающуюся катастрофу, которую провоцируют выбросы углекислого газа. Человечество, говорили они, должно остановить промышленное производство, иначе последствия будут ужасны. Несколько академий наук и ведущие научные журналы торжественно заявили, что родилась новая наука об изменениях климата. Мнение тех ученых, кто более четко представлял себе значение облаков и то, как они могут влиять на климат, пренебрежительно отвергалось.
Любой, кто знает, что такое теплые тропические ночи, испытывал на себе парниковое воздействие атмосферных газов. Поверхность Земли излучает тепло в космос в форме невидимых инфракрасных лучей. Поэтому после наступления темноты пустыни становятся весьма холодными. Но во влажных тропиках молекулы воды над нашими головами перехватывают тепло и отражают его обратно к земле, так что вы можете сидеть на террасе в легкой рубашке с короткими рукавами и небрежно потягивать свой вечерний ром.
Это и есть естественный парниковый эффект. Он создается главным образом благодаря водяному пару и совершенно необходим для поддержания на нашей планете условий, пригодных для жизни. Двуокись углерода работает по такому же принципу, поэтому растущее содержание этого газа в воздухе вызывает беспокойство. Но главный вопрос – насколько сильно поднимется температура планеты, если количество углекислого газа продолжит увеличиваться. И если вы примете во внимание реальную роль облаков, то самые зловещие предсказания покажутся вам сомнительными.
Однако не воображайте, что если будут вложены миллиарды долларов, если будут получены детальные данные со спутников, если будет предусмотрено поведение облаков, то в один прекрасный день компьютерные модели выдадут результаты, совпадающие не только между собой, но и довольно близкие к реальности. Причина уязвимости современного компьютерного моделирования кроется гораздо глубже, чем просто в технических несовершенствах. Полагая, что изменения климата в первую очередь зависят от содержания в атмосфере углекислого газа, разработчики программ отводят облакам лишь пассивную роль.
В этой главе мы покажем, что погодой руководят облака. Колебания облачности четко следуют за изменением интенсивности тех космических лучей, которые зависят от магнитного поля Солнца и мало обращают внимания на магнитное поле Земли. Необходимо определить, какие облака наиболее важны с точки зрения климата. И подтверждение тому, что облака играют ведущую роль, мы можем найти возле Южного полюса.
Ресурс облаков
Для нас очевидно, что облака охлаждают землю, когда тучки набегают на солнце в теплый летний денек. Какими бы серыми они ни казались нам снизу, если вы взглянете на облака сверху, например, с горы или из самолета, – они будут сиять белизной. Они отражают обратно в космос около половины поступающего к нам солнечного света, который в противном случае мог бы согреть землю под ними. К тому же они поглощают какую-то часть солнечной радиации.
Житейский опыт подсказывает вам, что облачные ночи обычно менее прохладные, чем ясные, и особенно это заметно зимой, когда яркие звезды – верная примета крепкого мороза. Облака, со своей стороны, тоже создают парниковый эффект, перехватывая жару, сбегающую с поверхности Земли. И хотя они также излучают инфракрасные лучи в космос, вершины облаков холоднее, чем земля, так что потери тепла уменьшаются.
Облака могут оказывать на нашу планету и согревающее, и охлаждающее воздействие и таким образом обеспечивают баланс входящего видимого света и исходящих инфракрасных лучей. Ученые могли лишь предполагать это, до тех пор пока в 1984-м и 1986 годах не были запущены в космос три американских спутника со специальными приборами. Они измерили весь поступающий на планету солнечный свет и исходящее инфракрасное излучение, и в уже начале 1990-х годов стали ясны результаты эксперимента НАСА «Радиационный баланс Земли» (ERBE [26]26
ERBE – Earth Radiation Budget Experiment (англ.).
[Закрыть]).
В своей совокупности облака – это мощный «холодильник». Исключение, пожалуй, составляют только тонкие облака, которые в целом обладают согревающим эффектом. Высокие перистые облака настолько холодны – их температура приблизительно минус 40 градусов Цельсия, – что они излучают в космос намного меньше тепла, чем задерживают его в виде инфракрасного излучения, идущего от Земли. С другой стороны, самые эффективные «морозильники» – это густые облака на средних высотах, но в каждый данный момент времени они накрывают не более 7 процентов земной территории.
Зато низкие облака могут покрыть в четыре раза большую площадь. На их долю приходится 60 процентов общего охлаждения. Мало того что они препятствуют солнечному свету, их относительно теплые верхушки эффективно излучают тепло в космос. А лидерство по охлаждению Земли среди низких облаков принадлежит широким и плоским покрывалам слоисто-кучевых облаков, простирающихся над 20 процентами земной поверхности. Чаще всего их можно увидеть над океаном, где они создают для пассажиров межконтинентальных полетов однообразный пейзаж.
Облака уменьшают эффективность солнечного света на 8 процентов. Если ничего больше не менять, а только убрать этот огромный солнечный зонтик, планетарная температура повысится приблизительно на 10 градусов Цельсия. И наоборот, увеличение количества низких облаков лишь на несколько процентов приведет к заметному похолоданию.
Когда облаков в атмосфере Земле становится больше, космонавты на орбите видят, что сияние нашей планеты усиливается. Астрономы на Земле, если вглядятся в зеркало Луны, тоже могут наблюдать этот блеск, поскольку Земля своим призрачным светом освещает те участки, куда не попадает прямой свет Солнца. Чем ярче Земля, тем она холоднее – просто потому, что она больше отбрасывает прочь солнечных, согревающих ее лучей.
Количество облаков меняется год от года. Старательные летописцы записывали местные колебания погоды на протяжении веков, но узнать, как ведут себя облака в целом мире, стало возможным только с появлением первых метеоспутников. Они совершили метеорологическую революцию, показав нам, как разворачиваются основные события погодной драмы внизу, под их камерами. С 1966 года они предоставляют синоптикам постоянные оперативные услуги, все время улучшая качество и увеличивая зону покрытия. Телезрители научились узнавать анимированные спутниковые изображения дождевых облаков или ураганов, властно шествующих своей дорогой.
Начиная с 1983 года «Международный спутниковый проект облачной климатологии» стал объединять данные, поступающие с гражданских метеоспутников всех государств. В рамках этого проекта, осуществляемого под руководством Уильяма Россоу из Института космических исследований имени Годдарда НАСА (Нью-Йорк), ученые каждый месяц составляют усредненные карты облачного покрова, где поверхность Земли разделена на квадраты со стороной около 250 километров. На картах отлично видны и смены сезонов, и муссоны, которые вносят в климат свою лепту, накрывая Южную Азию пуховым облачным одеялом. Во время климатических эпизодов, называемых Эль-Ниньо [27]27
Эль-Ниньо (исп. El Niño – малыш, мальчик) – колебания температуры поверхностного слоя воды в экваториальной части Тихого океана, имеющие заметное влияние на климат.
[Закрыть], данные, предоставляемые спутниками, говорят о значительных изменениях в распределении облаков над тропической зоной Тихого океана и Южной Америкой. Эти данные также подтверждают, что связь между земными облаками и ритмами Солнца действительно существует.
Пропущенное звено между Солнцем и климатом
В канун Рождества 1995 года Датский метеорологический институт на северной окраине Копенгагена почти пустовал, за исключением отдела метеопрогнозов. Еще одна лампочка горела на другом этаже, где работал Свенсмарк. Он так неистово трудился над своей гипотезой об облаках, что даже рождественские каникулы провел вне семьи, предоставив жену и маленьких сыновей самим себе. До этого он не знал, что Уильям Россоу составляет обобщенные карты облачного покрова на основе спутниковых данных, но когда, в то Рождество, Свенсмарк нашел эти карты в Интернете, они помогли ему понять, что Солнце воздействует на земной климат неизвестным дотоле образом.
После Нового года Свенсмарк должен был перейти в другое отделение института. Он собирался присоединиться к Айгилю Фриис-Кристенсену, руководителю отдела солнечно-земной физики, давно интересующемуся магнитными бурями, полярными сияниями и их очевидной связью с колебаниями льдистости морей, окружающих Гренландию. Фриис-Кристенсен вместе со своим бывшим руководителем Кнудом Лассеном, еще одним знатоком Гренландии, заметил любопытное совпадение между ростом температур в Северном полушарии в течение двадцатого века и ускорением циклов солнечных пятен.
Когда они в 1991 году опубликовали полученные результаты, Фриис-Кристенсен неожиданно для себя оказался в роли защитника первостепенного значения Солнца в деле изменений климата. Роль Солнца обсуждалась почти двести лет, с тех пор как английский астроном Уильям Гершель обратил внимание на интересный факт. Он обнаружил, что в те годы, когда на Солнце мало пятен, цена на пшеницу растет. Но к 1990-м годам большинство климатологов пришли к выводу, что Солнце тут ни при чем. Данные космических спутников демонстрировали, что колебания солнечной активности оказывают незначительное влияние на климат.
Не рассказывая пока ничего Фриису-Кристенсену, его новый работник решил использовать оставшееся до конца 1995 года время, чтобы проверить свое предположение о том, как изменение солнечной активности могло бы оказывать более сильное воздействие. Свенсмарк считал, что космические лучи, которым Солнце разрешает попасть в Солнечную систему, могут управлять облачностью на нашей планете. Больше космических лучей – больше облаков. Ученые из России вынашивали противоположную идею о том, что космические лучи могут уменьшать облачность. Так или иначе, связь между звездами и облаками было очень непросто установить.
Как только Свенсмарк получил данные из всемирной паутины, он увидел, что изменения облачности год от года следуют за колебаниями интенсивности космических лучей. В середине декабря он показал некоторые первые результаты Фриису-Кристенсену. Руководителю отдела солнечно-земной физики идея Свенсмарка о том, что космические лучи могли бы увеличить облачность, показалась не просто очень интересной, но и обоснованной.
Более того, это был тот самый механизм, способный усилить воздействие Солнца на климат, который Фриис-Кристенсен искал в течение нескольких лет. После того как в январе 1996 года Свенсмарк перешел в новый отдел, они вдвоем принялись за исследования. Увлечение Свенсмарка превратилось из хобби в оплачиваемую работу с полным рабочим днем. И даже более, чем с полным.
Одобрение, высказанное будущим руководителем, побудило Свенсмарка отменить свои рождественские каникулы и заняться сбором дополнительной информации. Первоначально он работал со сведениями, полученными метеоспутниками военно-воздушных сил США и спутниками общего назначения серии «Нимбус» (НАСА). Когда после долгих блужданий Свенсмарк набрел наконец на «Международный спутниковый проект облачной климатологии» и смог вытянуть подробные данные за период с середины 1983-го до конца 1990 года, исследования пошли намного быстрее.
К сожалению, разные страны использовали разные типы метеоспутников, а также очень трудно было отличить облака – в температурном смысле – от просто холодных поверхностей, ледяных полей и вершин горных массивов; в результате на спутниковых картах появлялось немало дефектов и сомнительных мест. Из всех данных Свенсмарк выбрал сведения об облачности над океанами, так как подобные наблюдения велись с американских, европейских и японских геостационарных спутников, висящих высоко над экватором. Что касается данных о космических лучах, он остановил свой выбор на среднемесячных подсчетах нейтронов, которые регистрировались станцией нейтронного мониторинга, устроенной Джоном Симпсоном в Клаймаксе, Колорадо.
Совпадение было поразительным. С 1984 по 1987 год Солнце понемногу слабело, и на Землю попадало больше заряженных частиц. Облачность над океанами тоже постепенно увеличивалась: за этот период она выросла приблизительно на 3 процента. Затем, с 1987 по 1990 год, интенсивность космических лучей снижалась, и облачность также уменьшилась – на 4 процента. Эти результаты наводили на мысль, что изменения в облачном покрове, связанные с космическими лучами, могут оказать больший эффект на температуру Земли, чем малые колебания в интенсивности солнечного света.
Облака послушно следовали за космическими лучами. Для норм, принятых в климатологии, эта корреляция была исключительно точна, и Фриис-Кристенсен со Свенсмарком удивлялись, что до них никто не заметил такой очевидной связи. Они бросились завершать свою работу, опасаясь, что другие ученые опередят их с открытием. В конце февраля 1996 года научный труд отправился в журнал «Сайенс» в Вашингтон.
Вместо быстрой публикации, на которую они, признаться, рассчитывали, вернулся длинный список вопросов и поправок. Разобравшись с ними и добавив небольшие пояснения, Свенсмарк и Фриис-Кристенсен поняли, что работа стала слишком объемной для «Сайенс» и ее следует напечатать где-нибудь еще. Тогда Фриис-Кристенсен взялся за редактора «Журнала атмосферной и солнечно-земной физики», надеясь на то, что редакция в скором времени решит вопрос с изданием. В итоге распухший труд был там опубликован, хотя только в следующем году.
Тем временем летом в английском городе Бирмингеме должно было состояться собрание ученых, изучающих космос, и организаторы без всякой задней мысли пригласили Фрииса-Кристенсена для коротенького выступления на тему солнечного воздействия на климат. Заручившись согласием Свенсмарка, Фриис-Кристенсен решил, что, каков бы ни был ответ из второго журнала, ему следует в своей речи кратко изложить найденные ими взаимосвязи. Так получилось, что первой публикацией ученых на эту тему стал небольшой пресс-релиз, напечатанный по запросу Британского Королевского астрономического общества, отвечающего за освещение событий в Бирмингеме.
Публикация была озаглавлена: «Упущенное звено во взаимоотношениях между Солнцем и климатом». Доклад Фрииса-Кристенсена и несколько последующих интервью на ту же тему вызвали краткую вспышку интереса – разве что в Дании этот интерес был достаточно продолжительным. Весьма типичной можно считать реакцию лондонской «Таймс»: в этой газете, на одной из внутренних полос, появилось короткое сообщение, снабженное заголовком: «Взрывающиеся звезды „могут вызвать глобальное потепление“», – кавычки явно подчеркивали, что само издание дистанцируется от содержания материала.
Колдер также был на встрече в Бирмингеме и следил за реакцией с профессиональной озабоченностью. Он уже знал, над чем работают Свенсмарк и Фриис-Кристенсен, и писал с их помощью книгу о Солнце и изменениях климата. Он боялся, что если его коллеги – научно-популярные писатели – узнают об этом открытии, его история покажется устаревшей, когда книга выйдет в свет. Он мог не беспокоиться. За пределами Дании эта тема никого не интересовала – не только до апреля 1997 года, когда вышла в свет его книга «Маниакальное Солнце», но и годы спустя. Это была новость, которую никто не хотел слышать.
Что касается Свенсмарка, он знал, что ему придется побороться за свое открытие, хотя и не подозревал, что война затянется больше чем на десять лет. Если говорить о науке, он выходил один на один с косматым миром природы, и из свалявшихся клочьев данных о космических лучах, солнечных бурях и земной облачности ему следовало вычесать тонкую шерсть, чтобы соткать убедительную историю. Но при этом Свенсмарку приходилось вести борьбу на два фронта, потому что научное сообщество либо нападало на его идеи, либо просто игнорировало их.
«Наивно и безответственно»
Любой ученый, выдвигающий оригинальную идею, вправе ожидать суровой критики со стороны коллег и тем более противников, которые попытаются доказать, что данные, подкрепляющие новую теорию, или сама теория неверны. В сущности, в этом наука и заключается – выкорчевывать ошибки до тех пор, пока не выживут только хорошо обоснованные утверждения. Идея, встреченная гулом возражений, обычно ложна. С другой стороны, мы знаем немало примеров, когда ученые мужи ожесточенно нападали на подлинные открытия или, наоборот, долго упорствовали, отстаивая ошибочные суждения. Конечно, сопротивление критике – не самый приятный процесс, потому что ученые – страстные существа, а не логические роботы. Обычно споры протекают внешне благопристойно, но вот в климатологической науке они приобрели особенно раздражительный характер.
Это нездоровое настроение стало явственно ощущаться в Межправительственной группе экспертов по изменению климата, которая, начиная с 1990 года, принялась грозно пророчить неотвратимое потепление всей планеты. Эти предсказания основывались на том, что за двадцатый век средняя мировая температура выросла – довольно скромно, надо сказать, – и это совпало с увеличением выбросов углекислого газа в атмосферу. Любые предположения, что на рост температуры могли в большей степени повлиять естественные факторы, такие как солнечная активность, – оказались не к месту.
В 1992 году датская делегация в Межправительственной группе экспертов по изменению климата выдвинула робкое предположение, что стоило бы внести воздействие Солнца на климат в список вопросов, заслуживающих дальнейшего изучения. Однако это предложение было с ходу отвергнуто. В 1996 году одна датская газета пригласила председателя группы Берта Болина, чтобы обсудить доклад Фриис-Кристенсена о связи космических лучей и климата, который он сделал на встрече в Бирмингеме. Берт Болин был весьма язвителен в своих оценках: «Я считаю поступок этой парочки, с научной точки зрения, чрезмерно наивным и безответственным» [28]28
Цит по: Information,Копенгаген, 19 июля 1996 г. (В оригинале на датском языке: Jeg finder dette pars skridt videnskebeligt set yderst naivt og uansvarligt.]
[Закрыть].
Довольно странные слова для профессора метеорологии из Стокгольма по поводу доклада, сделанного профессором физики из Копенгагена. В пределах самого Датского метеорологического института Свенсмарк столкнулся с плохим отношением и на личностном уровне. Часто противники его идей вели себя агрессивно: некоторые даже в буфете не хотели близко общаться с тем, у кого дух не захватывало от предположения, что двуокись углерода – ведущий фактор в изменениях климата.
Противники Свенсмарка договорились жестоко раскритиковать его на встрече ученых Северных стран, проводившейся в тот же год в Эльсиноре. Организаторы пригласили и Свенсмарка, чтобы он произнес речь о космических лучах и облаках. На встрече был запланирован обед, где подавали алкогольные напитки, и Свенсмарку выделили время сразу после обеда, чтобы, разгорячившись и расхрабрившись, каждый мог накинуться на неугодного ученого с насмешками.
Среди прочих оскорблений, раздававшихся в адрес Свенсмарка, прозвучало язвительное предположение о том, что он сумасшедший, раз считает, что космические лучи могут влиять на образование облаков. Одной из самых заметных на встрече фигур был Маркку Кулмала из университета Хельсинки, председатель Международной комиссии по облакам и осадкам. Он слушал молча, пока кто-то не обратился к нему и не попросил объяснить, почему идея Свенсмарка неверна. Короткое замечание Кулмула повергло всех в замешательство: «Возможно, он прав» [29]29
Кулмула цит. по воспоминанию Хенрика Свенсмарка об их встрече на Ежегодном научном симпозиуме по аэрозолям (проводится совместно Северным обществом по исследованию аэрозолей и Северным симпозиумом по химии атмосферы) в Хельсингёре в 1996 г.
[Закрыть].
Неудовлетворенный этим ответом вопрошающий возразил, что исследования Свенсмарка «опасны». Любопытное слово, для того чтобы описать теоретические занятия, не включающие в себя работу с ядами, снарядами или взрывчаткой. Единственное, чему угрожала теория Свенсмарка, были научные представления и общепринятая концепция, так как идея Свенсмарка могла опровергнуть распространенные умозаключения о глобальном потеплении и его причинах.
Государственные фондовые агентства Дании отказывались поддерживать исследования Свенсмарка, конфликтующие с официальной политикой. Зато ему на помощь пришел Фонд Карлсберга, который уже с девятнадцатого века направлял доходы от производства пива на разнообразные захватывающие научные изыскания. Руководство фонда проигнорировало письмо от важного правительственного ученого на имя директора, где тот настаивал, чтобы они аннулировали грант. Даже когда Свенсмарк получил датские награды за свое открытие – ежегодную Премию Кнуда Хёйгора за исследовательскую работу и специальную Премию за исследование энергий «Энергия-Е2», – какая-то часть прессы была возмущена.
Благодаря Фонду Карлсберга Свенсмарк смог заполучить еще одну пару глаз для своей «охоты». Приехавший из Англии Найджел Марш недавно получил степень доктора физических наук в Копенгагенском университете за работу, в которой он по образцам гренландского льда проследил, как менялся древний климат Земли. Марш стал главным соавтором Свенсмарка, и они с удвоенной силой принялись разбираться в том, как космические лучи воздействуют на климат. И к тому же нашли более дружелюбное место для работы.
Удивительная сочетаемость с низкими облаками
Айгиль Фриис-Кристенсен не только возглавлял отделение Датского метеорологического института, но и был научным сотрудником программы по обслуживанию первого датского спутника «Эрстед», созданного для наблюдений за магнитным полем Земли. Фриис-Кристенсену предстояло собрать команду, куда должны были войти более шестидесяти человек из шестнадцати стран. Поэтому у него не хватало времени на дальнейшее изучение космических лучей совместно со Свенсмарком, хотя он и продолжал читать лекции по этому предмету.
К концу 1997 года Фриис-Кристенсен стал директором Датского института космических исследований, позже переименованного в Датский национальный космический центр. Правительство хотело расширить сферу деятельности института, добавив к уже существующей космической астрономии исследования Солнечной системы. Среди новых направлений было также изучение Солнца и его влияния на космическую околоземную среду, магнитное поле и климат. В 1998 году Фриис-Кристенсен пригласил Свенсмарка и Найджела Марша присоединиться к сотрудникам Института космических исследований.
«Международный спутниковый проект облачной климатологии» опубликовал очередную серию данных за период с июля 1983-го по сентябрь 1994 года. В своей новой лаборатории Марш и Свенсмарк всевозможными способами анализировали эти данные, соотнося их с высотой и географическими координатами облаков. Они изучали, какие изменения происходили с низкими, средними и высокими облаками в определенном регионе в течение месяца, и сравнивали полученные результаты с данными из Клаймакса о космических лучах. Работа поглощала все их время и была очень напряженной. К 2000 году они смогли сделать четкий вывод: «Удивительно, но сильнее всего солнечное воздействие заметно на низких облаках» [30]30
Physical Review Letters.Volume 85, pp. 5004–5007, 2000.
[Закрыть].
Кривые вариаций в облачном покрове на различных высотах (сплошные линии) наложены на кривые вариаций в подсчетах космических лучей (пунктирные линии), сделанных на станции в Клаймаксе. На графике, относящемся к большим высотам, эти линии не совпадают, а вот что касается малых высот, там видно четкое соответствие между потоками космических частиц и низкоуровневыми облаками. (Графики Н. Марша и X. Свенсмарка)
Другими словами, это облака, располагающиеся не выше 3000 метров над землей, где меньше всего заряженных частиц, – именно такие облака реагируют на ослабление или усиление потока космических лучей. Вспомним эксперимент НАСА «Радиационный баланс Земли», который еще ранее показал, что как раз низкие облака ответственны за 60 процентов общего охлаждения нашей планеты, вызываемого облачным покровом. Таким образом, признание ведущей роли низких облаков стало важным ключом для расследования связей между космическими лучами и климатом. Для нашего исследования в первую очередь важна интенсивность высокоэнергетических космических лучей, потому что они единственные способны достигать нижних слоев атмосферы.
Статистика показывает: сочетаемость низких облаков и космических лучей, в среднем по годам, набирает 92 очка из 100 возможных – по нормам климатической науки это очень хорошая корреляция. А вот облака на средних и больших высотах против всех ожиданий, кажется, совершенно безразличны к вариациям космических лучей. Наверное, это происходит потому, что на большой высоте заряженные частицы всегда в избытке, зато внизу они достаточно редки, поэтому их вариации более заметны – так же как дождь будет более впечатляющим в пустыне, а не в тропическом лесу. Более того, высотные облака состоят из кристалликов льда, а не жидкой воды, и механизм их формирования может быть совсем иным.